傅里叶变换,拉普拉斯变换和Z变换的意义 Word 文档
傅里叶变换、拉普拉斯变换、Z变换

如果看了这篇文章你还不懂傅里叶变换,那就过来掐死我吧Heinrich,生娃学工打折腿这篇文章的核心思想就是:要让读者在不看任何数学公式的情况下理解傅里叶分析。
傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。
但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。
老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。
(您把教材写得好玩一点会死吗会死吗)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。
所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。
至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。
————以上是定场诗————下面进入正题:抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。
但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。
这样的例子太多了,也许几年后你都没有再打开这个页面。
无论如何,耐下心,读下去。
这篇文章要比读课本要轻松、开心得多……一、嘛叫频域从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。
这种以时间作为参照来观察动态世界的方法我们称其为时域分析。
而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。
但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了我没有疯,这个静止的世界就叫做频域。
先举一个公式上并非很恰当,但意义上再贴切不过的例子:在你的理解中,一段音乐是什么呢这是我们对音乐最普遍的理解,一个随着时间变化的震动。
但我相信对于乐器小能手们来说,音乐更直观的理解是这样的:好的!下课,同学们再见。
傅里叶变换,拉普拉斯变换和Z变换的意义_百度文库.

傅里叶变换,拉普拉斯变换和Z变换的意义傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。
傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。
在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。
傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。
理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。
我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。
傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。
傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。
这都是一个信号的不同表示形式。
它的公式会用就可以,当然把证明看懂了更好。
对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。
幅度是表示这个频率分量的大小,那么相位呢,它有什么物理意义?频域的相位与时域的相位有关系吗?信号前一段的相位(频域)与后一段的相位的变化是否与信号的频率成正比关系。
傅里叶变换就是把一个信号,分解成无数的正弦波(或者余弦波)信号。
也就是说,用无数的正弦波,可以合成任何你所需要的信号。
§6.10 傅里叶变换、拉普拉斯变换、z变换之间的关系

邮
院
X
二.z变换与拉普拉斯变换的关系
Ai ˆ t L x s p i 1 i ˆ ( nT ) 也 ˆ ( t ) 进行理想抽样,得到的离散时间序列 x 对x 由N 项指数序列相加组合而成。 ˆ nT x ˆ 1 nT x ˆ 2 nT x ˆ N nT x
jω
n
电
子 工
X z
n x n z
北
程 学
院
逆变换 x n
2 j 1 2 j 1
1
z 1
X z z
n 1
dz
第 5 页
北
京
1 IDTFT X e x n 2
