数学建模_面试最优化问题
最优化问题的建模与解法

最优化问题的建模与解法最优化问题(optimization problem)是指在一组可能的解中寻找最优解的问题。
最优化问题在实际生活中有广泛的应用,例如在工程、经济学、物流等领域中,我们经常需要通过数学模型来描述问题,并利用优化算法来求解最优解。
本文将介绍最优化问题的建模和解法,并通过几个实例来说明具体的应用。
一、最优化问题的数学建模最优化问题的数学建模包括目标函数的定义、约束条件的确定以及变量范围的设定。
1. 目标函数的定义目标函数是一个表达式,用来衡量问题的解的优劣。
例如,对于一个最大化问题,我们可以定义目标函数为:max f(x)其中,f(x)是一个关于变量x的函数,表示问题的解与x的关系。
类似地,对于最小化问题,我们可以定义目标函数为:min f(x)2. 约束条件的确定约束条件是对变量x的一组限制条件,用来定义问题的可行解集合。
约束条件可以是等式或不等式,通常表示为:g(x) ≤ 0h(x) = 0其中,g(x)和h(x)分别表示不等式约束和等式约束。
最优化问题的解必须满足所有的约束条件,即:g(x) ≤ 0, h(x) = 03. 变量范围的设定对于某些变量,可能需要限定其取值的范围。
例如,对于一个实数变量x,可能需要设定其上下界限。
变量范围的设定可以通过添加额外的不等式约束来实现。
二、最优化问题的解法最优化问题的解法包括数学方法和计算方法两种,常见的数学方法有最优性条件、拉格朗日乘子法等,而计算方法主要是通过计算机来求解。
1. 数学方法数学方法是通过数学分析来求解最优化问题。
其中,常见的数学方法包括:(1)最优性条件:例如,对于一些特殊的最优化问题,可以通过最优性条件来判断最优解的存在性和性质。
最优性条件包括可导条件、凸性条件等。
(2)拉格朗日乘子法:对于带有约束条件的最优化问题,可以通过拉格朗日乘子法将原问题转化为无约束最优化问题,从而求解最优解。
2. 计算方法计算方法是通过计算机来求解最优化问题。
数学建模优化类问题例子

数学建模优化类问题例子数学建模是一种解决实际问题的方法,通过数学模型对问题进行描述,运用数学方法进行分析和求解。
在优化类问题中,数学建模的目标是通过最小化或最大化某个指标来找到问题的最优解。
在以下的例子中,我将介绍几个典型的优化问题。
1.生产计划优化假设一个公司生产两种不同的产品,每个产品的成本、销售价格和市场需求都不同。
公司希望通过合理调整两种产品的生产量,以最大化利润。
为了达到这个目标,我们可以建立一个数学模型,考虑到每种产品的成本、销售价格和市场需求,以及公司能够生产的总产量限制。
然后,可以使用线性规划等数学方法,求解出最优的生产计划,使得公司利润最大化。
2.路线规划优化考虑一个物流公司要在不同的城市之间进行货物运输,每个城市之间的距离不同,同时还考虑到交通拥堵情况。
公司希望通过合理规划运输路线,以最小化整体运输成本和时间。
为了达到这个目标,我们可以建立一个数学模型,考虑到每个城市之间的距离、交通拥堵情况以及运输成本。
然后,可以使用图论等数学工具,求解出最优的路线规划,使得运输成本和时间最小化。
3.资源分配优化考虑一个学校要为不同的课程安排教师以及教学资源,每个课程的需求和教学资源的供应不同。
学校希望通过合理分配教师和教学资源,以最大化学生的学习效果。
为了达到这个目标,我们可以建立一个数学模型,考虑到每个课程的需求和教学资源的供应,以及教师的专业能力。
