计量经济学Eviews多重共线性实验报告
实验报告多重共线性(1)

实验报告多重共线性(1)西南科技大学Southwest University of Science and Technology 经济管理学院计量经济学实验报告——多重共线性模型的检验专业班级:国贸0702姓名:麦晓俊学号: 20072152任课教师:龙林成绩:多重共线性模型的检验和处理实验目的:掌握多重共线性模型的检验和处理方法。
实验要求:了解辅助回归检验,解释变量相关系数检验等。
试验用软件:Eviews实验原理:解释变量相关系数检验和辅助回归检验等。
实验内容:1、 实验用样本数据:研究某国经济试拟合如下线性回归模型t t t t t u X X X Y ++++=4433221ββββ其中 Y t =消费, X 2=工资收入,X 3=非工资、非农业收入,X 4=农业收入。
其中相关数据如下表(表1):某国国民经济统计资料 单位:10亿美元2、实验步骤:1、 参数估计,过程如下:(1)点击“File/New/Workfile”,屏幕上出现Workfile Range 对话框,选择数据频率,在本例中应选择Undated or irrequar,在Start date里键入1,在End date里键入14,点击OK后屏幕出现“Workfile对话框(子窗口)”。
(2)在Objects菜单中点击New objects,在New objects选择Group,并在Name for Objects定义文件名,点击OK出现数据编辑窗口,,按顺序键入数据。
(3)点击“Quick/Estimate E”,在出现的估计对话框中,键入Y C X。
然后点击OK,得如下输出结果(表2)。
2、分析由F=37.68可知,模型从整体上看,家庭消费与解释变量之间线性关系显著。
3、检验计算解释变量之间的简单相关系数。
Eviews过程如下:(1)在Quick菜单中选Group Statistics项中的Correlation命令。
多重共线性实验报告

【实验名称】:多重共线性的检验方法和处理【实验目的】:掌握多重共线性的原理【实验原理】:综合统计检验法、相关系数矩阵检验法、逐步回归法【实验步骤】:一、创建一个新的工作文件:二、输入样本数据:三、用普通最小二乘法估计模型:由于解释变量个数较多,并且解释变量之间可能存在相关性,为了降低这种相关性以减弱序列相关性对模型的影响,我们先对各个解释变量和被解释变量取对数:即在Eviews软件的命令框执行:genr lnY=log(Y),genr lnX1=log(X1),genr lnX2=log (X2)……genr lnX5=log(X5)我们设粮食生产函数为:LnY=β0+β1lnX1+β2lnX2+β3lnX3+β4lnX4+β5lnX5+μ用运普通最小二乘法估计:下表给出了采用Eviews软件对表一的数据进行回归分析的统计结果:Dependent Variable: LNYMethod: Least SquaresDate: 12/19/13 Time: 10:05Sample: 1983 2007C -4.173174 1.923624 -2.169434 0.0429LNX1 0.381145 0.050242 7.586182 0.0000 LNX2 1.222289 0.135179 9.042030 0.0000 LNX3 -0.081110 0.015304 -5.300024 0.0000 LNX4 -0.047229 0.044767 -1.054980 0.3047R-squared 0.981597 Mean dependent var 10.70905 Adjusted R-squared 0.976753 S.D. dependent var 0.093396 S.E. of regression 0.014240 Akaike info criterion -5.459968 Sum squared resid 0.003853 Schwarz criterion -5.167438 Log likelihood 74.24960 F-statistic 202.6826 Durbin-Watson stat 1.791427 Prob(F-statistic) 0.000000根据上表估计出的参数,可以得到如下普通最小二乘法估计模型:lnY=‐4.17+0.381lnX1+1.222lnX2‐0.081lnX3‐0.047lnX4‐0.101lnX5四、模型检验:1、数学检验:由于R2为0.9816接近于一,且F=202.68>F0.05(5,9)=2.74,故认为粮食产量和上述解释变量之间的总体线性关系显著;但是就X4,X5来说,其t检验的参数较小,尚不能通过t检验,因此怀疑模型中存在多重共线性。