学
n
电
x n e jn
j K2 K 2
* 1
北
程 学
K1 K2 ω0 解: xt sinω0 t ut X s 2 2 s j ω0 s j ω0 s ω0 两个一阶极点分别为 p1 j ω0,p2 j ω0 。
电
大 学
电
子 工
序列sinω0 nT unT 的z变换。
第 7 页
大 学
北
i 1
i 1
其拉式变换为
N
北
京
邮 电
Ai ˆ t L x s p i 1 i
大
学
电
子 工
程 学
京
ˆ i t Ai e pi t u t x
电
N
电
子 工
程
学 院
N
匀抽样 x t 均 x n ,
拉普拉斯变换傅里叶变换和Z变换的意义

拉普拉斯变换傅里叶变换和Z变换的意义L{f(t)} = F(s) = ∫[0,∞] e^(-st) f(t) dt其中,L表示拉普拉斯变换算子,f(t)是定义在[0,∞]上的函数,s是复变量。
拉普拉斯变换的意义在于,它可以将时间域中的函数转换为复平面上的函数,从而方便地进行频域分析和求解微分方程。
通过拉普拉斯变换,我们可以得到函数的频谱特性、系统的稳定性和传递函数等重要信息。
在信号处理中,拉普拉斯变换可以用于信号的滤波、系统的响应和控制系统的设计等。
傅里叶变换是一种将函数从时域转换到频域的方法,它将一个连续函数分解为不同频率的正弦和余弦函数的叠加。
在实际应用中,傅里叶变换通常分为离散傅里叶变换(DFT)和连续傅里叶变换(FFT)两种形式。
傅里叶变换的定义如下:F(ω) = ∫[-∞,+∞] e^(-jωt) f(t) dt其中,F表示傅里叶变换算子,f(t)是定义在整个实数轴上的函数,ω是频率变量。
傅里叶变换的意义在于,它可以将时域中的函数分解为不同频率的正弦和余弦函数的叠加。
通过傅里叶变换,我们可以分析信号的频谱分布、信号的周期性和对信号进行滤波等。
在图像处理、语音处理和通信系统中,傅里叶变换广泛应用于信号分析、滤波和信息传输等方面。
Z变换是一种将离散函数转换为复变函数的方法,它将离散序列表示为复平面上的复数函数。
Z变换在数字信号处理和控制系统中广泛使用。
Z变换的定义如下:Z{f[n]}=F(z)=∑[-∞,+∞]f[n]z^(-n)其中,Z表示Z变换算子,f[n]是一个定义在整个整数轴上的离散序列,z是复变量。
Z变换的意义在于,它可以将离散序列转换为复平面上的函数,从而方便地进行频域分析和系统建模。
通过Z变换,我们可以得到离散序列的频谱特性、系统的稳定性和传递函数等信息。
在数字滤波器设计、控制系统分析和离散信号处理中,Z变换是一种重要的工具。
综上所述,拉普拉斯变换、傅里叶变换和Z变换是信号处理和系统分析中常用的工具。
傅里叶变换拉普拉斯变换z变换关系

傅里叶变换拉普拉斯变换z变换关系
傅里叶变换、拉普拉斯变换和z变换是三种不同的信号分析方法。
它们之间的关系如下:
1. 傅里叶变换和拉普拉斯变换
傅里叶变换用于分析连续时间信号,而拉普拉斯变换用于分析连续时间线性时不变系统(LTI系统)。
当对LTI系统的输入信号进行傅里叶变换时,得到的结果是系统的频率响应,即系统在不同频率下的增益和相位差。
当使用拉普拉斯变换对LTI系统的输入信号进行变换时,得到的结果是系统的传递函数,即输入信号和输出信号之间的关系。
2. 傅里叶变换和z变换
傅里叶变换和z变换都用于分析离散时间信号。
傅里叶变换将信号从时域转换到频域,而z变换将信号从时域转换到z域。
z变换可以将连续时间信号离散化,这使得它在数字信号处理中非常有用。
当对离散时间信号进行傅里叶变换时,得到的结果是信号的离散频谱,即信号在不同频率下的幅度和相位信息。
当使用z 变换对离散时间信号进行变换时,得到的结果是离散时间系统的传递函数,即输入信号和输出信号之间的关系。
3. 拉普拉斯变换和z变换
拉普拉斯变换和z变换类似,都用于分析离散时间线性时不变系统。
当使用拉普拉斯变换对离散时间LTI系统的输入信号进行变换时,得到的结果是系统的离散时间传递函数。
当使用z变换对连续时间LTI系统的输入信号进行变换时,得到的结果是系统的z域传递函数。
这些函数可以用于分析系统的稳定性、带宽和抗差性等性质。
傅里叶变换 拉普拉斯变换 z变换

傅里叶变换拉普拉斯变换 z变换主题:傅里叶变换、拉普拉斯变换和z变换引言:在信号与系统领域,傅里叶变换、拉普拉斯变换和z变换是三种重要的数学工具。
它们被广泛应用于信号处理、图像处理、电路分析等领域。
本文将介绍这三种变换的基本概念和应用,并探讨它们之间的关系和特点。
一、傅里叶变换1.1 基本概念傅里叶变换是将一个函数表示为正弦和余弦函数的线性组合。
