计量学实验报告 实验2-多元回归-多重共线性-预测问题

合集下载

实验二__多元线性回归模型和多重共线性范文

实验二__多元线性回归模型和多重共线性范文

实验二__多元线性回归模型和多重共线性范文多元线性回归是一种常用的统计分析方法,用于研究多个自变量与一个因变量之间的关系。

在进行多元线性回归分析时,一个重要的问题是多重共线性。

多重共线性是指多个自变量之间存在高度相关性,这会导致回归模型的不稳定性,参数估计的不准确性,以及对自变量的解释能力下降等问题。

在进行多元线性回归分析之前,首先需要对自变量之间的相关性进行检验。

常用的方法有相关系数、方差膨胀因子(VIF)等。

相关系数用于衡量两个变量之间的线性关系,其值介于-1和1之间,接近于1表示高度正相关,接近于-1表示高度负相关。

VIF用于衡量一个自变量与其他自变量之间的相关性,其值大于1且越接近于1,表示相关性越强。

如果发现多个自变量之间存在高度相关性,即相关系数接近于1或VIF接近于1,就需采取措施来解决多重共线性问题。

一种常用的方法是通过增加样本量来消除多重共线性。

增加样本量可以提高模型的稳定性,减小参数估计的方差。

但是,增加样本量并不能彻底解决多重共线性问题,只能部分缓解。

另一种常用的方法是通过变量选择来解决多重共线性问题。

变量选择可以将高度相关的自变量从模型中剔除,保留与因变量高度相关的自变量。

常用的变量选择方法包括前向选择、逐步回归和岭回归等。

这些方法都是根据一定的准则逐步筛选变量,直到得到最佳模型为止。

在变量选择中,需要注意在变量剔除的过程中,要确保剩余变量之间的相关性尽可能小,以提高模型的稳定性和准确性。

此外,还可以通过变换变量来解决多重共线性问题。

变换变量可以通过对自变量进行平方项、交互项等操作,以减小相关性。

变换变量的方法需要根据实际情况来选择,具体操作可以参考相关的统计学方法教材。

总之,多元线性回归模型在实际应用中经常遇到多重共线性问题。

通过检验自变量之间的相关性,选择合适的变量和适当的变量变换方法,可以有效解决多重共线性问题,提高模型的稳定性和准确性。

在具体的研究中,应根据实际情况选择适合的方法来解决多重共线性问题,以确保回归分析结果的可靠性和有效性。

实验二__多元线性回归模型和多重共线性

实验二__多元线性回归模型和多重共线性

实验二 多元线性回归模型和多重共线性一、实验目的:掌握多元线性回归模型的估计方法、掌握多重共线性模型的识别和修正。

二、实验要求:应用教材第119页案例做多元线性回归模型,并识别和修正多重共线性。

三、实验原理:普通最小二乘法、简单相关系数检验法、综合判断法、逐步回归法。

四、预备知识:最小二乘法估计的原理、t 检验、F 检验、值。

2R 五、实验步骤1、设定并估计多元线性回归模型(2.1)t t t t t t t u X X X X X Y ++++++=66554433221ββββββ1.1建立工作文件并录入数据(参照实验一),得到图2.2.1图2.2.11.2对(2.1)采用OLS 估计参数方法一:在主界面命令框栏中输入 ls y c x2 x3 x4 x5 x6,然后回车,即可得到参数的估计结果,如图2.2.2所示。

方法二:按住ctrl 键,同时选中序列y 和x2 x3 x4 x5 x6,点右键,在所出现的右键菜单中,选择open\as Equation…后弹出一对话框,点击“确定”,即可得回归结果。

