低温余热回收技术简介(英文版)
低温热回收利用技术

1102 42065.4
823 31417.1
468 17869.2
226 8627.6
76 292328.
7
3 69 143875. 2
速后的热水 量(热水流
速≥0 5m/s)
21195. 1
56843.6
30033.1
21133.6
166550. 8626.9 29492.1
3
由表 1 可知,连续重整装置汽改水改造中,需要伴热热水 166.55t/h,而如用蒸汽伴热需 要蒸汽 3.77t/h。若热水伴热热量由 0.8MPa 蒸汽加热,需要 0.8MPa 的加热蒸汽为 3.16t/h。较 蒸汽伴热方案节约蒸汽 0.61t/h,占原伴热蒸汽消耗量的 16.2%。 3、技术的经济成本
1
1
热
2.5
0.7
2.5
3
蒸
35
.9
3
5
1
1
10
11
15
14
由表 2 可以看出,热水伴热在于蒸汽伴热对比当中,热水伴热的经济性明显好于蒸汽伴
资料来源:工业和信息化部网站
系统为例,对低温热回收利用技术进行介绍。热水伴热是以热水为伴热
介质.相对较蒸汽伴热而言运行平稳、且易于操作,可有效减少伴热系统 “跑冒滴漏”现象,减小汽蚀和管线冲刷,美化环境,节约维修成本。热 水伴热还能有效利用余热,节约大量蒸汽,使热源介质温度得到有效控
制,防止输送介质变质。
数量
规格
伴热系统管线
/
对于伴热成本,除了材料成本外还应包括设计费用、施工安装费用、维护费用、运行费
用等,另外考虑能耗、寿命等因素,上海科瑞电伴热线缆有限公司对热水伴热、蒸汽伴热和
ORC低温余热发电技术

ORC低温余热发电技术基于有机朗肯循环的ORC低温余热发电技术伴随国际能源价格持续上涨,及对可再生能源、清洁能源的呼声日益升高,有机工质朗肯循环(Organic Rankine Cycle简称ORC)低温发电技术在国际电力工业市场已经成为一个异军突起的黑马。
典型的蒸汽动力发电系统,其工作循环可以理想化为由两个可逆定压过程和两个可逆绝热过程组成的理想循环,包括以下四个热力学过程:第一步:定压吸热过程,第二步:绝热膨胀过程,第三步:定压放热过程,第四步:绝热加压过程。
该热力循环理论是由19世纪苏格兰工程师W.J.M.Rankine提出,为纪念其取得的成就,蒸汽动力装置的基本循环亦称为为朗肯循环(Rankine Cycle)。
有机工质朗肯循环专指以低沸点(蒸发温度38度,正戊烷)氟碳氢化合物为循环工质的热力系统,ORC低温发电技术就是基于这一工作过程的发电系统,也称有机工质朗肯循环发电。
ORC低温发电技术,这里低温泛指的温度小于150度但大于90度的热源,其低温热源是工业过程废热、太阳能、海洋温差、地热等清洁能源,技术突破点在于研究更低的热源温度以驱动透平做功发电,以适应更多的工况条件。
尽管发电效率低于传统火电,但由于使用的是清洁能源及工业过程中被废弃的低品质余热,因此在国际能源市场发展迅速。
常规的化石燃料发电技术(火力发电),即利用煤炭、重油或天然气等燃料燃烧时产生的热能来加热水,使水变成高温、高压水蒸气,然后再由水蒸气冲转汽轮机驱动发电机来发电。
这个系统中的循环工质是除盐水,由于水的物理性质(一个大气压,100度蒸发),因此传统电力工业追求的是更高的温度计压力,以提高发电效率,如:超临界、超超临界等。
但是提高发电效率的同时,也带来了环境污染、粉尘、气候变化等负面因素。
因此在低温发电领域,ORC与传统的发电技术相比,具备以下几个优势:1)有机工质具有良好的热力学性质,低的沸点及高的蒸气压力使0RC方法比水蒸气朗肯循环具有较高的热效率,对较低温度热源的利用有更高的效率。
低温余热发电(ORC)综述

低温余热发电(ORC)综述作者:李刚来源:《科技尚品》2017年第07期摘要:低温余热发电技术在提高能源再利用的有效方法之一,有机朗肯循环(ORC)技术是是低温余热发电技术之一,本文主要介绍了ORC循环的系统的结构和工质的选择方法,为ORC技术研究提供参考。