对于一个函数f(t),其傅里叶变换F(ω)定义如下:F(ω) = ∫[f(t)e^(-jωt)]dt其中,ω是频率,e^(-jωt)表示复指数函数。
1.2 特点和应用傅里叶变换具有如下特点:- 可以将一个信号分解成不同频率的分量,进而进行频谱分析。
- 可以将时域信号转换为频域信号,便于对信号的时频属性进行分析。
- 在信号处理中,傅里叶变换在滤波、频谱分析等方面有着重要的应用。
1.3 傅里叶变换的逆变换傅里叶变换的逆变换可以将频域信号恢复为时域信号。
逆变换的定义如下:f(t) = ∫[F(ω)e^(jωt)]dω二、拉普拉斯变换2.1 基本概念拉普拉斯变换是将一个函数表示为指数衰减函数的线性组合。
对于一个函数f(t),其拉普拉斯变换F(s)定义如下:F(s) = ∫[f(t)e^(-st)]dt其中,s是复数变量,表示频域变量。
2.2 特点和应用拉普拉斯变换具有如下特点:- 可以对连续时间信号进行频域分析,并描述系统的稳定性。
- 可以求解线性时不变系统的微分方程。
- 在控制系统、电路分析等方面有着广泛的应用。
2.3 拉普拉斯变换的逆变换拉普拉斯变换的逆变换可以将频域信号恢复为时域信号。
逆变换的定义如下:f(t) = (1/2πj)∫[F(s)e^(st)]d s,积分路径为垂直于Im(s)轴的线。
三、z变换3.1 基本概念z变换是傅里叶变换和拉普拉斯变换的离散形式,也是一种离散时间信号的频域分析方法。
对于一个离散时间信号f[n],其z变换F(z)定义如下:F(z) = ∑[f[n]z^(-n)]其中,z是复数变量。
变焕世界-傅立叶、拉普拉斯、Z变换 汇总对比
变焕世界-傅立叶、拉普拉斯、Z变换1、傅里叶变换简单通俗理解就是把看似杂乱无章的信号考虑成由一定振幅、相位、频率的基本正弦(余弦)信号组合而成,傅里叶变换的目的就是找出这些基本正弦(余弦)信号中振幅较大(能量较高)信号对应的频率,从而找出杂乱无章的信号中的主要振动频率特点。
2、拉普拉斯变换定义式:设有一时间函数f(t) [0,∞] 或 0≤t≤∞单边函数 ,其中,S=σ+jω是复参变量,称为复频率。
左端的定积分称为拉普拉斯积分,又称为f(t)的拉普拉斯变换;右端的F(S)是拉普拉斯积分的结果,此积分把时域中的单边函数f(t)变换为以复频率S为自变量的复频域函数F(S),称为f(t)的拉普拉斯象函数。
以上的拉普拉斯变换是对单边函数的拉普拉斯变换,称为单边拉普拉斯变换。
如f(t)是定义在整个时间轴上的函数,可将其乘以单位阶跃函数,即变为f(t)ε(t),则拉普拉斯变换为F(s),=mathcal left =int_ ^infty f(t),e^ ,dt 其中积分下标取0-而不是0或0+ ,是为了将冲激函数δ(t)及其导函数纳入拉普拉斯变换的范围。
z变换可将分散的信号(现在主要用于数字信号)从时域转换到频域。
作用和拉普拉斯变换(将连续的信号从时域转换到频域)是一样的。
拉普拉斯变换是将时域信号变换到“复频域”,与傅里叶变换的“频域”有所区别。
FT[f(t)]=从负无穷到正无穷对[f(t)exp(-jwt)]积分 ,LT[f(t)]=从零到正无穷对[f(t)exp(-st)]积分 ,(由于实际应用,通常只做单边拉普拉斯变换,即积分从零开始) .具体地,在傅里叶积分变换中,所乘因子为exp(-jwt),此处,-jwt显然是为一纯虚数;而在拉普拉斯变换中,所乘因子为exp(-st),其中s为一复数:s=D+jw,jw是为虚部,相当于Fourier变换中的jwt,而D则是实部,作为衰减因子,这样就能将许多无法作Fourier变换的函数(比如exp(at),a>0)做域变换。
(完整word版)傅里叶变换和拉普拉斯变换的性质及应用
1.前言1.1背景利用变换可简化运算,比如对数变换,极坐标变换等。
类似的,变换也存在于工程,技术领域,它就是积分变换。
积分变换的使用,可以使求解微分方程的过程得到简化,比如乘积可以转化为卷积。
什么是积分变换呢?即为利用含参变量积分,把一个属于A函数类的函数转化属于B函数类的一个函数。
傅里叶变换和拉普拉斯变换是两种重要积分变换。
分析信号的一种方法是傅立叶变换,傅里叶变换能够分析信号的成分,也能够利用成分合成信号。
可以当做信号的成分的波形有很多,例如锯齿波,正弦波,方波等等。
傅立叶变换是利用正弦波来作为信号的成分。
Pierre Simon Laplace 拉普拉斯变换最早由法国数学家天文学家(拉普拉斯)(1749-1827)在他的与概率论相关科学研究中引入,在他的一些基本的关于拉普拉斯变换的结果写在他的著名作品《概率分析理论》之中。