方法三:点击主界面菜单Quick\Estimate Equation ,弹出方法二中出现的对话框。

不过框中没有设定回归模型,可以自己输入y c x2 x3 x4 x5 x6,点确定即可得到回归结果。

(注意被解释变量y 一定要放在最前面,变量间留空格)。

图 2.2.2根据图2.2.2中的数据,得到模型(2.1)的估计结果为43525.173989664.0995406.0)752685.1()108296.3()465073.3()939591.3()031172.1)(208384.0()2830.321()177929.4()944215.0()380395.1()012692.0()690.1316(1077.56398624.12271773.3438193.5013088.03773.274ˆ2265432====--=-++++-=df F R R t X X X X X Y i 从上回归结果可以看出,拟合优度很高,整体效果的F 检验通过。

计量经济实验报告多元(3篇)

计量经济实验报告多元(3篇)

第1篇一、实验目的本次实验旨在通过多元线性回归模型,分析多个自变量与因变量之间的关系,掌握多元线性回归模型的基本原理、建模方法、参数估计以及模型检验等技能,提高运用计量经济学方法解决实际问题的能力。

二、实验背景随着经济的发展和社会的进步,影响一个变量的因素越来越多。

在经济学、管理学等领域,多元线性回归模型被广泛应用于分析多个变量之间的关系。

本实验以某地区居民消费支出为例,探讨影响居民消费支出的因素。

三、实验数据本实验数据来源于某地区统计局,包括以下变量:1. 消费支出(Y):表示居民年消费支出,单位为元;2. 家庭收入(X1):表示居民家庭年收入,单位为元;3. 房产价值(X2):表示居民家庭房产价值,单位为万元;4. 教育水平(X3):表示居民受教育程度,分为小学、初中、高中、大专及以上四个等级;5. 通货膨胀率(X4):表示居民消费价格指数,单位为百分比。

四、实验步骤1. 数据预处理:对数据进行清洗、缺失值处理和异常值处理,确保数据质量。

2. 模型设定:根据理论知识和实际情况,建立多元线性回归模型:Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε其中,Y为因变量,X1、X2、X3、X4为自变量,β0为截距项,β1、β2、β3、β4为回归系数,ε为误差项。

3. 模型估计:利用统计软件(如SPSS、R等)对模型进行参数估计,得到回归系数的估计值。

4. 模型检验:对估计得到的模型进行检验,包括以下内容:(1)拟合优度检验:通过计算R²、F统计量等指标,判断模型的整体拟合效果;(2)t检验:对回归系数进行显著性检验,判断各变量对因变量的影响是否显著;(3)方差膨胀因子(VIF)检验:检验模型是否存在多重共线性问题。

5. 结果分析:根据模型检验结果,分析各变量对因变量的影响程度和显著性,得出结论。

五、实验结果与分析1. 拟合优度检验:根据计算结果,R²为0.812,F统计量为30.456,P值为0.000,说明模型整体拟合效果较好。

多元回归模型和多重共线性实验报告

多元回归模型和多重共线性实验报告

《计量经济学》上机实验报告一题目:多元回归模型和多重共线性实验日期和时间:2013年4月18日班级:学号:姓名:实验室:实验楼104实验环境:Windows XP ; EViews 3.1实验目的:利用相关数据建立多元回归模型,分析在不同的经济条件下一定的要素对某个经济体发展的影响程度并建立一定的关系模型。

检验设定的模型是否存在多重共线性,分析产生多重共线性的原因及作用因素,并对存在多重共线性的模型进行必要的修正。

实验内容:1、中国进出口额Y、国内生产总值GDP、居民消费价格指数CPI,根据提供的模型估计参数,判断多重共线性是否存在,表述多重共线性的性质。

2、检验能源消费需求总量Y的影响因素,选取国民总收入X1、国内生产总值X2、工业增加值X3、建筑业增加值X4、交通运输邮电业增加值X5、人均生活电力消费X6和能源加工转换效率X7七个变量,模拟回归,检验修正多重共线性。