关键词:低温余热发电;有机朗肯循环;系统结构;有机工质1 前言由于世界人口的增长和全球经济的快速发展,能源消耗日渐增长。
为了保护环境、維护人类良好的生存环境,开发新能源和提高能量利用效率是亟须解决的问题。
可利用再生能源如:太阳能、风能及地热能,在满足能源需求起了越来越多的作用。
而提高能源再利用有效的方法之一就是利用中低温热源的有机郎肯循环。
有机朗肯循环(organic rankine cycle,简称ORC)是低温余热发电技术之一,ORC是使用具有较低临界温度的有机物作为循环工质的朗肯循环。
2 研究现状国外有机郎肯循环主要应用在地热、太阳能、烟气余热回收等工业余热,多数文献根据热力学定律建立模型,计算不同工质和温度下的循环热效率和介绍工质的选择方法,并介绍了有机郎肯循环中的重要设备——蒸汽膨胀做功的设备的选择和设计。
工质均为饱和曲线斜率为负值或者无穷大的干流体和等熵流体。
文献中工质的选择大多为各种CFC(含氯、氟、碳的完全卤代烃)等对环境有一定破坏的有机工质,如R113、R245fa、R123等等。
个别采用氨、烷烃等对环境有好的工质。
而且文献中对工质的选择局限在某一特定的温度范围内。
追求最优系统,工质被加热到饱和状态后在膨胀做功的热效率最高,过热或者未饱和使得不可逆损失和成本增加,降低热效率和经济性。
文献还对有机郎肯循环的系统结构做了详细的介绍,对于温度较高的低温热源,为了提高能源利用率,采用常规的有机郎肯循环已不能满足需求,所以对常规ORC系统结构做了一些改进,如多级或单级抽汽回热ORC和抽汽再热ORC,并对这两种循环方式分别进行了热力分析和计算。
FXH技术简介

技术介绍复合相变换热器(简称FXH)专利技术是锅炉、工业窑炉、加热炉等尾部低温余热高效回收和利用(新型热传导)的装置,特别适用于锅炉排烟温度的余热回收,已经在国内电力、石油、化工、钢铁等数十家企业大中锅炉上安装应用多年,具有大幅度回收余热的能力,同时保证锅炉不受低温腐蚀,使锅炉节能。
该技术装置在保证金属受热面不结露的前提下,可有效地降低排烟温度和提高锅炉热效率。
复合相变换热器最低壁面温度可调可控,并视作通常“热管技术”的有效延伸和深化发展。
复合相变换热器通过改变锅炉尾部烟气温度和最低壁面温度的函数关系,巧妙地化解聊降低锅炉排烟温度与酸露点腐蚀的矛盾,解决了锅炉排烟温度难以降低的世界性难题,为充分利用锅炉余热提供了新的广阔空间,开创了科学可靠的世界性锅炉节能技改新领域、新天地。
适用对象1、排烟温度偏高有余热利用空间可以节能降耗的锅炉;2、采用其它降低排烟温度的方法均效果不显著的锅炉;3、治金、钢铁、电力、石油等行业有低温热源可利用的工业窑炉、加热炉等;4、有一定的布置空间。
应用效果1、节能----能使锅炉热效率稳定提高1.5%---10%(降低能耗,提高吨煤产汽率,增加锅炉出力);2、节水----降低排烟温度和节约大量脱硫工艺用水;3、防腐----从机理上根本解决设备腐蚀、灰堵问题;4、环保----节能是最大的减排技术优势1、在常规热管换热器的基础上进一步大幅度降低热流体(烟气)的排放温度,使大量的中低温热能被有效回收,产生十分可观的经济效益;2、在降低排烟温度的同时,保持金属受热面壁温度处于较高的温度水平,远离酸露点的腐蚀区域,从根本上避免了结露腐蚀和堵灰现象的出现,大幅度降低设备的维修成本;3、在世界范围呢内首次提出并实现了金属受热面最低壁面温度始终处于可控可调状态,能够在相当大幅度内,适应各类锅炉以及传热负荷的变化,使排烟温度和壁温保持相对稳定;4、在保留热管换热器具有的高效传热的同时,克服了常规热管换热器在使用一段时间后容易产生不凝气体,从而逐渐老化以至失效的致命弱点,大大延长了设备的使用寿命。
优益能AC-WHR型低温余热回收技术介绍

AC-WHR核心技术(二)——体积小
高导热换热管 合理结构设计
换热面积是光管 的6-8倍!