实验报告3 多重共线性

E V I E W S操作实验题目:多重共线性实验类型:基本操作实验目的:掌握利用Eviews进行多元线性回归;存在多重共线性的基础上掌握逐步回归法的基本操作;及方差扩大因子的计算方法。
实验内容:(按要求完成下面题目)4.6 理论上认为影响能源消费需求总量的因素主要有经济发展水平、收入水平、产业发展、人民生活水平提高、能源转换技术等因素。
为此,收集了中国能源消费总量Y (万吨标准煤)、国内生产总值(亿元)X1(代表经济发展水平)、国民总收入(亿元)X2(代表收入水平)、工业增加值(亿元)X3、建筑业增加值(亿元)X4、交通运输邮电业增加值(亿元)X5(代表产业发展水平及产业结构)、人均生活电力消费(千瓦小时)X6(代表人民生活水平提高)、能源加工转换效率(%)X7(代表能源转换技术)等在1985-2002年期间的统计要求:(1)建立对数线性多元回归模型(2)如果决定用表中全部变量作为解释变量,你预料会遇到多重共线性的问题吗?为什么?(3)如果有多重共线性,你准备怎样解决这个问题?明确你的假设并说明全部计算。
实验步骤:一、设定模型Y=β0+β1X1+β2X2+β3X3+β4X4+β5X5+β6X6+β7X7+u二、估计参数1、各解释变量的相关系数矩阵:X1 X2 X3 X4 X5 X6 X7X1 1.000000 0.9999780.9996710.9988680.9918430.9934890.722545X2 0.999978 1.000000.9997280.9989480.9912510.992990.725681X3 0.999671 0.9997281.000000.9989830.9909460.9921480.732289X4 0.998868 0.9989480.9989831.000000.9878390.9888740.737354X5 0.991843 0.9912510.9909460.9878391.000000.9988290.682852X6 0.993489 0.99299 0.9921480.9888740.9988291.000000.680992X7 0.722545 0.7256810.7322890.7373540.6828520.6809921.00000可以看出,各解释变量之间的相关系数较高,证明存在多重共线性。
Eviews多重共线性实验报告

实验三 多重共线性【实验目的】掌握多重共线性问题出现的来源、后果、检验及修正的原理,以及相关的Eviews 操作方法. 【实验内容】以《计量经济学学习指南与练习》补充习题4-18为数据,练习检查和克服模型的多重共线性的操作方法。
【4—18】表4-3列出了被解释变量Y 及解释变量1X ,2X ,3X ,4X 的时间序列观察值。
(1) 用OLS 估计线性回归模型,并采用适当的方法检验多重共线性; (2) 用逐步回归法确定一个较好的回归模型.【实验步骤】(1) 建立线性回归模型并检验多重共线性1、 建立模型利用表4-3数据分别建立Y 关于1X 、2X 、3X 、4X 的散点图(SCAT i X Y ).可以看到Y 与1X 、2X 、4X 都呈现正的线性相关,与3X 关系不明显。
首先建立一个多元线性回归模型(LS Y C 1X 2X 3X 4X ).输出结果中,C 、1X 、3X 、4X 的系数都通不过显著性检验。
2、 检验多重共线性进一步选择Covariance Analysis 的Correlation,得到变量之间的偏相关系数矩阵,观察偏相关系数。
可以发现,Y 与1X 、2X 、4X 的相关系数都在0.9以上,但输出结果中,解释变量1X 、4X 的回归系数却无法通过显著性检验。
认为解释变量之间存在多重共线性。
(2) 用逐步回归法克服多重共线性1、 找出最简单的回归形式分别作Y 与1X 、2X 、3X 、4X 间的回归(LS Y C i X )。
即:(1)1122.0942.0X Y +=∧(1。
64) (11。
7)9383.02=RD.W.=1。
6837(2)2205.0497.5X Y +=∧(17。
9) (7。
63)8640.02=RD.W.=0。
6130(3)3095.0090.17X Y -=∧(2。
14) (-1.19)0450.02=RD.W.=0。
6471(4)4055.0018.2X Y +=∧(2.25) (6。
计量经济学实验报告四---多重共线性

计量经济学实验报告四
[实验名称] 多重共线性
[实验目的] 用Eviews 软件检验模型的多重共线性.