然后,可以使用线性规划等数学方法,求解出最优的资源分配方案,使得学生的学习效果最大化。
4.物资库存优化考虑一个零售商要管理不同种类的商品库存,每个商品的销售量和订货周期不同,同时还考虑到库存成本和仓储空间的限制。
零售商希望通过合理管理库存,以最小化库存成本和避免缺货。
为了达到这个目标,我们可以建立一个数学模型,考虑到每个商品的销售量、订货周期以及库存成本和仓储空间的限制。
然后,可以使用动态规划等数学方法,求解出最优的库存管理方案,使得库存成本最小化同时避免缺货。
数学建模《最优化问题》

2c1 rc2
c2 c2 c3
2c1r Q rT c2
c2 c3 记 c3
不 允 许 缺 货
T T ,
Q
Q
1
T ' T , Q' Q
c3
c3 1
T T , Q Q
允许 缺货 模型
2c1 c2 c3 T rc2 c3
利润 Q=R-C=pw -C 求 t 使Q(t)最大 Q(10)=660 > 640
Q(t ) (8 gt)(80 rt ) 4t
4r 40g 2 t =10 rg
10天后出售,可多得利润20元
敏感性分析
4r 40g 2 t rg
研究 r, g变化时对模型结果的影响 • 设g=0.1不变
其中 c1,c2,c3, t1, ,为已知参数
模型求解
dC 0 dx
求 x使 C(x)最小
b 0
c1t12 2c2t1 x 2c32
dB dt
x
t1
t2 t
结果解释
• / 是火势不继续蔓延的最少队员数
结果 解释
c1t1 2c2t1 x 2c32
允许缺货的存贮模型
当贮存量降到零时仍有需求r, 出现缺货,造成损失.
q Q r
Q rT1
t
原模型假设3:贮存量降到零 T1 B T 时Q件立即生产出来(或立即到 0 货). 现假设3:允许缺货, 每天每件缺货损失费 c3 , 缺货需补足. 一周期 c2 贮存费 一周期 c 3 缺货费
A
T1
0
7.1
存贮模型
数学建模优化问题

6 8 i 1 j 1
约束条件: 每个货栈运往各销售点的货物总量应小于货栈的 可供应量,设货栈i的可供应量为wi,则有
x
j 1
8
ij
wi , (i 1,2, ,6)
每个销售点的需求量必须满足,设销售点j的需 求量为vj,则有
x
i 1
6
ij
v j , ( j 1,2,,8)
优化方法建模
侯为根 安徽工业大学数理学院 Email:wghou@
优化模型和算法的重要意义
最优化: 在一定条件下,寻求使目标最大(小)的决策 最优化是工程技术、经济管理、科学研究、社会 生活中经常遇到的问题, 如: 结构设计 资源分配 生产计划 运输方案 解决优化问题的手段 • 经验积累,主观判断 • 作试验,比优劣 • 建立数学模型,求解最优策略 CUMCM赛题:约有一半为优化问题须用软件求解
分支定界管理程序
ILP IQP
INLP
线性规划求解程序 1、单纯形算法
非线性规划求解程序 1、顺序线性规划法 2、广义既约梯度法
2、内点算法
3、多点搜索
建模时要注意的几个基本问题
1、尽量使用实数优划,减少整数约束和整数变量
2、尽量使用光滑优划,减少非光滑约束个数 如:尽量少使用绝对值、符号函数、多个变量 求最大值/最小值,四舍五入,取整函数等 3、尽量使用线性模型、减少非线性约束和非线性变 量的个数 (如:x/y<5改为x<5y) 4、合理设定变量上下界,尽可能给出变量初始值。 5、模型中使用的参数数量级要适当(如小于103)。
时间增加1单位,利润增长2。 加工能力增长不影响利润。 •35元可买到1桶牛奶,要买吗? 35 <48,应该买!