•
钢铝胀接套管
•
• •
翅片管密排布置
防短路导流结构 换热管交错分布
•
换热效果高
•
•
较薄防腐涂层
翅片式结构
•
•
设备体积小
占地小
内管:碳钢/不锈钢 外管:挤压铝合金翅片 保护层:防腐涂层
AC-WHR核心技术(三)——不易结灰、易清理
4
08/10/2014
AC-WHR——系统简介
换热元件 烟气入口
换热元件表面配置 专用AC-ESC陶瓷防 腐涂层解决腐蚀难 题!
隔热罩
控制面板
烟气出口
AC-WHR——系统特点
节能量大 5-15% 体积小 同类的1/2
防腐、防 粘、耐磨
• 独创技术 • 解决腐蚀难题
优益能 AC-WHR
安全、 可靠, 风阻小
AC-WHR 应用案例——华峰化纤(上市公司)
改造后情况
烟气温度降至50℃左右
节能率21%,每年节煤 5000t左右 每小时产生1.0Mpa的蒸汽 2t 锅炉补水温度提高到130℃ 左右
AC-WHR 应用案例——华峰化纤(上市公司)
防腐型换热器部件
服役4年后未发现明显腐蚀和积灰!
AC-WHR 应用案例——其他案例
• 弥补行业空白
寿命长
5年以上
AC-WHR核心技术(一)——防腐蚀
• 防腐涂层耐受强酸、强碱腐蚀,适合PH 1-14; • 烟气腐蚀条件下,长期使用温度170℃; • AC-WHR应用于工业锅炉,5年以上持续服役案例; 燃煤/燃油烟气主要腐蚀介质为稀硫酸,以下数据表明其优异的防腐性
低温余热回收有机朗肯循环技术

低温余热回收有机朗肯循环技术摘要:低温余热广泛存在于高耗能行业中,有机朗肯循环(ORC)利用低温余热发电技术具有众多优势,国内外的许多学者展开了各方面的研究工作,使该技术在工业余热、地热等领域商业化成功。
在采用有机朗肯循环(ORC)发电技术时要充分考虑项目的经济效益,而不能一味地考虑余热的回收效率。
关键词:低温余热有机朗肯循环余热回收经济性分析能源是人类社会生存发展的重要物质基础,攸关国计民生和国家战略竞争力。
“节能减排”是我国可持续发展的一项长远发展战略,也是我国的重要基本国策,随着工业化、城镇化进程加快和消费结构持续升级,我国能源需求刚性增长,资源环境问题仍是制约我国经济社会发展的瓶颈之一,节能减排依然形势严峻、任务艰巨[1]。
加大节能减排设备的研发,即减少能源浪费和环境污染,将创造巨大的经济效益和社会效益。
工业低温余热广泛存在于电力、钢铁、有色金属、建材、石油、化工、煤炭等高耗能行业中,据工信部统计,目前,在七大高耗能行业中余热总资源量约3.5亿吨标煤,其中200℃以下的低品位余热资源约占总余热资源的54%左右,如果将此余热资源加以转换,将可实现约1840万KW的装机规模。
有机朗肯循环(ORC)发电原理有机朗肯循环(ORC)发电系统和传统的朗肯循环发电系统原理相同,区别在于有机朗肯循环采用低沸点的有机工质作为循环工质,最大限度的回收余热资源。
有机朗肯循环(ORC)发电系统主要设备包括:换热器(蒸发器和冷凝器),低沸点工质透平压缩机,膨胀机和发电机等(如图1所示)。
图1 有机朗肯循环(ORC)发电系统图有机朗肯循环(ORC)发电系统主要包括以下4个过程。
:(1)低温低压液体有机工质通过工质泵升压后进入蒸发器中(1-2过程),有机工质泵做功:式中:m——有机工质质量流量(Kg/s)h1——工质泵入口有机工质焓值(KJ/Kg)h2——工质泵出口有机工质焓值(KJ/Kg)——工质泵出口等熵工质焓值(KJ/Kg)——工质泵效率(2)高压低温有机工质进入蒸发器后,被高温流体加热,变成高温高压蒸汽(2-3-4过程),有机工质吸热量为:式中:——蒸发器入口工质焓值(KJ/Kg)——蒸发器出口工质焓值(KJ/Kg)(3)高温高压蒸汽进入膨胀机做功,膨胀机进而拖动发电机发电(4-5过程),膨胀做功量为:式中:——膨胀机入口工质焓值(KJ/Kg)——膨胀机出口工质焓值(KJ/Kg)——膨胀机等熵膨胀效率(4)膨胀后的低压低温蒸汽进入冷凝器,和循环冷却水进行换热,冷却成低温低压液体有机工质,完成整个循环(5-6-1过程)。
低温余热利用技术

低温余热利用技术低温余热是指工业生产过程中产生的温度较低的废热。
传统上,这些废热往往被直接排放到大气中,造成能源的浪费和环境的污染。
然而,随着能源资源的日益紧缺和环境保护意识的增强,低温余热利用技术成为了一种重要的能源节约和环境保护手段。
低温余热利用技术的应用范围非常广泛,涵盖了工业、建筑、交通运输等多个领域。
下面将重点介绍几种常见的低温余热利用技术。
1. 热泵技术热泵技术是一种能将低温热能转化为高温热能的技术。
通过利用热泵循环原理,将低温余热中的热能提取出来,并通过压缩制冷剂的方式转化为高温热能。
这种技术可以广泛应用于供暖、制冷、热水供应等领域,可显著提高能源利用效率。
2. 有机朗肯循环技术有机朗肯循环技术是一种利用低温热能发电的技术。
该技术利用有机朗肯循环工质在低温下的膨胀特性,将低温余热转化为机械能,进而驱动发电机发电。
相较于传统的蒸汽朗肯循环,有机朗肯循环技术在低温条件下具有更高的热效率和更广泛的应用范围。
3. 低温余热供暖技术低温余热供暖技术是一种将低温余热直接利用于供暖的技术。
通过将低温余热与传统供暖系统相结合,可以显著提高供暖效果并降低能源消耗。
这种技术尤其适用于工业企业和大型建筑物,如钢铁厂、化工厂和商业中心等。
4. 低温余热利用于制冷技术低温余热利用于制冷技术是一种将低温余热用于制冷的技术。
通过将低温余热与吸收式制冷系统相结合,可以实现废热的回收利用,并达到节能减排的目的。
这种技术在冷库、制冷车辆等领域有着广泛的应用前景。
5. 低温余热利用于热水供应技术低温余热利用于热水供应技术是一种将低温余热用于供应热水的技术。
通过将低温余热与热水系统相结合,可以实现热水的供应,并降低能源的消耗。
这种技术在酒店、浴室、游泳馆等场所有着广泛的应用前景。
低温余热利用技术是一种重要的能源节约和环境保护手段。
通过热泵技术、有机朗肯循环技术、低温余热供暖技术、低温余热利用于制冷技术以及低温余热利用于热水供应技术等多种技术手段的应用,可以有效地利用低温余热,提高能源利用效率,减少环境污染,实现可持续发展。