[实验内容] (1)根据表列出的家庭消费支出Y与可支配收入X1和个人财富X2的统计数据,在Eviews软件下,OLS的估计结果为
所以模型为Yˆ=245.52+0.57X1-0.0058X2
(3.53)(0.79)(-0.08)
R2=0.962 F=88.845 D.W.=2.708
由拟合优度知,收入和财富一起解释了消费支出的96%.然而两者的t检验都在5%的显著性水平下是不显著的.不仅如此,财富变量的符号也与经济理论不相符合.但从F的检验值看,对收入与财富的参数同时为零的假设显然是拒绝的.因此,显著的F检验值与不显著t检验值,说明了收入与财富存在较高的相关性,使得无法分辨二者各自对消费的影响.只作消费支出关于收入的一元回归模型.如下
所以模型为Yˆ=244.55+0.509X1
(3.813)(14.24)
R2=0.962 F=202.87 D.W.=2.68
我们将上面模型与之相比,新引入的变量并没有带来拟合优度的显著变化,所以该引入的变量不是一个独立的解释变量.因此应该只作消费支出关于收入或财富的一元回归模型来对二元模型进行修正.。
Eviews多重共线性实验报告-V1

Eviews多重共线性实验报告-V1本文主要将Eviews多重共线性实验报告进行整理,旨在帮助读者更好地理解和应用多重共线性实验结果。
1. 研究背景多重共线性是指在回归模型中,自变量之间存在高度相关的情况。
这种相关关系会导致模型的不稳定性,降低模型的解释能力和预测能力。
因此,在进行回归分析时,需要对多重共线性进行检测和处理。
2. 数据来源和处理本次实验所使用的数据来自某公司销售数据,共有18个自变量和1个因变量。
在进行回归分析之前,需要对数据进行预处理。
首先,我们通过观察变量间的相关系数矩阵来初步判断是否存在多重共线性。
如果存在高度相关的自变量,可以考虑通过主成分分析等方法来降维,减少变量间的冗余。
本实验中,我们发现变量间的相关性较小,因此没有进行降维操作。
3. 模型建立我们采用逐步回归的方法建立回归模型,并对模型的适配度和稳定性进行评估。
首先,我们使用全模型(包含所有自变量)进行回归分析,并得到如下统计结果:R-squared:0.7767Adj. R-squared:0.7152F-statistic:12.38(显著)通过观察模型的系数,我们发现存在一些变量的系数非常大,而一些变量的系数非常小甚至为0,这也是多重共线性的表现之一。
为了进一步检验模型的稳定性和解释能力,我们采用逐步回归的方法进行变量筛选。
在此过程中,我们设置的入模标准是F统计量显著,出模标准是T统计量显著或P值小于0.05。
最终,我们得到了一个包含4个自变量的最优模型,其统计结果如下:R-squared:0.7224Adj. R-squared:0.6812F-statistic:17.69(显著)通过观察模型的系数,我们发现所有自变量的系数都显著,且大小合理。
这说明通过逐步回归的方法,我们成功地排除了多重共线性的影响,建立了一个具有较好稳定性和解释能力的模型。
4. 结论和建议在本实验中,我们成功地应用了Eviews工具,通过逐步回归的方法检验和处理多重共线性,建立了一个较为稳定和解释能力强的回归模型。
计量经济学Eviews多重共线性实验报告记录

计量经济学Eviews多重共线性实验报告记录————————————————————————————————作者:————————————————————————————————日期:实验报告课程名称计量经济学实验项目名称多重共线性班级与班级代码专业任课教师学号:姓名:实验日期:2014 年05 月11日广东商学院教务处制姓名实验报告成绩评语:指导教师(签名)年月日说明:指导教师评分后,实验报告交院(系)办公室保存。
计量经济学实验报告一、实验目的:掌握多元线性回归模型的估计方法、掌握多重共线性模型的识别和修正。
二、实验要求:应用教材第127页案例做多元线性回归模型,并识别和修正多重共线性。
三、实验原理:普通最小二乘法、简单相关系数检验法、综合判断法、逐步回归法。
四、预备知识:最小二乘法估计的原理、t检验、F检验、2R值。
五、实验步骤1、选择数据理论上认为影响能源消费需求总量的因素主要有经济发展水平、收入水平、产业发展、人民生活水平提高、能源转换技术等因素。
为此,收集了中国能源消费标准煤总量、国民总收入、国内生产总值GDP、工业增加值、建筑业增加值、交通运输邮电业增加值、人均生活电力消费、能源加工转换效率等1985——2007年的统计数据。
本题旨在通过建立这些经济变量的线性模型来说明影响能源消费需求总量的原因。