数模竞赛最优化题目

3考虑到部分县与县交界地带的支局,其邮件由邻县县局负责运送可能会降低全区的运行成本,带来可观的经济效益。若允许在一定程度上打破行政区域的限制,你能否给出更好的邮路规划和邮车调度方案(在此同样不必考虑邮车的运载能力的限制,每条邮路的运行成本为3元/公里)
4县局选址的合理与否对构建经济、快速的邮政运输网络起到决定性的作用。假设图2中县局X1,……,X5均允许迁址到本县内任一支局处,同时原来的县局弱化为普通支局。设想你是该地区网运部门负责人,请你重新为各个县局选址,陈述你的迁址理由并以书面材料形式提交省局网运处。
3如果调度室在列车到达前两小时能够获取列车的相关信息,请利用这些信息制定可行的列车编组调度方案,使每班的中时尽量少,发出的车辆尽量多。
4如果因自然灾害导致S3以南的铁路中断,需要将有关的车辆转向东方向经E4向南绕行,请你们给出相应的调度方案,并计பைடு நூலகம்相应每班的中时。
5假设编组完成的列车都能及时发出,按照你们的编组调度方案分析研究该编组站一天24小时最多能编组完成多少车辆,相应每班的中时是多少即根据所建立模型进一步分析该编组站能否再提高资源的利用率和运行效率。
2008
C
货运列车的编组调度问题
经济类
(规划设计类)
1试设计快速自动实现车辆编组调度方案的优化模型或算法,并给出附件2中车辆可行的编组方案(包括解体程序、轨道编号、车辆数量、集结程序、新列车的组成等),主要使每班的中时尽量地少。
数学建模---最优化的有效切割问题

约束 满足需求 4 x1 3x2 2 x3 x4 x5 50
x2 2 x4 x5 3x6 20 x3 x5 2 x7 15
26 x1 x2 x3 31
x1 x2 x3
模式排列顺序可任定
计算结果
• 模式1:每根原料钢管切割成3根4米和1根6 米钢管,共10根; • 模式2:每根原料钢管切割成2根4米、1根5 米和1根6米钢管,共10根; • 模式3:每根原料钢管切割成2根8米钢管, 共8根。 • 原料钢管总根数为28根。
整数非线性规划模型
钢管下料问题2
增加约束,缩小可行域,便于求解
每根原料钢管长19米
需求:4米50根,5米10 根,6米20根,8米15根
4 50 5 10 6 20 8 15 26 原料钢管总根数下界: 19
特殊生产计划:对每根原料钢管 模式1:切割成4根4米钢管,需13根; 模式2:切割成1根5米和2根6米钢管,需10根; 模式3:切割成2根8米钢管,需8根。 原料钢管总根数上界:13+10+8=31
钢管下料问题2 目标函数(总根数)
Min x1 x2 x3
模式合理:每根 余料不超过3米
约束 条件
满足需求
r11 x1 r12 x2 r13 x3 50
r21 x1 r22 x2 r23 x3 10
16 4r11 5r21 6r31 8r41 19
数学建模学生面试问题(值得看)

单目标和多目标规划模型求解学生面式问题摘要随着高校自主招生规模的扩大,学生面试的公平性成为人们关注的焦点。
本文通过建立单目标和多目标规划模型,利用MATLAB软件和搜索算法,进行了有关招生面试问题的研究。
对于问题一,为表示面试学生和老师之间的相应关系,引入0-1变量x,ij 建立以老师数M最小为目标的0-1规划模型。
利用搜索算法,求解出考生数N 确定的情况下,满足其他约束条件的最小M值。
问题二中,将Y1、Y3、Y4看成基本约束条件下的目标函数,Y2作为约束条件,建立多目标规划模型。
运用MATLAB软件对模型进行求解,得到满足约束条件的近似最优分配方案。
问题三,增加每位学生的面试组中各有两位文理科老师的约束条件,假设前M/2个老师为文科老师,通过限制第i位学生“面试组”中前M/2个老师的个数来保证每位学生的文科和理科面试老师人数相等。
在新的约束条件下,分别对问题一、二进行重新求解,得到聘请老师数M以及老师和学生之间的面试分配方案的最优解。
最后,在问题一、二、三分析求解的基础上,本文对考生与面试老师之间分配的均匀性和面试的公平性进行了讨论,认为两者是对立统一的矛盾统一体。
为兼顾分配均匀和面试公平,本文讨论了其他影响因素,并提出了六条切实可行的建议。
另外,考虑将面试老师职称因素引入问题分析,建立新的模型。
关键词:公平师生匹配均匀分配方案1 问题重述高校自主招生是高考改革中的一项新生事物,2006年,全国具有自主招生资格的高校已由最初的22所增加到53所。