低沸点工质的有机朗肯循环纯低温余热发电技术

低沸点工质的有机朗肯循环纯低温余热发电技术引言废弃物排放的优点。
(ORMAT)公司利用低温热源的有机朗肯循环(Orga nicRankine Cyck ,简称()RC)纯低温余热发电技术。
该技术有别于常规技术,其特点是:不是用水作为工质,而是使用低沸点的有机物作为工质 来吸收废气余热,汽化,进入汽轮机膨胀做功。
1.低沸点的有机物在一个大气压下,水的沸点足100 C,而一些有机物的沸点却低于水的沸 点,见表I 。
有机物的沸点与压力之间存在着对应关系,以氯乙烷为例,见表 2。
水的沸点与压力之间对应关系见表 3。
1 几种有机狗的游直£廈5作者:来源:更新日期:2007-3-19我国水泥厂的余热发电, 先后经历高温余热发电、带补燃炉的中低温余热发电和纯低温余热发电3个阶段。
纯低温余热发电与带补燃的中低温余热发电相比,具有投资省、 生产过程中不增加粉尘、废渣、N0。
和S0。
等本文介绍以色列奥玛特*2 »乙«沸点与a力的5F)fl关系*3由表2和表3可见,氯乙烷的沸点比水低,蒸气压力很高。
根据低沸点有机工质的这种特点,就可以利用低温热源来加热低沸点工质,使它产生具有较高压力的蒸气来推动汽轮机做功。
2ORC纯低温余热发电在地热发电方面的应用0RC纯低温余热发电技术在我国地热发电方面已得到初步应用,我国目前已经勘测发现的地热田均属热水型热储。
热水型资源发电采用的热力系统主要有两种,即扩容(闪蒸)系统和双工质循环系统。
西藏羊八井地热电站, 热水温度145 C,采用二次扩容热力系统,汽轮机(青岛汽轮机厂设计制造D3 一1. 7/0. 5型地热汽轮机发电机组)单机容量3000W , 3000W / m in , 一次进汽压力182kPa ,温度115 C,二次进汽压力54kPa ,温度8「C, 额定排汽压力为10kPa。
双工质循环系统中,地热水流经热交换器,把地热能传递给另一种低沸点丁质,使之蒸发产生蒸气,组成低沸点工质朗肯循环发电。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• Heat Pump
A s's vapor-compression refrigeration cycle 1) condenser 2) expansion valve 3) Evaporator 4) Compressor
• Heat Pipe
Characteristic o Heat pipes contain no mechanical moving parts and typically require no maintenance, though non-condensable gases that diffuse through the pipe's walls, resulting from breakdown of the working fluid or as impurities extant in the material, may eventually reduce the pipe's effectiveness at transferring heat. o The advantage of heat pipes over many other heat-dissipation mechanisms is their great efficiency in transferring heat. o The wide temperature range over which they are effective, because the boiling point of working fluids depends on the absolute pressure inside the pipe.
• Heat Pump
Characteristic o A heat pump uses a small amount of external power to accomplish the work of transferring energy from the heat source to the heat sink. o The term coefficient of performance (COP) is used to describe the ratio of useful heat movement per work input. o The COP for heat pumps range from 3.2 to 4.5 for air source heat pumps to 4.2 to 5.2 for ground source heat pumps, whereas an electrical resistance heater has a COP of 1.0. That is, one joule of electrical energy will cause a resistance heater to produce only one joule of useful heat, while under ideal conditions, one joule of electrical energy can cause a heat pump to move three or four joules of heat from a cooler place to a warmer place. Note that an air source heat pump is more efficient in hotter climates than cooler ones, so when the weather is much warmer the unit will perform with a higher COP (as it has a smaller temperature gap to bridge). When there is a wide temperature differential between the hot and cold reservoirs, the COP is lower (worse). In extreme cold weather the COP will go down to 1.0.