主要数据如下:1985~2007年统计数据年份能源消费国民总收入国内生产总值工业增加值建筑业增加值交通运输邮电增加值人均生活电力消费能源加工转换效率y X1 X2 X3 X4 X5 X6 X7 1985766829040.7 9016 3448.7 417.9 406.9 21.3 68.29 198680850 10274.4 10275.2 3967 525.7 475.6 23.2 68.32 198786632 12050.6 12058.6 4585.8 665.8 544.9 26.4 67.48 198892997 15036.8 15042.8 5777.2 810 661 31.2 66.54 198996934 17000.9 16992.3 6484 794 786 35.3 66.51 199098703 18718.3 18667.8 6858 859.4 1147.5 42.4 67.2 1991103783 21826.2 21781.5 8087.1 1015.1 1409.7 46.9 65.9 1992109170 26937.3 26923.5 10284.5 1415 1681.8 54.6 66.00 1993115993 35260 35333.9 14188 2266.5 2205.6 61.2 67.32 1994122737 48108.5 48197.9 19480.7 2964.7 2898.3 72.7 65.2 1995131176 59810.5 60793.7 24950.6 3728.8 3424.1 83.5 71.05 1996138948 70142.5 71176.6 29447.6 4387.4 4068.5 93.1 71.5 1997137798 77653.1 78973 32921.4 4621.6 4593 101.8 69.23 1998132214 83024.3 84402.3 34018.4 4985.8 5178.4 106.6 69.44 1999133831 88189 89677.1 35861.5 5172.1 5821.8 118.2 69.19 2000138553 98000.5 99214.6 40033.6 5522.3 7333.4 132.4 69.04 2001143199 108068.2 109655.2 43580.6 5931.7 8406.1 144.6 69.03 2002151797 119095.7 120332.7 47431.3 6465.5 9393.4 156.3 69.04 2003174990 135174 135822.8 54945.5 7490.8 10098.4 173.7 69.4 2004203227 159586.7 159878.3 65210 8694.3 12147.6 190.2 70.71 2005223319 183956.1 183084.8 76912.9 10133.8 10526.1 216.7 71.08 2006 246270 213131.7 211923.5 91310.9 11851.1 12481.1 249.4 71.242007 265583 251483.2 249529.9 107367.2 14014.1 14604.1 274.9 71.25资料来源:《中国统计年鉴》,中国统计出版社2000、2008年版。
EViews计量经济学实验报告-多重共线性的诊断与修正

时间 地点 实验题目 多重共线性的诊断与修正一、实验目的与要求:要求目的:1、对多元线性回归模型的多重共线性的诊断;2、对多元线性回归模型的多重共线性的修正。
二、实验内容根据书上第四章引子“农业的发展反而会减少财政收入”,1978-2007年的财政收入,农业增加值,工业增加值,建筑业增加值等数据,运用EV 软件,做回归分析,判断是否存在多重共线性,以及修正。
三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)(一)模型设定及其估计经分析,影响财政收入的主要因素,除了农业增加值,工业增加值,建筑业增加值以外,还可能与总人口等因素有关。
研究“农业的发展反而会减少财政收入”这个问题。
设定如下形式的计量经济模型:i Y =1β+2β2X +3β3X +4β4X +5β5X +6β6X +7β7X +i μ其中,i Y 为财政收入CS/亿元;2X 为农业增加值NZ/亿元;3X 为工业增加值GZ/亿元;4X 为建筑业增加值JZZ/亿元;5X 为总人口TPOP/万人;6X 为最终消费CUM/亿元;7X 为受灾面积SZM/千公顷。