3、为什么会产生“农业的发展反而会减少财政收入”的异常结果,如何解决这种异常。

实验步骤:一、中国进出口额Y、国内生产总值GDP、居民消费价格指数CPI(一)建立多元回归模型,估计参数在命令窗口依次键入以下命令:1、建立工作文件:CREATE A 1985 20072:输入统计资料:DATA Y GDP CPI3、生成变量:GENR LNY=LOG(Y)GENR LNGDP=LOG(GDP)GENR LNCPI=LOG(CPI)4、建立回归模型:LS LNY C LNGDP LNCPI得出回归结果为:由此可见,该模型的参数形式为:LNŶt=-3.06+1.66LNGDP t-1.06LNCPI t,其中该模型R2=0.9922,R2=0.9914可决系数很高,F检验值1275.093,明显显著,且T检验的临界概率均非常小,回归效果较好。

(二)检验多重共线性利用简单相关系数法进行检验,输入命令COR LNY LNGDP LNCPI,得到相关系数矩阵:由相关系数矩阵可以看出,各解释变量相互之间的相关系数均很高,说明数据中存在严重的多重共线性。

实验二 多元线性回归模型 瑜

实验二 多元线性回归模型  瑜

《计量经济学》实验报告多元线性回归模型四、实验结果及分析(附上必要的回归分析报告,并作以分析)1、设定问题国家税收总收入与工商税收、农业税收之间的关系2、查找数据日期国家税收总收入(亿元)工商税收(亿元)X1 农业税收(亿元)X2 1990 2821.86 1858.99 87.861991 2990.17 1981.11 90.651992 3296.91 2244.21 119.171993 4255.30 3194.49 125.741994 5126.88 3914.22 231.491995 6038.04 4589.68 278.091996 6909.82 5270.04 369.461997 8234.04 6553.89 397.481998 9262.80 7625.42 398.803.阐述理论由经济理论知,工商税收和农业税收是影响或决定国家税收总收入的主要因素。

一般而言,当工商税收和农业税收增加时,国家税收总收入随着增加,它们之间具有正向的变动趋势,反之,国家税收总收入减少。

在这里,将国家税收总收入作为被解释变量(Y),工商税收作为解释变量(X1t ) 农业税收作为解释变量(X2t),其他变量及随机因素的影响均归并到随机变量u t中,建立工商税收X1t 、农业税收X2t和国家税收总收入Y之间的多元线性回归模型。

4、画散点图X1与Y的散点图X2与Y的散点图根据上图散点分布情况可以看出,在2000~2008年期间,国家税收总收入和工商税收和农业税收之间存在较为明显的线性关系。

5、建立模型设多元线性回归模型:Yt = β+ β1X1t+β2X2t+ ut其中,Yt——表示国家税收总收入(亿元)β0、β 1 、β2——待定系数X1t——表示工商税收(亿元)注:实验报告在下次上机时间交(打印版、电子版),任缺其一本次试验无效。

电子版由各班长学委汇总以打包形式一并交齐。

计量经济学多元线性回归多重共线性异方差实验报告

计量经济学多元线性回归多重共线性异方差实验报告

计量经济学实验报告多元线性回归、多重共线性、异方差实验报告一、研究目的和要求:随着经济的发展,人们生活水平的提高,旅游业已经成为中国社会新的经济增长点。

旅游产业是一个关联性很强的综合产业,一次完整的旅游活动包括吃、住、行、游、购、娱六大要素,旅游产业的发展可以直接或者间接推动第三产业、第二产业和第一产业的发展。

尤其是假日旅游,有力刺激了居民消费而拉动内需。

2012年,我国全年国内旅游人数达到亿人次,同比增长%,国内旅游收入万亿元,同比增长%。

旅游业的发展不仅对增加就业和扩大内需起到重要的推动作用,优化产业结构,而且可以增加国家外汇收入,促进国际收支平衡,加强国家、地区间的文化交流。

为了研究影响旅游景区收入增长的主要原因,分析旅游收入增长规律,需要建立计量经济模型。

影响旅游业发展的因素很多,但据分析主要因素可能有国内和国际两个方面,因此在进行旅游景区收入分析模型设定时,引入城镇居民可支配收入和旅游外汇收入为解释变量。

旅游业很大程度上受其产业本身的发展水平和从业人数影响,固定资产和从业人数体现了旅游产业发展规模的内在影响因素,因此引入旅游景区固定资产和旅游业从业人数作为解释变量。