即使在19世纪初,拉普拉斯变换已经发现,但是关于拉普拉斯变换的相关研究却一直没什么太大进展,直至一个英国数学家,物理学家,同时也是一位电气工程师的Oliver Heaviside奥利弗·亥维赛(1850-1925)在电学相关问题之中引入了算子运算,而且得到了不少方法与结果,对于解决现实问题很有好处,这才引起了数学家对算子理论的严格化的兴趣。
之后才创立了现代算子理论。
算子理论最初的理论依据就是拉普拉斯变换的相关理论,拉普拉斯变换相关理论的继续发展也是得益于算理理论的更进一步发展。
这篇文章就是针对傅里叶变换和拉普拉斯变换的相关定义,相关性质,以及相关应用做一下简要讨论,并且分析傅里叶变换和拉普拉斯变换的区别与联系。
1.2预备知识定理1.2.1(傅里叶积分定理)若在(-∞,+∞)上,函数f(t)满足一下条件:(1)在任意一个有限闭区间上面f(t)满足狄利克雷条件;(2)∫|f (t )|+∞−∞dt <+∞,即f (t )在(-∞,+∞)上绝对可积;则f (t )的傅里叶积分公式收敛,在它的连续点t 处12π∫(∫f(τ)+∞−∞e −iωτdτ)+∞−∞e iωτdω=f (t ) 在它的间断点t 处12π∫(∫f(τ)+∞−∞e −iωτdτ)+∞−∞e iωτdω=f (t +0)+f (t −0)2定义1.2.1(傅里叶变换)设函数f (t )满足定理 1.2.1中的条件,则称∫e −iωt +∞−∞f (t )dt为f (t )的傅里叶变换,记作ℱ(ω)=∫e −iωt +∞−∞f (t )dt 。
傅立叶变换拉普拉斯变换z变换区别和应用场合
傅立叶变换、拉普拉斯变换和z变换是信号与系统分析中常用的数学工具,它们在不同的应用场合有着各自独特的作用。
下面,我们将分别介绍这三种变换的定义、特点和应用场合。
一、傅立叶变换傅立叶变换是最常用的信号处理工具之一,它将时域信号转换为频域信号,可以用来分析信号的频谱特性。
傅立叶变换的定义如下:设x(t)是一个绝对可积的信号,则其傅立叶变换定义为:X(ω)=∫−∞∞x(t)e−jωtdt其中,X(ω)为频率为ω的复指数信号的系数。
傅立叶变换的特点包括:1. 线性性:傅立叶变换是线性的,即对信号进行线性组合后,其傅立叶变换也可以线性组合。
2. 积分性质:傅立叶变换是通过积分计算得出的,可以将信号在时域上的加权积分变换为频域上的乘积。
傅立叶变换的应用场合包括:1. 信号频谱分析:通过傅立叶变换可以将信号转换为频域上的频谱图,并从中分析信号的频率成分和能量分布。
2. 滤波器设计:在滤波器设计中,傅立叶变换可以用来分析系统的频率响应,从而设计出滤波器的频率特性。
3. 通信系统:在调制解调、频谱分析等通信系统中,傅立叶变换也有着重要的应用。
二、拉普拉斯变换拉普拉斯变换是一种广泛应用于控制系统分析和设计中的数学工具,它可以将时域信号转换为复频域信号,用于分析系统的稳定性和动态特性。
拉普拉斯变换的定义如下:设x(t)是一个绝对可积的信号,则其拉普拉斯变换定义为:X(s)=∫0∞x(t)e−stdt其中,X(s)为复频域上的复指数信号的系数。
拉普拉斯变换的特点包括:1. 收敛性:拉普拉斯变换要求信号在0到∞范围内绝对可积,以确保变换的收敛性。
2. 稳定性:拉普拉斯变换可以判断系统的稳定性,通过判断拉普拉斯变换的极点位置来分析系统的阶跃响应。
拉普拉斯变换的应用场合包括:1. 控制系统分析:在控制系统分析中,拉普拉斯变换可以用来分析系统的稳定性、阶跃响应和频率特性。
2. 信号处理:在滤波器设计和信号处理中,拉普拉斯变换也可以用来分析系统的频率响应和动态特性。
信号三大变换公式
信号三大变换公式信号处理领域中,常用的三大变换公式分别为傅里叶变换、拉普拉斯变换和Z变换。
这些变换公式在信号处理中起到了重要的作用,能够帮助我们分析和处理各种类型的信号。
下面将详细介绍这三大变换公式。
一、傅里叶变换:傅里叶变换是一种将一个信号从时域转换到频域的方法。
它可以将一个信号分解成不同频率的正弦波和余弦波的叠加。
傅里叶变换的数学表达式为:F(ω) = ∫[f(t) ⨉ e^(-jωt)] dt其中,F(ω)是信号在频域的表示,f(t)是信号在时域的表示,ω是角频率,e^(-jωt)是复指数函数。
傅里叶变换可以用于信号的频谱分析,可以将信号分解成频率分量,从而帮助我们了解信号的频率分布情况。
此外,傅里叶变换还可以用于滤波、编码和解码等方面的应用。
二、拉普拉斯变换:拉普拉斯变换是一种将一个信号从时域转换到复平面的变换方法。
它将时域中的信号转换为复平面上的点,可以将信号的幅度和相位信息进行分析。
拉普拉斯变换的数学表达式为:F(s) = ∫[f(t) ⨉ e^(-st)] dt其中,F(s)是信号在复平面上的表示,f(t)是信号在时域的表示,s 是复平面上的变量,e^(-st)是复指数函数。
