高考数学小题-比较大小专练

合集下载

高考数学真题比大小选择题

高考数学真题比大小选择题

高考全国卷比大小选择题班级学号姓名.1.(2019年1卷)已知2log 0.2a =,0.22b =,0.30.2c =,则()A.a b c<< B.a c b<< C.c a b<< D.b c a<<2.(2018年3卷)设0.2log 0.3a =,2log 0.3b =,则()A.0a b ab +<<B.0ab a b <+<C.0a b ab+<<D.0ab a b <<+3.(2019年2卷)若a b >,则()A.ln()0a b -> B.33a b< C.33a b > D.a b>4.(多选题)(2020年新1卷)已知0,0,1a b a b >>+=,则()A.2212a b +≥B.122a b ->C.22log log 2a b +≥-≤5.已知3111,cos ,4sin 3244a b c ===,则()A.c b a >>B.b a c >>C.a b c>> D.a c b>>6.(2022年1卷)设0.110.1e ,ln 0.99a b c ===-,,则()A.a b c <<B.c b a <<C.c a b<< D.a c b<<7.(多选题)若,x y 满足221+-=x y xy ,则()A.1x y +≤ B.2x y +≥- C.222x y +≤ D.221x y +≥8.(2021年1卷)设2ln1.01,ln1.02,1a b c ===,则()A.a b c<< B.b c a<< C.b a c<< D.c a b<<9.(2020年1卷)若242log 42log a b a b +=+,则()A.2a b> B.2a b< C.2a b > D.2a b <10.(2020年3卷)已知544558,138<<.设5813log 3,log 5,log 8a b c ===,则()A.a b c<< B.b c a << C.b a c<< D.c a b <<11.(2020年天津)设0.70.80.713,(),log 0.83a b c -===,则()A.a b c << B.b c a << C.b a c << D.c a b<<12.(2019年天津)已知0.250.5log 2,log 0.2,0.5a b c ===,则()A.a c b<< B.a b c<< C.b c a<< D.c a b<<13.(2018年天津)已知2121log ,ln 2,log 3a ebc ===,则()A.a b c >>B.b a c>> C.c b a>> D.c a b>>14.设0.70.72112,(),log 33a b c ===,则()A.a b c >>B.b a c >>C.c b a >>D.c a b>>15.已知910,1011,89m m m a b ==-=-,则()A.0a b >> B.0a b >> C.0b a >> D.0b a>>16.设0.022ln1.02,,1101a b c e ===-,则()A.a b c<< B.b a c<< C.a c b << D.b c a<<17.设0.10.41,tan 0.1,a e b c π=-==,则()A.a b c<< B.b a c << C.a c b << D.b c a<<18.已知09log 6,3,sin 50a b c ===,则()A.c b a<< B.b c a<< C.b a c<< D.a b c<<19.已知2351x y z ==>,则()A.235x y z<< B.523z x y<< C.352y z x << D.325y x z<<20.已知0.5333,log 2,cos2a b c ===,则()A.c b a<< B.c a b << C.a b c << D.b c a<<21.设 1.1 1.13log 7,2,0.8a b c ===,则()A.b a c <<B.a c b <<C.c b a <<D.c a b<<22.设33,3log ,log 3a b c πππ===,则()A.a b c<< B.a c b<< C.c a b<< D.c b a<<23.设实数,a b 满足62a b =,则()A.01b a<< B.12b a<< C.23b a<< D.34b a<<24.已知,,0x y R x y ∈>>且,则()A.110x y-> B.sin sin 0x y -> C.11(()022x y -< D.ln ln 0x y +>25.若10a b c >>>>,则()A.c ca b < B.c cab ba < C.log log b a a c b c < D.log log a b c c<1.(2019年1卷)已知2log 0.2a =,0.22b =,0.30.2c =,则(B )A.a b c<< B.a c b<< C.c a b<< D.b c a<<解析:0,1,0 1..a b c a c b <><<⇒<<2.(2018年3卷)设0.2log 0.3a =,2log 0.3b =,则(B )A.0a b ab +<< B.0ab a b <+< C.0a b ab +<< D.0ab a b<<+解析:0.31101,1,log 0.4 1.0.a b ab a b a b<<<-+=<⇒<+<且3.(2019年2卷)若a b >,则(C )A.ln()0a b -> B.33a b< C.33a b > D.a b>4.(多选题)(2020年新1卷)已知0,0,1a b a b >>+=,则(ABD )A.2212a b +≥B.122a b ->C.22log log 2a b +≥-≤解析:22222()()2()2, 1.a b a b a b a b +≥+=≤+=->-且5.已知3111,cos ,4sin 3244a b c ===,则(A )A.c b a >> B.b a c >> C.a b c >> D.a c b>>解析:21()sin cos ,()cos (1),0 1.2f x x x x g x x x x =-=--<<2'()sin 0,'()sin 0.1111111131()(0)0,()(0)0.sin 0,cos 1().4444442432f x x x g x x x f f g g =>=-+>⇒>=>=⇒->>-=6.(2022年1卷)设0.110.1e ,ln 0.99a b c ===-,,则(C )A.a b c <<B.c b a <<C.c a b <<D.a c b<<解析:()(1),0 1.'()0,().(0.1)(0) 1.x x f x x e x f x xe f x f f =-<<⇒=-<⇒<=递减0.10.10.110.9 1.0.1.0.99e a e b ⇒<⇒=<==2220.111()ln(1),0.'()(1).411()(1),0.'()[2(1))0,().41()(1)(0) 1.'()(1)0.11(),(0.1)(0)0.0.1ln ln 0.9.10.1x x x x x x g x xe x x g x x e x G x x e x G x x e G x G x x e G g x x e x g x g g a e c =+-<<⇒=+--=-<<⇒=-+>⇒=->=⇒=+->-⇒>=⇒=>=-=-递增递增7.