因此选取我国31个省市地区的旅游业相关数据进行定量分析我国旅游业发展的影响因素。

二、模型设定根据以上的分析,建立以下模型Y=β0+β1X1+β2X2+β3X3+β4X4+Ut参数说明:Y ——旅游景区营业收入/万元X1——旅游业从业人员/人X2——旅游景区固定资产/万元X3——旅游外汇收入/万美元X4——城镇居民可支配收入/元收集到的数据如下(见表):表 2011年全国旅游景区营业收入及相关数据(按地区分)数据来源:1.中国统计年鉴2012,2.中国旅游年鉴2012。

三、参数估计利用做多元线性回归分析步骤如下:1、创建工作文件双击图标,进入其主页。

在主菜单中依次点击“File\New\Workfile”,出现对话框“Workfile Range”。

计量经济学实验二 多元线性回归

实验二:Eviews的常用函数与多元线性回归分析【实验目的】掌握建立多元回归模型和比较、筛选模型的方法。

【实验内容】建立我国国有独立核算工业企业生产函数。

根据生产函数理论,生产函数的基本形式为:()ε,ftY=。

其中,L、K分别为生产过程中投入的劳动与资金,L,,K时间变量t反映技术进步的影响。

表3-1列出了我国1978-1994年期间国有独立核算工业企业的有关统计资料;其中产出Y为工业总产值(可比价),L、K分别为年末职工人数和固定资产净值(可比价)。

资料来源:根据《中国统计年鉴-1995》和《中国工业经济年鉴-1995》计算整理【实验步骤】一、建立多元线性回归模型㈠建立包括时间变量的三元线性回归模型;在命令窗口依次键入以下命令即可:⒈建立工作文件: CREATE A 78 94⒉输入统计资料: DATA Y L K⒊生成时间变量t : GENR T=@TREND(77) ⒋建立回归模型: LS Y C T L K 则生产函数的估计结果及有关信息如图3-1所示。

图3-1 我国国有独立核算工业企业生产函数的估计结果 因此,我国国有独立工业企业的生产函数为:K L t y 7764.06667.06789.7732.675ˆ+++-=(模型1) t =(-0.252) (0.672) (0.781) (7.433)9958.02=R 9948.02=R 551.1018=F模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为0.6667,资金的边际产出为0.7764,技术进步的影响使工业总产值平均每年递增77.68亿元。

回归系数的符号和数值是较为合理的。

9958.02=R ,说明模型有很高的拟合优度,F 检验也是高度显著的,说明职工人数L 、资金K 和时间变量t 对工业总产值的总影响是显著的。

从图3-1看出,解释变量资金K 的t 统计量值为7.433,表明资金对企业产出的影响是显著的。

但是,模型中其他变量(包括常数项)的t 统计量值都较小,未通过检验。

计量经济学实验报告---多元回归模型实验

2011-2012学年第1学期计量经济学实验报告实验(二):多元回归模型实验(1)估计参数利用EViews6估计模型的参数,方法是:1、建立工作文件:首先,双击EViews6图标,进入EViews6主页。

在菜单一次点击File\New\Workfile,出现对话框“Workfile Create”。

在“Workfile structure type ”中选择数据频率:Datad-regular frequency.在“Data specification”中Start data输入“1980”,在End data中输入“2002”点击“ok”出现“Workfile UNTITLED”工作框。