• Heat Pump
Heat sources o Air-source, Water-source, Ground-source Applications o HVAC
In HVAC applications, a heat pump is typically a vapor-compression refrigeration device that includes a reversing valve and optimized heat exchangers so that the direction of heat flow (thermal energy movement) may be reversed. The reversing valve switches the direction of refrigerant through the cycle and therefore the heat pump may deliver either heating or cooling to a building.
o Waste heat can be forced to heat incoming fluids. o For example, air pre-heater (APH)
• Heat Pipe
Working Principle o A heat pipe is a heat-transfer device that combines the principles of both thermal conductivity and phase transition to effectively transfer heat. o At the hot interface of a heat pipe a liquid in contact with a thermally conductive solid surface turns into a vapor by absorbing heat from that surface. The vapor then travels along the heat pipe to the cold interface and condenses back into a liquid – releasing the latent heat. The liquid then returns to the hot interface through either capillary action, centrifugal force, or gravity, and the cycle repeats.
• Heat Pipe
• Heat Pipe
Heat pipe materials and working fluids
The most commonly used envelope (and wick)/fluid pairs include: o Copper envelope with water working fluid for electronics cooling. This is by far the most common type of heat pipe. o Copper or steel envelope with refrigerant R134a working fluid for energy recovery in HVAC systems. o Aluminum envelope with ammonia working fluid for Spacecraft Thermal Control. o Superalloy envelope with alkali metal (cesium, potassium, sodium) working fluid for high temperature heat pipes, most commonly used for calibrating primary temperature measurement devices.
Low-grade Heat Recovery and Utilization
• Low-grade Heat
o o o o In industrial processes, almost 60% of thermal energy transforms into low temperature (<~300degC) heat. Low temperature heat contains very little capacity to do work, so the heat is qualified as lowgrade heat (or waste heat). Industrial processes, such as oil refining, steel making or glass making are major sources of waste heat. Limitations to the use of waste heat arise primarily from the engineering cost/efficiency challenges in effectively exploiting small temperature differences to generate other forms of energy. A large portion of the waste heat is discharged directly, which leads to energy waste and environmental pollution.