传热学课件-清华大学 (6)
传热学课件讲义

2020/12/15
二、基本概念
1、温度场(Temperature field) 指某一瞬时物体内各点的温度分布状态。温度是标量,温度场是时间
和空间的函数,也是标量场。 在直角坐标系中:; 在柱坐标系中:; 在球坐标系中:。
根据温度场表达式,可分析出导热过程是几维、稳态或非 稳态的现象,温度场是几维的、稳态的或非稳态的。
传热学
2020/12/15
第一章 导热理论基础
绪论 §1 基本概念和傅里叶定律 §2 导热系数 §3 导热微分方程式 §4 导热过程的单值性条件
2020/12/15
绪论
一、传热学的研究内容
热量传递的具体方式、传热速率大小及其影响因素。 ⑴传热的三种基本方式及各自的规律; ⑵工程中实际传热过程的规律; ⑶提出控制传热(强化传热和削弱传热)的基本方法。 工程热力学从理论上分析热力系统的状态、能量传递 和迁移的多少以及系统的变化方向与性能的好坏。但是, 能量是以何种方式传递和迁移?传递和迁移的速率如何? 以及能量状态随时间和空间的分布如何?热力学都没有 给予回答。
二、传热学的研究方法
传热学的研究方法主要有:理论分析方法;实验研究方法;比拟(类比) 方法;数值计算方法
理论分析方法
将所研究问题的基本物理特征和具体规律用一个理想化的数学模型表述 出来,并选择适当的数学方法进行求解。常用的数学解析方法一般可分 为精确解法(即直接求解常微分方程或者偏微分方程)和积分方程近似解法 两大类。
2020/12/15
导热过程的单值性条件
一、单值性条件
导热问题的单值性条件通常包括如下四项:
几何条件:表征导热物体的几何形状和大小(属于三维,二维或 一维问题);
物理条件:说明导热系统的物理特性(即物性量和内热源的特 点);
清华大学热工基课件工程热力学加传热学第十一章-PPT精品文档

Gd
0
Gd
0
Gd
0
Gd
0
Gd
3
类、温度和表面状况,是波长的函数。 ,不仅取决于物体的性质,还与投射辐射能的波 , 长分布有关。 ( 2 )固体和液体对辐射能的吸收和反射基本上属 于表面效应 : 金属的表面层厚度小于 1m ;绝大多数 非金属的表面层厚度小于1mm。 (3)对于固体和液体, 。 0 , 1
E E d b b 1 2
1
2
d d b b E E
9
Hale Waihona Puke 定向辐射力与辐射力之间的关系:
E
2
Ed
定向辐射力与辐射强度之间的关系:
E L o s c
辐射力与辐射强度之间的关系:
E
2
L c o s d
10
11-2 黑体辐射的基本定律
1.普朗克(Planck)定律 2.斯忒藩-玻耳兹曼(Stefan-Boltzmann)定律 3.兰贝特(Lambert)定律
注意: , (1) , 属于物体的辐射特性,取决于物体的种
镜反射与漫反射:
产生何种反射决于物体表 面的粗糙程度和投射辐射能 的波长 。
4
2. 灰体与黑体
灰体: 光谱辐射特性不随波长而变化的假想物体,即 , , 分别等于常数。
0
G d
0
G d
G G
G G
G 透射比 G 1
G G
如果投入辐射是某一波长的辐射能G ,则
《传热学第四版》课件

介绍辐射热传递的物理量和相应的单位。
3 基本方程
4 计算方法
展示辐射传热的基本方程式,包括斯特藩 -玻尔兹曼定律等。
介绍辐射传热的求解方法,如经典方法和 数值方法。
传热应用
传热器设计
通过传热学技术优化传热器 设计来提高能效。
传热系统分析
运用传热学原理对各种传热 系统的能量分析和热优化。
工程实例分析
《传热学第四版》PPT课 件
探索热传递的奥秘,了解从热到冷的自然规律和物理过程。这份课件将带领 你深入了解传热学的基础知识和应用。
课程简介
本课程将介绍传热学的基本概念和应用,包括传热方式、传热界面分析、热 传导的解析方法以及对流换热系数等内容。马上跟我们一起来探索吧!
传热基础
热传导
探讨热在物质内部由热量高处 向低处传递的规律和方程式。
热对流
讲解流体通过对流传递热量的 基本概念、经典模型和实际工 程应用。
热辐射
解读物体表面通过辐射传递热 量的基本原理和表解内部传热方程的推导和各个参数的物理 意义。
传热界面
针对传热界面的特殊性质进行分析和构建。
数学解法
介绍热传导的解析方法,如分离变量和傅里 叶变换。
稳态传热
分析稳态传热的物理机制和特征,并提供数 学模型。
热对流
1
流体力学基础
介绍流体力学的基本概念,如流速、压力和涡度等。
2
对流换热系数
讲解对流换热系数的求解方法,包括Nusselt数和Reynolds数等。
3
对流传热模型
提供自然对流和强制对流的传热模型。
热辐射
1 辐射热传递规律
2 物理描述
解读辐射传热的物理机制和数学表达式。
《第四章传热》PPT课件