其中已有变量:“c”—截距项“resid”—剩余项。

2、Eviews命令:data y x p1 p2 p3 回车,输入数据,得到如图:图2-1 数据的输入3.对数据进行回归分析,eviews命令:LS Y C X P1 P2 P3图2-2根据上图,模型的估计的结果为:lnY=3.616+0.001lnX-0.506lnP1+0.119lnP2+0.048lnP3(0.450) (0) (0.162) (0.086) 0.051)t=(0.805) (4.652) (-3.115) (1.388) (0.942)R2=0.940 2 r=0.926 F=70.105(2)作对家庭人均鸡肉年消费量Y与猪肉价格P2、牛肉价格P3的散点图,图2-3和图2-4图2-3 图2-4图2-3 家庭人均鸡肉年消费量Y与猪肉价格P2的散点图图2-4 家庭人均鸡肉年消费量Y与牛肉价格P3的散点图由上面两张图可知都呈现线性关系,建立线性回归方程:i i i u X X Y +++=22110i βββi=1,2, .....,23 输入LS Y C P2 P3,用eviews6进行估计的输出结果如图:模型的估计结果为: Y=2.111+0.168P2+0.031P3(0.371)(0.060)(0.077) t=(5.689) (2.813) (0.402)R 2=0.834 2-r =0.817 F=50.150模型检验:①经济意义检验该地区家庭人均鸡肉消费量与鸡肉价格和牛肉价格成正相关,当牛肉价格不变时,猪肉价格上涨1单位,该地区家庭人均鸡肉消费量增加0.168单位;当猪肉价格不变时,牛肉价格上涨1单位,该地区家庭人均鸡肉消费量增加0.031单位,与猪肉价格成更大正相关关系符合一般情况。

计量经济学多重共线性实验报告

计量经济学实验报告一、实验目的:1、熟悉和掌握Eviews在多重共线性模型中的应用,如何判断和解决多重共线性问题。

2、加深对课程理论知识的理解和应用。

二、实验问题:农村居民各种不同类型的收入对消费支出影响(2006年)农村居民收入(Y)主要来源于4项:即农业经营收入(X1)、工资性收入(X2)、财产性收入(X3)及转移性收入(X4)。

(1)利用线性模型或双对数模型进行分析。

(2)回归模型中存在多重共线性吗?三、实验数据:由老师提供(本实验报告截取从北京到新疆共31组数据)四、实验步骤:1、建立新的工作文件,输入数据,分别保存为Y(农村居民收入),X1(农业经营收入)、X2(工资性收入)、X3(财产性收入)、及X4(转移性收入)。

2、建立线性模型:Y = a1*X1 + a2*X2 +a3*X3 + a4*X4 + u得到方程:Y = 0.6268809567*X1 + 0.481134931*X2 - 0.255544644*X3 + 2.683018467*X4 + 479.30109493、分析由图中数据可以看出,在最小二乘法下,模型的R平方和F值较大,表明模型中各解释变量对Y的联合线性作用显著;但是X3(财产性收入)的系数是负的,这不符合经济学意义,财产性收入应当与消费支出正相关,故怀疑模型存在多重共线性。

4、检验:计算解释变量之间的简单相关系数:在“quick”菜单中选“group statistics”项中的“correlation”命令。

在出现“serieslist”对话框时,直接输入X1,X2,X3,X4出现如下结果从表中可以看出,解释变量X1、X3、X4之间存在高度线性相关。

4、修正第一步:运用OLS方法逐一求Y对各个解释变量的回归。

(1)Y = 0.8997862236*X1 + 1541.033294t值 15.32947 12.29913prob.值 0.0000 0.0000R2=0.890148 F=234.9925(2)Y = 0.2487123305*X2 + 2505.747921t值 0.527219 2.676297prob.值 0.6021 0.0121R2= 0.009494 F=0.277960(3)Y = 8.049228785*X3 + 1943.170851t值 9.28666 11.56389prob.值 0.0000 0.0000R2=0.748356 F= 86.24206(4)Y = 5.928884198*X4 + 1631.299987t值 9.212266 8.434353prob.值 0.0000 0.0000R2= 0.745314 F=84.86584结合经济意义和统计检验结果分析,在4个一元回归模型中消费支出Y对X1工资性收入线性关系最强,拟合程度较好,与经验相符,因此选(1)为初始的回归模型。