图1: 1978~2007年财政收入及其影响因素数据年份财政收入CS/亿元 农业增加值NZ/亿元 工业增加值GZ/亿元 建筑业增加值JZZ/亿元总人口TPOP/万人最终消费CUM/亿元受灾面积SZM/千公顷 1978 1132.3 1027.5 1607 138.2 96259 2239.1 50790 1979 1146.4 1270.2 1769.7 143.8 97542 2633.7 39370 1980 1159.9 1371.6 1996.5 195.5 98705 3007.9 44526 1981 1175.8 1559.5 2048.4 207.1 100072 3361.5 39790 1982 1212.3 1777.4 2162.3 220.7 101654 3714.8 33130 1983 1367 1978.4 2375.6 270.6 103008 4126.4 34710 1984 1642.9 2316.1 2789 316.7 104357 4846.3 31890 1985 2004.8 2564.4 3448.7 417.9 105851 5986.3 44365 1986 2122 2788.7 3967 525.7 107507 6821.8 47140 1987 2199.4 3233 4585.8 665.8 109300 7804.6 42090 1988 2357.2 3865.4 5777.2 810 111026 9839.5 50870 1989 2664.9 4265.9 6484 794 112704 11164.2 46991 1990 2937.1 5062 6858 859.4 114333 12090.5 38474 1991 3149.48 5342.2 8087.1 1015.1 115823 14091.9 55472 1992 3483.37 5866.6 10284.5 1415 117171 17203.3 51333 1993 4348.95 6963.8 14188 2266.5 118517 21899.9 48829 19945218.1 9572.7 19480.7 2964.7 11985029242.2550431995 6242.2 12135.8 24950.6 3728.8 121121 36748.2 45821 1996 7407.99 14015.4 29447.6 4387.4 122389 43919.5 46989 1997 8651.14 14441.9 32921.4 4621.6 123626 48140.6 53429 1998 9875.95 14817.6 34018.4 4985.8 124761 51588.2 50145 1999 11444.08 14770 35861.5 5172.1 125786 55636.9 49981 2000 13395.23 14944.7 40036 5522.3 126743 61516 54688 2001 16386.04 15781.3 43580.6 5931.7 127627 66878.3 52215 2002 18903.64 16537 47431.3 6465.5 128453 71691.2 47119 2003 21715.25 17381.7 54945.5 7490.8 129227 77449.5 54506 2004 26396.47 21412.7 65210 8694.3 129988 87032.9 37106 2005 31649.29 22420 76912.9 10133.8 130756 96918.1 38818 2006 38760.2 24040 91310.9 11851.1 131448 110595.3 41091 2007 51321.78 28095 107367.2 14014.1 132129 128444.6 48992利用EV 软件,生成i Y 、2X 、3X 、4X 、5X 、6X 、7X 等数据,采用这些数据对模型进行OLS 回归。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
课程名称计量经济学
实验项目名称多重共线性
班级与班级代码
专业
任课教师
学号:
姓名:
实验日期: 2014 年 05 月 11日
广东商学院教务处制姓名实验报告成绩
评语:
指导教师(签名)
年月日
说明:指导教师评分后,实验报告交院(系)办公室保存。
计量经济学实验报告
一、实验目的:掌握多元线性回归模型的估计方法、掌握多重共线性模型的识别和修正。
二、实验要求:应用教材第127页案例做多元线性回归模型,并识别和修正多重共线性。
三、实验原理:普通最小二乘法、简单相关系数检验法、综合判断法、逐步回归法。
R值。
四、预备知识:最小二乘法估计的原理、t检验、F检验、2
五、实验步骤
1、选择数据
理论上认为影响能源消费需求总量的因素主要有经济发展水平、收入水平、产业发展、人民生活水平提高、能源转换技术等因素。