学生面试的公平性越来越引起人们和社会的高度重视。
某高校拟在全面衡量考生的高中学习成绩及综合表现后再采用专家面试的方式决定录取与否。
该校在今年自主招生中,经过初选合格进入面试的考生有N 人,拟聘请老师M人。
每位学生要分别接受4位老师的单独面试。
为了保证面试工作的公平性,组织者提出如下要求:Y1:每位老师面试的学生数量应尽量均衡;Y2:面试不同考生的“面试组”成员不能完全相同;Y3:两个考生的“面试组”中有两位或三位老师相同的情形尽量的少;Y4:被任意两位老师面试的两个学生集合中出现相同学生的人数尽量的少。
数学建模竞赛中的优化问题

个单位物资的运价x ij ;问应该怎样调运物资才能使总
运费最省。 令 x ij 表示由产地A i 向销地B j 的运量
运输问题的数学模型为:
min z cij xij
i 1 j 1
m
n
s.t.
n xij ai i 1,2, , m j 1 m xij b j j 1,2, , n i 1 xij 0
c
i 1 j 1
n
n
ij
xij
n xij 1 j 1 m s.t . xij 1 i 1 xij 0,1
例4 物资运输问题
某公司要运销一种物资。该物资有甲、乙两个产地,
产量分别是2000吨、1000吨;另有A、B、C三个销
地,销量分别是1700吨、1100吨、200吨。已知该物
x11 x21 1700 x12 x22 1100 x x 200 13 23
由于x ij 是运量,不能是负数: 调运方案的总运费为: xij 0
i 1,2; j 1,2,3
z 21x11 25x12 7 x13 51x21 51x22 37x23
某企业要在计划期内安排生产甲、乙两种产
品,这个企业现有的生产资料是:设备18台时,
原材料A 4吨,原材料 B 12吨;已知单位产品所
需消耗生产资料及利润如下表。问应如何确定生
产计划使企业获利最多。
表1 产品 资源 设备/台时 原料A/吨 原料B/吨 甲 3 1 0 乙 2 0 2 资源量 18 4 12
数学规划
线性规划(linear programming) 是康托洛维奇1939年提出 的, 1947年(G.B.Dantzig)提出求线性规划的单纯
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C题面试时间问题有4名同学到一家公司参加三个阶段的面试:公司要求每个同学都必须首先找公司秘书初试,然后到部门主管处复试,最后到经理处参加面试,并且不允许插队(即在任何一个阶段4名同学的顺序是一样的)。
由于4名同学的专业背景不同,所以每人在三个阶段的面试时间也不同,如下表所示(单位:分钟):这4名同学约定他们全部面试完以后一起离开公司.假定现在时间是早晨8:00问他们最早何时能离开公司?面试时间最优化问题摘要:面试者各自的学历、专业背景等因素的差异,每个面试者在每个阶段的面试时间有所不同,这样就造成了按某种顺序进入各面试阶段时不能紧邻顺序完成,即当面试正式开始后,在某个面试阶段,某个面试者会因为前面的面试者所需时间长而等待,也可能会因为自己所需时间短而提前完成。
因此本问题实质上是求面试时间总和的最小值问题,其中一个面试时间总和就是指在一个确定面试顺序下所有面试者按序完成面试所花费的时间之和,这样的面试时间总和的所有可能情况则取决于n 位面试者的面试顺序的所有排列数根据列出来的时间矩阵,然后列出单个学生面试时间先后次序的约束和学生间的面试先后次序保持不变的约束,并将非线性的优化问题转换成线性优化目标,最后利用优化软件lingo变成求解。
关键词:排列排序0-1非线性规划模型线性优化(1)(一)问题的提出根据题意,本文应解决的问题有:1、这4名同学约定他们全部面试完以后一起离开公司。
假定现在的时间是早晨8:00,求他们最早离开公司的时间;2、试着给出此类问题的一般描述,并试着分析问题的一般解法。
(二)问题的分析问题的约束条件主要有两个:一是每个面试者必须完成前一阶段的面试才能进入下一阶段的面试(同一个面试者的阶段次序或时间先后次序约束),二是每个阶段同一时间只能有一位面试者(不同面试者在同一个面试阶段只能逐一进行 )。
对于任意两名求职者P、Q,不妨设按P在前,Q在后的顺序进行面试,可能存在以下两情况:(一)、当P进行完一个阶段j的面试后,Q还未完成前一阶段j-1的面试,所以j阶段的考官必须等待Q完成j-1阶段的面试后,才可对Q进行j阶段的面试,这样就出现了考官等待求职者的情况。