(实验2)多元回归分析实验报告.doc

⑩陕&科技丈嗲实验报告成绩一、实验预习:1.多元回归模型。

2.多元回归模型参数的检验。

3.多元回归模型整体的检验。

二、实验的目的和要求:通过案例分析掌握多元回归模型的建立方法和检验的标准;并掌握分析解决实际金融问题的能力。

三、实验过程:(实验步骤、原理和实验数据记录等)软件:Eviews3.1数据:给定美国机动车汽油消费量研究数据。

1.实验步骤1)在Eviews7.0中,新建文件,并将给定的数据输入新建的文件中;2)分析变量间的相关关系;3)进行时间序列的平稳性检验,根据序列趋势图,对原序列进行ADF平稳性检验,再对时间序列数据的一阶差分进行ADF检验,并对结果进行分析讨论。

2.实验原理对于只有一个解释变量的模型,其参数估计方法是最简单的,一般形式如下:y t= A)+ +其中&称为被解释变量,人称为解释变量,%称为随机误差项。

模型可分为两部分:1)回归方程部分,2)随机误差部分,义㈣归分析就是根据样本观察值寻求从和成的估计值。

图一0 Series: S Torkfile: ADF::Adf\| VeA- J Proc: Object Properties ^nnt Name {Freeze J Default-n x| Options | Sample [Gerr j图二2)建立回归模型如卜:四、实验总结:(实验数据处理和实验结果讨论等)1.实验数据处理1)数据的预处理:通过绘制动态曲线、绘制散点图、计算变量之间的相关 关系为正式建模做准备。

可以画出美国汽车各项研究数据的趋势图如下:QMG = c(l) + c(2) * MOB + c(3) * PMG + c(4) * POP + c(5) * GNP 回归结果如下:Dependent Variable: QMG Method: LeastSquares Date: 06/10/14 Time: 16:19 Sample:1950 1987 Included observations: 38QMG=C(1)+C(2)*MOB+C(3)*PMG+C(4)*POP+C(5)*GNP由表中数据带入公式可写出线性回归表达式为:QMG = 24553723 + 1.418520 * MOB- 27995762 * PMG- 59.8748 * POP- 30540.88 * GNP3)进行模型检验从表Prob列的数据中发现c(0)与c(4)的值T检验未通过,可以考虑删除相应的自变量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实例1——中国粮食生产函数根据理论和经验分析,影响粮食生产(Y)的主要因素有农业化肥施用量(X1)、粮食播种面积(X2)、成灾面积(X3)、农业机械总动力(X4)和农业劳动力(X5),其中成灾面积的符号为负,其余均应为正。

下表给出了1983——2000中国粮食生产的相关数据,拟建立中国粮食生产函数。

(1)建立Y对所有解释变量的回归模型,结果如下:Y = -12815.75 + 6.213*X1 + 0.421*X2 - 0.166*X3 - 0.098*X4 - 0.028*X5Variable Coefficient Std. Error t-Statistic Prob.C -12815.75 14078.90 -0.910280 0.3806X1 6.212562 0.740881 8.385373 0.0000X2 0.421380 0.126925 3.319919 0.0061X3 -0.166260 0.059229 -2.807065 0.0158X4 -0.097770 0.067647 -1.445299 0.1740X5 -0.028425 0.202357 -0.140471 0.8906R-squared 0.982798 Mean dependent var 44127.11Adjusted R-squared 0.975630 S.D. dependent var 4409.100S.E. of regression 688.2984 Akaike info criterion 16.16752Sum squared resid 5685056. Schwarz criterion 16.46431Log likelihood -139.5077 F-statistic 137.1164Durbin-Watson stat 1.810512 Prob(F-statistic) 0.000000从计算结果看,R2较大并接近于1,而且F=137.11>F0.05=3.11,故认为粮食生产量与上述所有解释变量间总体线性相关显著。