拉普拉斯变换可以用来解决时域中的微分方程和差分方程问题,以及处理电路和控制系统等方面的信号分析和系统设计问题。
三、Z变换:Z变换是一种将离散信号从时域转换到复平面的方法。
它是离散时间傅里叶变换的离散形式,可以将离散信号的频谱和相位信息进行分析。
Z 变换的数学表达式为:F(z)=Σ[f[n]⨉z^(-n)]其中,F(z)是信号在复平面上的表示,f[n]是信号在时域的表示,z 是复平面上的变量,z^(-n)是复数的幂。
Z变换可以用来分析和设计数字滤波器、解离散时间系统的差分方程和处理离散序列的频谱分析等问题。
总结:傅里叶变换、拉普拉斯变换和Z变换是信号处理中常用的三大变换公式。
它们分别将信号从时域、时频域和到频域进行转换,可以帮助我们理解和分析各种类型的信号,并在信号处理、滤波和系统设计等方面提供重要的工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。
傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。
在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。
傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。
理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。
我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。
傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。
傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。
这都是一个信号的不同表示形式。
它的公式会用就可以,当然把证明看懂了更好。
对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。
幅度是表示这个频率分量的大小,那么相位呢,它有什么物理意义?频域的相位与时域的相位有关系吗?信号前一段的相位(频域)与后一段的相位的变化是否与信号的频率成正比关系。
傅里叶变换就是把一个信号,分解成无数的正弦波(或者余弦波)信号。
也就是说,用无数的正弦波,可以合成任何你所需要的信号。
想一想这个问题:给你很多正弦信号,你怎样才能合成你需要的信号呢?答案是要两个条件,一个是每个正弦波的幅度,另一个就是每个正弦波之间的相位差。
所以现在应该明白了吧,频域上的相位,就是每个正弦波之间的相位。
傅里叶变换用于信号的频率域分析,一般我们把电信号描述成时间域的数学模型,而数字信号处理对信号的频率特性更感兴趣,而通过傅立叶变换很容易得到信号的频率域特性。
傅里叶变换简单通俗理解就是把看似杂乱无章的信号考虑成由一定振幅、相位、频率的基本正弦(余弦)信号组合而成,傅里叶变换的目的就是找出这些基本正弦(余弦)信号中振幅较大(能量较高)信号对应的频率,从而找出杂乱无章的信号中的主要振动频率特点。
如减速机故障时,通过傅里叶变换做频谱分析,根据各级齿轮转速、齿数与杂音频谱中振幅大的对比,可以快速判断哪级齿轮损伤。
拉普拉斯变换,是工程数学中常用的一种积分变换。
它是为简化计算而建立的实变量函数和复变量函数间的一种函数变换。
对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。
拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程
来处理,从而使计算简化。
在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。
引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。
这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。
拉普拉斯变换在工程学上的应用:应用拉普拉斯变换解常变量齐次微分方程,可以将微分方程化为代数方程,使问题得以解决。
在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s域)上来表示;在线性系统,控制自动化上都有广泛的应用。
在数字信号处理中,Z变换是一种非常重要的分析工具。
但在通常的应用中,我们往往只需要分析信号或系统的频率响应,也即是说通常只需要进行傅里叶变换即可。
那么,为什么还要引进Z变换呢?