这一段等待时间必将延长最终的总时间。
(二)、当Q完成j-1的面试后,P还未完成j阶段的面试,所以,Q必须等待P完成j阶段的面试后,才能进入j阶段的面试,这样就出现了求职者等待求职者的情况。
同样的,这个也会延长面试的总时间。
以上两种情况,必然都会延长整个面试过程。
所以要想使四个求职者能一起最早离开公司,即他们所用的面试时间最短,只要使考官等候求职者的时间和求职者等候求职者的时间之和最短,这样就使求职者和考官的时间利用率达到了最高。
他们就能以最短的时间完成面试一起离开公司。
这也是我们想要的结果。
(三)模型的假设1.我们假设参加面试的求职者都是平等且独立的,即他们面试的顺序与考官无关;2.面试者由一个阶段到下一个阶段参加面试,其间必有时间间隔,但我们在这里假定该时间间隔为0;3.参加面试的求职者事先没有约定他们面试的先后顺序;4.假定中途任何一位参加面试者均能通过面试,进入下一阶段的面试。
即:没有中途退出面试者;5.面试者及各考官都能在8:00准时到达面试地点。
(四)名词及符号约束1. aij (i=1,2,3,4;j=1,2,3)为求职者i在j阶段参加面试所需的时间甲乙丙丁分别对应序号i=1,2,3,42. xij (i=1,2,3,4;j=1,2,3) 表示第i名同学参加j阶段面试的开始时间(不妨把早上8:00记为面试的0时刻)(2)3. T为完成全部面试所花费的最少时间(五)模型的建立设{s1,s2,s3,s4}为4位面试者的一个面试顺序,面试者si参加第j个阶段面试所需时间为aij 根据问题的2个约束条件,可作出n位面试者在{s1,s2,s3,s4)面试顺序下参加3个面试阶段的进展过程表,4位面试者按序 {s1,s2,s3,s4} 参加 3个阶段的面试进展过程表示面试者s1在第3个面试场,s2在第2个面试场,s3,在第1个面试场、其余人员在等待的那一个时间段.根据顺序性可知整个面试过程的时间段数为3+4-1=6模式:以各面试者结束全部面试阶段的时间为基础(以表的行为基础)目标函数 minT =max{xi3+ai3}约束条件(1)面试阶段约束,即必须先完成上一阶段面试才能进人下一阶段面试。
xij + aij ≤ xi,j+1 i = l,2,3, 4; j = 1,2,3)(2) 同一阶段只能有一个面试者xij +aij-xki ≤Tyikxkj +akj-xij≤T(1-yik)(i,k = l,2, 3, 4, i<k ; j = l,2,3 )yik = {O,l}(3)整个面试总和时间大于等于各面试者结束全部阶段面试的时间T≥xi3+ai3; i = l,2,3,4其中y是O-1变量.表示第k个面试者是否排在第i个面试者的前面,O表示否,l表示是.由此,就将问题中的约束条件“同一面试阶段只能有一个面试者”改用“面试者的先后次序”来表示解决了问题中难于表达的约束条件,反应的关系清楚,而且在模型求解的,T值就是最小总面试时间,根据全部y值就可以排出所有面试者使T最小的面试顺序。
(3)(六)模型的求解编写的lingo程序如下:model:title面试问题;sets:!person=被面试者集合,stage=面试阶段集合;person/1,2,3,4/;stage/1,2,3/;!a=面试所需时间,x面试开始时间;pxs(person,stage):a,x;!y(i,k)=1:k排在i前,0:否则;pxp(person,person)|&1 #l t# &2:y;endsetsdata:a=13 15 2010 20 1820 16 108 10 15;enddatamin=max a;!max a是面试最后结束时间;max a>=@max(pxs(i,j)|j#eq#@size(stage):x(i,j)+a(i,j));!完成前一段才能进入下一段;@for(pxs(i,j)|j#lt#@size(stage):x(i,j)+a(i,j)<x(i,j+1));!