但是,同时,X4 、X5 前参数未通过t检验,而且符号的经济意义也不合理,故认为解释变量间存在多重共线性。

为了进一步检验多重共线性,进行下面操作。

(2)计算解释变量间的两两相关系数,得到简单相关系数矩阵如下:X1 X2 X3 X4 X5X1 1X2 0.011823 1X3 0.640175 -0.45491 1X4 0.960278 -0.03848 0.689565 1X5 0.54545 0.182359 0.3557353 0.454169 1从相关分析结果来看,部分解释变量间确实存在相关,尤其X1 与X4之间高度相关。

为了处理多重共线性,正确选择解释变量,进行逐步回归,首先选择最优的基本方程。

(3)分别做粮食生产量对各个解释变量的回归,得A.Y对X1回归结果:Variable Coefficient Std. Error t-Statistic Prob.C 30867.31 1206.364 25.58706 0.0000X1 4.576115 0.398199 11.49202 0.0000R-squared 0.891941 Mean dependent var 44127.11Adjusted R-squared 0.885187 S.D. dependent var 4409.100S.E. of regression 1493.984 Akaike info criterion 17.56072Sum squared resid 35711799 Schwarz criterion 17.65965Log likelihood -156.0465 F-statistic 132.0666Durbin-Watson stat 1.855174 Prob(F-statistic) 0.000000B.Y对X2回归结果:Variable Coefficient Std. Error t-Statistic Prob.C -33822.41 68409.15 -0.494414 0.6277X2 0.698880 0.613273 1.139590 0.2712R-squared 0.075073 Mean dependent var 44127.11Adjusted R-squared 0.017265 S.D. dependent var 4409.100S.E. of regression 4370.873 Akaike info criterion 19.70775Sum squared resid 3.06E+08 Schwarz criterion 19.80668 Log likelihood -175.3698 F-statistic 1.298665 Durbin-Watson stat 0.118043 Prob(F-statistic) 0.271231C.Y对X3回归结果Variable Coefficient Std. Error t-Statistic Prob.C 35712.86 4926.583 7.249012 0.0000X3 0.349978 0.200802 1.742906 0.1005R-squared 0.159563 Mean dependent var 44127.11 Adjusted R-squared 0.107036 S.D. dependent var 4409.100 S.E. of regression 4166.457 Akaike info criterion 19.61196 Sum squared resid 2.78E+08 Schwarz criterion 19.71089 Log likelihood -174.5076 F-statistic 3.037721 Durbin-Watson stat 0.935587 Prob(F-statistic) 0.100533D.Y对X4回归结果:Variable Coefficient Std. Error t-Statistic Prob.C 31918.72 1828.715 17.45418 0.0000X4 0.379967 0.054448 6.978587 0.0000R-squared 0.752707 Mean dependent var 44127.11 Adjusted R-squared 0.737252 S.D. dependent var 4409.100 S.E. of regression 2260.060 Akaike info criterion 18.38861 Sum squared resid 81725964 Schwarz criterion 18.48754 Log likelihood -163.4975 F-statistic 48.70067 Durbin-Watson stat 1.109488 Prob(F-statistic) 0.000003E.Y 对X5回归结果:Variable Coefficient Std. Error t-Statistic Prob.C -28260.02 27240.49 -1.037427 0.3150X5 2.239614 0.842352 2.658762 0.0172R-squared 0.306429 Mean dependent var 44127.11 Adjusted R-squared 0.263081 S.D. dependent var 4409.100 S.E. of regression 3784.948 Akaike info criterion 19.41989 Sum squared resid 2.29E+08 Schwarz criterion 19.51882 Log likelihood -172.7790 F-statistic 7.069018 Durbin-Watson stat 0.357079 Prob(F-statistic) 0.017160(4)逐步回归,A、Y对X1、X4回归结果:Variable Coefficient Std. Error t-Statistic Prob.C 31164.92 1137.219 27.40451 0.0000X1 6.925938 1.331502 5.201597 0.0001X4 -0.221178 0.120350 -1.837792 0.0860R-squared 0.911800 Mean dependent var 44127.11Adjusted R-squared 0.900040 S.D. dependent var 4409.100S.E. of regression 1394.000 Akaike info criterion 17.46875Sum squared resid 29148555 Schwarz criterion 17.61715Log likelihood -154.2188 F-statistic 77.53409Durbin-Watson stat 1.992572 Prob(F-statistic) 0.000000从回归结果看,拟合优度虽然上升,但X4的系数不显著,因此,存在共线性,而相比较而言,X1更重要,因此剔除X4(从相关分析也有助于这个结论)。