2. 傅立叶定律 傅立叶定律是热传导的基本定律,它表示热传导的速率与温度 梯度和垂直于热流方向的导热面积成正比。
Q S t 或:q t
n
n
热传导中,Q S,Q t n
Q——传热速率,W;
λ——导热系数,W/(m·K) 或W/(m·℃);
S——导热面积,垂直于热流方向的截面积,m2;
946℃。试求:
(1)单位面积的热损失;(2)保温砖与建筑砖之间界面的温度;
(3)建筑砖外侧温度。
解 t3为保温砖与建筑砖的界面温度,t4为建筑砖的外侧温度。
(1)热损失q
q=
Q A
1
b1
t1
t2
1.06 0.15
(1000-946)
=381.6W/m2
(2) 保温砖与建筑砖的界面温度t3 由于是稳态热传导,所以 q1=q2=q3=q
典型换热设备: 间壁式换热器(冷、热流体间的换热设备) 例:列管式换热器 3、本章研究的主要问题 1)三种传热机理(传热速率计算) 2)换热器计算 3)换热设备简介
4.1.1传热的基本方式
根据传热机理不同,传热的基本方式有三种: 热传导、热对流和热辐射。
1.热传导 热传导(导热):物体各部分之间不发生相对位移,依靠原子、 分子、自由电子等微观粒子的热流运动而引 起的热量传递。
t t'∞
t∞
u
tw-t=
t' t
tw
图4-13 流体流过平壁被加热时的温度边界
2、热边界层的厚度
tw t 0.99(tw t )
3、热边界层内(近壁处) 认为:集中全部的温差和热阻
dt 0 dy
热边界层外(流体主体)
传热学PPT课件-绪论-动力工程

燃烧室火焰筒壁面冷却
传热学在发动机设计体系中的应用研究
高温升、高热容主燃烧室及加力燃烧室设计技术 火焰筒壁面冷却技术 燃烧室出口温度场主动控制技术 加力燃烧室冷却技术
T Tw1
Tw2
Φ
Φ
Tw1
Tw2
Φ A T
q Φ T A
W
W
m2
T Tw1 Tw2:平壁两侧壁温之差 K
4、热导率(导热系数)
Φ A T W
Φ A T
W (m K)
具有单位温度差(1K)的单位厚度的物体(1m),
在它的单位面积上(1m2)、每单位时间(1s)的导热量(J)
一、传热过程:两流体间通过固体壁面进行的换热
传热过程通常由导热、热对流、热辐射组合形成
辐射换热 对流换热 热传导
T Tf1
Tw1
Φ
Tw2 T f 2
固壁
复合传热过程
忽略辐射时
Φ
Tf1
Tw1
Tw2
Tf 2
思考:发动机中的传热过程
高温燃气
金属壁外侧
金属壁外侧
金属壁内侧
金属壁内侧
冷却空气
假设传热过程处于稳态:
高负荷、高效率涡轮部件设计技术 高效涡轮冷却技术 气-固-热多学科综合涡轮优化设计理论 涡轮部件稳态、过渡态热分析技术 涡轮间隙控制方法
矢量推进及排气系统设计技术 喷管冷却技术 尾喷流强化混合技术 低红外辐射特征控制技术
发动机空气系统及热分析设计技术 涡轮叶栅非定常传热 旋转部件复杂流动和换热 高效低阻热交换器设计技术 封严结构流动换热 进气道防冰
传热学大全课件