同一时间只能面试一位同学;@for(stage(j):@for(pxp(i,k):x(i,j)+a(i,j)-x(k,j)<max a*y(i,k));@for (pxp(i,k):x(k,j)+a(k,j)-x(i,j)<max a*(1-y(i,k))););@for(pxp(i,k):@bin(y(i,k)));endLingo结果如下:Local optimal solution found.Objective value: 84.00000Extended solver steps: 43Total solver iterations: 1681Model Title: 面试问题Variable Value Reduced CostMAXA 84.00000 0.000000 A( 1, 1) 13.00000 0.000000(4)A( 1, 2) 15.00000 0.000000A( 1, 3) 20.00000 0.000000A( 2, 2) 20.00000 0.000000 A( 2, 3) 18.00000 0.000000 A( 3, 1) 20.00000 0.000000 A( 3, 2) 16.00000 0.000000 A( 3, 3) 10.00000 0.000000 A( 4, 1) 8.000000 0.000000 A( 4, 2) 10.00000 0.000000 A( 4, 3) 15.00000 0.000000 X( 1, 1) 8.000000 0.000000 X( 1, 2) 21.00000 0.000000 X( 1, 3) 36.00000 0.000000 X( 2, 1) 26.00000 0.000000 X( 2, 2) 36.00000 0.000000 X( 2, 3) 56.00000 0.000000 X( 3, 1) 38.00000 0.000000 X( 3, 2) 58.00000 0.000000 X( 3, 3) 74.00000 0.000000 X( 4, 1) 0.000000 0.9999970 X( 4, 2) 11.00000 0.000000 X( 4, 3) 21.00000 0.000000 Y( 1, 2) 0.000000 -83.99950 Y( 1, 3) 0.000000 0.000000 Y( 1, 4) 1.000000 83.99950 Y( 2, 3) 0.000000 -83.99950 Y( 2, 4) 1.000000 0.000000 Y( 3, 4) 1.000000 0.000000Row Slack or Surplus Dual Price1 84.00000 -1.0000002 0.000000 -0.99999703 0.000000 0.99999704 0.000000 0.99999705 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 3.000000 0.00000010 0.000000 0.00000011 5.000000 0.00000012 17.00000 0.000000(5)14 2.000000 0.00000015 48.00000 0.00000016 26.00000 0.00000017 56.00000 0.00000018 34.00000 0.00000019 0.000000 0.999997020 52.00000 0.00000021 18.00000 0.00000022 30.00000 0.00000023 0.000000 0.00000024 22.00000 0.00000025 59.00000 0.00000026 2.000000 0.00000027 39.00000 0.00000028 21.00000 0.00000029 49.00000 0.00000030 31.00000 0.00000031 0.000000 0.00000032 46.00000 0.00000033 15.00000 0.00000034 37.00000 0.00000035 0.000000 0.999997036 18.00000 0.00000037 49.00000 0.00000038 0.000000 0.999997039 31.00000 0.00000040 21.00000 0.00000041 46.00000 0.00000042 36.00000 0.00000043 0.000000 0.00000044 56.00000 0.00000045 20.00000 0.00000046 38.00000 0.000000计算结果为:所有面试完成至少需要84min。