为此,收集了中国能源消费标准煤总量、国民总收入、国内生产总值GDP、工业增加值、建筑业增加值、交通运输邮电业增加值、人均生活电力消费、能源加工转换效率等1985——2007年的统计数据。
本题旨在通过建立这些经济变量的线性模型来说明影响能源消费需求总量的原因。
主要数据如下:
1985~2007年统计数据
资料来源:《中国统计年鉴》,中国统计出版社2000、2008年版。
为分析Y 与X1、X2、X3、X4、X5、X6、X7之间的关系,做如下折线图:
能源消费Y 在1986到1996年间缓慢增长,在96至98年有短暂的下跌,但是98
至02年开始缓慢回升,02年到06年开始快速增长。
国民总收入X1和国内生产总值X2以相同的趋势逐年缓慢增长。
工业增加值X3在1985年-1999年期间一直是缓慢增长,但在2000年出现了急剧下降的现象,2001年又急剧增长,达到下降前的水平,2001年以后开始缓慢增长。
建筑业增长值x4、交通运输邮电业增加值x5、人均生活电力消费x6、能源加工转换效率x7数值较低,但都以较平缓的方式增长。
2、设定并估计多元线性回归模型
t t t t t t t u X X X X X Y ++++++=66554433221ββββββ (2.1)
2.1录入数据,得到图。
2.2.1)采用OLS 估计参数
在主界面命令框栏中输入 ls y c x1 x2 x3 x4 x5 x6 x7回车,即可得到参数的估计结果。
1234567
ˆ28023.7310.68888512.430670.26564322.600710.874955909.01611444.437(94945.12)(3.034175)(3.675319)(0.190824)10.19131)
(2.953978)(345.5062)
(1382.319)
(0.295157)(3.522820)( 3.382i Y X X X X X X X t =-+-+++++=--22201)(1.392080)
(2.217646)
(0.296195)
(2.630969)
(1.044938)
0.989801
0.985041207.96
14
R R F df ====
由此可见,该模型的可决系数为0.989801,修正的可决系数为0.985041,模型拟和很好,F统计量为386.2196,回归方程整体上显著。
可是其中的lnX3、lnX4、lnX6对lnY影响不显著,不仅如此,lnX2、lnX5的参数为负值,在经济意义上不合理。
所以这样的回归结果并不理想。
3、多重共线性模型的识别
点击Eviews主画面的顶部的Quick/Group Statistics/Correlatios弹出对话框在对话框中输入解释变量x1、x2、 x3、 x4、 x5、 x6、x7,点击OK,即可得出相关系数矩阵(同图2.2.3)。
从相关系数矩阵可以看出,解释变量x1、x2、 x3、 x4、 x5、 x6、x7相互之间的相关系数较高,解释变量之间存在多重共线性。
4、多重共线性模型的修正
3.多重共线性模型的修正
使用逐步回归法进行修正。
第一步:运用OLS方法分别求Y对各解释变量进行一元回归,分别求Y对各解释变量
x1、x2、 x3、 x4、 x5、 x6、x7进行一元回归。
回归结果详下图。
再结合经济意义和统计检验选出拟合效果最好的一元线性回归方程。
通过上面7个图进行对比分析,依据调整后可决系数2R最大原则,选取x1
(2R=0.969514)作为进入回归模型的第一个解释变量,形成一元回归模型。
第二步:逐步回归。
将剩余解释变量分别加入模型,结果如下:
经比较,可以发现加入X2、X5、X6、X7后参数的符号与预期相反,不符合经济意义,且t 检验部显著。
而加入X4后变化并不显著,只有加入X3后修正的可决系数有所提高,而且参数符号的经济意义合理, 而且参数的t检验,在α=0.1,t(0.05,15)=1.753时显著,所以保留X3。
再加入其他新变量逐步回归。
当加入X2时,虽然R-^2有所增加,但其系数的符号与预期相反且参数的t检验不显著;加入X4后,各参数的t检验不显著;加入X5后,虽然R-^2有所增加,但是但其系数的符号与预期相反且参数的t检验不显著;加入X6、X7后,其系数的符号与预期相反且参数的t检验不显著,这说明主要是X2、X4、X5、X6、X7引起了多重共线性,应予以剔除。
Y ^=80927.77+0.5512X1+0.4349X3
t=(28.6903) (5.3587) (1.8308)
2R =0.9751 2R = 0.9726 F= 391.2352 DW= 0.6938
这说明,在其他因素不变的情况下,当国民总收入X1每增加1亿元,工业增加值X3每增加1亿元时,平均说来能源消费标准煤总量将分别增加0.5512万吨、0.4349万吨。
这说明,国民总收入对能源消费标准煤总量的影响,比工业增加值对能源消费标准煤总量的影响要大。