目录
• 传热学基本概念与原理 • 导热理论及应用 • 对流换热理论及应用 • 辐射换热理论及应用 • 传热过程数值模拟方法 • 传热学实验技术与设备 • 传热学在工程领域应用案例
01
传热学基本概念与原理
热量传递方式
01
02
03
热传导
物体内部或两个直接接触 物体之间的热量传递现象。
对流传热实验装置
模拟流体与固体壁面间的对流传热过程,研究对流换热系数的影响 因素。
辐射传热实验装置
通过黑体辐射源和接收器,研究物体间辐射传热的规律。
实验数据处理与分析方法
数据采集与处理
介绍实验数据的采集、整理、筛选和预处理等方法。
误差分析
讨论实验误差的来源、分类及减小误差的方法,提高实验结果的可 靠性。
建筑环境与设备工程
改善建筑环境,提高设备效率。
材料科学与工程
研究材料热物性,优化材料性能。
生物医学工程
研究生物体热传递,应用于医疗 诊断和治疗。
02
导热理论及应用
导热基本定律与导热系数
导热基本定律
傅里叶定律及其物理意义,导热热流密度与温 度梯度的关系。
导热系数
定义、物理意义及影响因素,不同材料的导热 系数比较。
能源动力领域应用案例
热力发电
在火力发电厂中,传热学应用于锅炉、汽轮机等设备的热设计,提 高能源转换效率。
核能利用
核电站中的反应堆热工水力设计、冷却剂循环系统等均涉及传热学 原理。
可再生能源
太阳能热利用、地热能开发等领域也需要传热学的支持,以提高能源 利用效率。
建筑环境领域应用案例
建筑节能
利用传热学原理,优化 建筑围护结构、保温材 料和采光设计等,降低 建筑能耗。
清华大学热工基础课件工程热力学加传热学1绪论
列中间状态,最终回到初始状态。
工程热力学的发展历程
早期发展
工程热力学起源于古代人类对火的使用和对蒸汽的认识。 随着工业革命的兴起,人们对热能转换和利用的研究逐渐 深入。
基础理论建立
19世纪末,卡诺、焦耳等科学家通过实验研究,建立了热 力学的理论基础,包括卡诺循环、焦耳定律等。
现代发展
随着科技的不断进步,工程热力学在能源转换、环境保护 、航空航天等领域的应用越来越广泛,成为能源、动力、 化工等学科的重要基础。
要关注热力系统能量的转换与传递过程,以及系统状态变化的规律。
02
热力系统
热力系统是指可以与周围环境进行热量交换的封闭系统。系统内的能量
转换与传递过程遵循热力学的第一定律和第二定律。
03
热力循环
在工程热力学中,热力循环是一系列连续的热力学过程,包括吸热、膨
胀、放热、压缩等过程。循环中,系统从某一初始状态出发,经过一系
19世纪末,傅里叶、牛顿等科学家对传热学进行了系统 的研究和总结,奠定了传热学的基础。
20世纪以来,随着科技的发展和工业的进步,传热学在 理论和实践方面都取得了长足的进步。
传热学的研究对象和内容
01
传热学的研究对象是热量传递过程中的规律和现象,主要 研究导热、对流、辐射三种传热方式。
02
导热是指热量在物体内部通过分子、原子等微观粒子的运动传递 ;对流是指流体在运动过程中将热量传递给固体壁面;辐射是指
热力循环与热效率
介绍各种热力循环,如蒸汽循环 、燃气循环等,以及如何提高循 环效率和减少能量损失。
传热学部分大纲
导热基本定律与稳态导热
介绍导热基本定律,即傅里叶定律,以 及稳态导热的分析方法和计算。
对流换热
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§6-1 管内受迫对流换热
第六章单相流体对流换热及准则关联式
学习对流换热的目的:学会解决实际问题;会计算表面传热系数h
大多数是由大量的实验研究确定的
本章给出的具体函数形式Pr)(Re,Nu f =工程上、日常生活中有大量应用:
暖气管道、各类热水
及蒸汽管道、换热器
流动进口段:10[ : Re;05.0 ∈≈d
L
d L 紊流层流:∂u
流动进口段: : Re;05.0 ∈≈d
L
d L 紊流层流:∂u
热充分发展段:
常物性流体在热充分发展段:h = const
(1)管内流体平均速度
3、管内流体平均速度及平均温度∫∫=
⋅=
=R
R
m urdr
rdr
u f u G 0022πρπρρrdr u df u dG πρρ2⋅=⋅=G —质量流量[kg/s];V —体积流量[m 3/s];G=ρV
∫∫=
=
=R
m R m urdr
R
u urdr R u G 0202
2 ;2πρπρ
t∆
(
管内对流换热进口段的局部Nusselt数
2、流体热物性变化对换热的影响
对于液体:主要是粘性随温度而变化流体平均温度相同的条件下,液体被加热时的表面传热系数高于液体被冷却加热时的值
↓
⇒↑η t 对于气体:除了粘性,还有密度和热导率等
↑
↓↑⇒↑λρη,,
t
液体:
1
=
C R+—
R螺旋管曲率半径
4、管壁粗糙度的影响
粗糙管:铸造管、冷拔管等
湍流:粗糙度∆>层流底层厚度δ时: 换热增强
层流:影响不大
粗糙度∆<层流底层厚度δ时: 影响不大
If water at 300K flows
through a 3cm -diameter
pipe at 5m/s, the thickness
of the viscous sublayer is
only about 20m
µ有时利用粗糙表面强
化换热—强化表面
(1)迪图斯-玻尔特(Dittus-Boelter )关联式:
⎩
⎨⎧<>==)( 3.0)( 4.0 ;Pr Re 023.08.0f w f w m f f f t t t t m Nu 由于没有考虑变物性,只适用于壁面和流体的温差不很大的情况:
Petukhov 等人的研究表明:
上式只在有限的范围内适用。
(
)()()油;水;气体C 10 C 20 C 50D
D D <∆<∆<∆t t t 当Re 在104~106之间、Pr 在
0.5~100之间时,Re f 的幂指
数为0.79~0.92。
而m 为
0.6~0.25。
2
Re 134.7log Re 02.54.7log −⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛+−D s D s R k R k
5
10
5Re ×<:
const E.Pohlhausen ,1921)关联式:
x
u ∞=
Re ;Pr Re 332.031
5.0精确解
n
三、横掠管束(Flow across tube banks)
管壳式换热器中
流体绕流管束
汽车拖拉机冷却水
箱中空气绕流管束
空调器中流体在蒸
发器或冷凝器中绕
流管束
1、流动和换热情况
顺排、叉排
In-line tube rows
Staggered tube rows。