Z变换和傅里叶变换之间有存在什么样的关系呢?傅里叶变换的物理意义非常清晰:将通常在时域表示的信号,分解为多个正弦信号的叠加。
每个正弦信号用幅度、频率、相位就可以完全表征。
傅里叶变换之后的信号通常称为频谱,频谱包括幅度谱和相位谱,分别表示幅度随频率的分布及相位随频率的分布。
在自然界,频率是有明确的物理意义的,比如说声音信号,男同胞声音低沉雄浑,这主要是因为男声中低频分量更多;女同胞多高亢清脆,这主要是因为女声中高频分量更多。
对一个信号来说,就包含的信息量来讲,时域信号及其相应的傅里叶变换之后的信号是完全一样的。
那傅里叶变换有什么作用呢?因为有的信号主要在时域表现其特性,如电容充放电的过程;而有的信号则主要在频域表现其特性,如机械的振动,人类的语音等。
若信号的特征主要在频域表示的话,则相应的时域信号看起来可能杂乱无章,但在频域则解读非常方便。
在实际中,当我们采集到一段信号之后,在没有任何先验信息的情况下,直觉是试图在时域能发现一些特征,如果在时域无所发现的话,很自然地将信号转换到频域再看看能有什么特征。
信号的时域描述与频域描述,就像一枚硬币的两面,看起来虽然有所不同,但实际上都是同一个东西。
正因为如此,在通常的信号与系统的分析过程中,我们非常关心傅里叶变换。
既然人们只关心信号的频域表示,那么Z变换又是怎么回事呢?要说到Z变换,可能还要先追溯到拉普拉斯变换。
拉普拉斯变换是以法国数学家拉普拉斯命名的一种变换方法,主要是针对连续信号的分析。
拉普拉斯和傅里叶都是同时代的人,他们所处的时代在法国是处于拿破仑时代,国力鼎盛。
在科学上也取代英国成为当时世界的中心,在当时众多的科学大师中,拉普拉斯、拉格朗日、傅里叶就是他们中间最为璀璨的三颗星。
傅里叶关于信号可以分解为正弦信号叠加的论文,其评审人即包括拉普拉斯和拉格朗日。
回到正题,傅里叶变换虽然好用,而且物理意义明确,但有一个最大的问题是其存在的条件比较苛刻,比如时域内绝对可积的信号才可能存在傅里叶变换。
拉普拉斯变换可以说是推广了这以概念。
在自然界,指数信号exp(-x)是衰减最快的信号之一,对信号乘上指数信号之后,很容易满足绝对可积的条件。
因此将原始信号乘上指数信号之后一般都能满足傅里叶变换的条件,这种变换就是拉普拉斯变换。
这种变换能将微分方程转化为代数方程,在1 8世纪计算机还远未发明的时候,意义非常重大。
从上面的分析可以看出,傅里叶变换可以看做是拉普拉斯的一种特殊形式,即所乘的指数信号为exp(0)。
也即是说拉普拉斯变换是傅里叶变换的推广,是一种更普遍的表达形式。
在进行信号与系统的分析过程中,可以先得
到拉普拉斯变换这种更普遍的结果,然后再得到傅里叶变换这种特殊的结果。
这种由普遍到特殊的解决办法,已经证明在连续信号与系统的分析中能够带来很大的方便。
Z变换可以说是针对离散信号和系统的拉普拉斯变换,由此我们就很容易理解Z变换的重要性,也很容易理解Z变换和傅里叶变换之间的关系。
Z变换中的Z平面与拉普拉斯中的S 平面存在映射的关系,z=exp(Ts)。
在Z变换中,单位圆上的结果即对应离散时间傅里叶变换的结果。