B、Y对X1、X5回归结果:Variable Coefficient Std. Error t-Statistic Prob.C 24133.84 12406.48 1.945261 0.0707X1 4.431559 0.485883 9.120625 0.0000X5 0.221289 0.405706 0.545442 0.5935R-squared 0.894042 Mean dependent var 44127.11Adjusted R-squared 0.879914 S.D. dependent var 4409.100S.E. of regression 1527.902 Akaike info criterion 17.65219Sum squared resid 35017273 Schwarz criterion 17.80059Log likelihood -155.8697 F-statistic 63.28281Durbin-Watson stat 1.839712 Prob(F-statistic) 0.000000拟合优度升高不显著,修正的拟合优度略微下降,且X5系数不显著,因此,剔除X5.C、Y对X1、X3回归结果:Variable Coefficient Std. Error t-Statistic Prob.C 35065.01 1064.612 32.93688 0.0000X1 5.654330 0.312199 18.11132 0.0000X3 -0.304546 0.056452 -5.394803 0.0001R-squared 0.963248 Mean dependent var 44127.11 Adjusted R-squared 0.958348 S.D. dependent var 4409.100 S.E. of regression 899.8443 Akaike info criterion 16.59333 Sum squared resid 12145797 Schwarz criterion 16.74173 Log likelihood -146.3400 F-statistic 196.5723 Durbin-Watson stat 1.728340 Prob(F-statistic) 0.000000从回归结果看,拟合优度提高,X1和X3的系数显著,因此接受X3.D 、Y 对X1、X2、X3回归结果: Variable Coefficient Std. Error t-Statistic Prob. C -11978.18 14072.92 -0.851151 0.4090X1 5.255935 0.268595 19.56828 0.0000X2 0.408432 0.121974 3.348522 0.0048X3 -0.194609 0.054533 -3.568637 0.0031 R-squared 0.979593 Mean dependent var 44127.11Adjusted R-squared 0.975220 S.D. dependent var 4409.100S.E. of regression 694.0715 Akaike info criterion 16.11616Sum squared resid 6744293. Schwarz criterion 16.31402Log likelihood -141.0454 F-statistic 224.0086Durbin-Watson stat 1.528658 Prob(F-statistic) 0.000000从回归结果看,拟合优度提高,X1、X2和X3的系数显著,因此接受X2.即,回归方程为:Y = -11978.18057 + 5.255935121*X1 + 0.408432175*X2 - 0.1946087795*X3实例2我国1988年-1998年的城镇居民人均全年耐用消费品支出、人均全年可支配收入以及耐用消费品价格指数的统计资料如下表,试建立城镇居民人均全年耐用消费品支出Y 关于人均全年可支配收入x1和耐用消费品价格指数X2的回归模型,并进行回归分析。

相关文档
最新文档