(多选题)若,x y 满足221+-=x y xy ,则(BC )A.1x y +≤ B.2x y +≥- C.222x y +≤ D.221x y +≥解析:222222223()2(),2()()3() 2.x y x y x y x y x y +=+++≥+=+-2222,()4, 2.x y x y x y ⇒+≤+≤+≥-8.(2021年1卷)设2ln1.01,ln1.02,1a b c ===,则(B )A.a b c<< B.b c a<< C.b a c<< D.c a b<<9.(2020年1卷)若242log 42log a b a b +=+,则(B )A.2a b> B.2a b< C.2a b > D.2a b <10.(2020年3卷)已知544558,138<<.设5813log 3,log 5,log 8a b c ===,则(A )A.a b c<< B.b c a << C.b a c << D.c a b<<11.(2020年天津)设0.70.80.713,(),log 0.83a b c -===,则(D )A.a b c <<B.b c a <<C.b a c <<D.c a b <<12.(2019年天津)已知0.250.5log 2,log 0.2,0.5a b c ===,则(A )A.a c b<< B.a b c<< C.b c a<< D.c a b<<13.已知2121log ,ln 2,log 3a ebc ===,则(D )A.a b c >> B.b a c >> C.c b a >> D.c a b>>解析:12221log log 3log 1log 2.3e c e a b ==>=>>=14.设0.70.72112,(),log 33a b c ===,则(A )A.a b c >>B.b a c>> C.c b a >> D.c a b>>解析:1,01,0.a b c ><<<15.已知910,1011,89m m m a b ==-=-,则(A )A.0a b>> B.0a b >> C.0b a >> D.0b a>>解析:幂函数()(1)m f x x m =>在第一象限的图象类似函数3y x =的图象,根据斜率得到:(10)(9)(9)(8)1.10998 1.0.10998m m m m f f f f a b -->>⇒->->⇒>>--A.a b c <<B.b a c <<C.a c b<< D.b c a<<解析:22()1ln(12),()ln(12),0 1.1xx f x e x g x x x x=--+=+-<<+22222'()20,()0.1212(1)x f x e g x x x x ∴=->=->+++(),()(0,1)(0.01)(0)0,(0.01)(0)0.f x g x f f g g ∴>=>=在上都是增函数,0.022:(0.01)1ln1.020,(0.01)ln1.020.101f eg =-->=->即18.设0.10.41,tan 0.1,a e b c π=-==,则(B )A.a b c<< B.b a c<< C.a c b<< D.b c a<<解析:1(),()cos cos sin ,0 1.x x e f x g x e x x x x x -==--<<20.10.1(1)1'()0,'()(1)(cos sin )0.(:()(1)1,'()0,()(0)0.)4(0.1)(0.25)1)40.3,(0.1)(0)0.0.4sin 0.1:1,1tan 0.1.cos 0.1x xx x e x f x g x e x x xF x e x F x e x F x F f f g g a e c a e b ππ-+∴=>=-->=-+=>>=∴<=<⨯<>==-<==->==因为即18.已知09log 6,3,sin 50a b c ===,则(B )A.c b a<< B.b c a<< C.b a c<< D.a b c<<解析:331sin 33sin 4sin ,()34, 1.2x x x f t t t t =-=-<<0009'()3(12)(12)0,().444193:((sin 50)sin150().51252164343sin 50log 6.45f t t t f t f f f b c a ∴=-+<=<==<=∴=<<=<<=递减又19.已知2351x y z ==>,则(D )A.235x y z<< B.523z x y<< C.352y z x<< D.325y x z<<解析:30303015210365(2)(3)(5).(2)(3)(5).x y z x y z==⇒==3030301521036561510(2)(3)(5).(2)(3)(5).2532,89.523.235.x y z x y z x y z ==⇒==<<∴<<∴<< A.c b a <<B.c a b <<C.a b c<< D.b c a<<解析:33131log 3log cos .23a b c π>==>>=>21.设 1.1 1.13log 7,2,0.8a b c ===,则(D )解析:21.b ac >>>>A.b a c << B.a c b << C.c b a<< D.c a b<<22.设33,3log ,log 3a b c πππ===,则(B )A.a b c <<B.a c b <<C.c a b <<D.c b a<<解析:2ln 1ln ln 3ln ()(),'()0.(3)()...3x x f x x e f x f f c a x x πππ-=>=<∴>⇒>⇒> 2(2)3ln ln ()(12),'()0.(ln )(ln 3). 1.ln 3ln 3x x x x x b g x x g x g g e e c ππππ-⨯=<<=>∴>⇒=>⨯ 23.设实数,a b 满足62a b =,则(C )解析:2262.log 6.log 6(2,3).a b ba b a=⇒=⇒=∈A.01b a << B.12b a << C.23b a << D.34b a<<24.已知,,0x y R x y ∈>>且,则(C )解析:指数函数1()()2x f x =是减函数.A.110x y ->B.sin sin 0x y ->C.11(()022x y -< D.ln ln 0x y +>25.若10a b c >>>>,则(C )提示:ln ln 0,ln 0.ln .ln ln a ba b c c c b a>><⇒<A.c ca b < B.c cab ba < C.log log b a a c b c< D.log log a b c c<。

历年高考数学真题精选06 比较大小

历年高考数学真题精选06 比较大小

历年高考数学真题精选06 比较大小1.已知a=log2(0.2),b=20.2,c=0.20.3,则a<c<b。

2.若a>b,则ln(a-b)<0.3.设f(x)是定义域为R的偶函数,且在(0.+∞)单调递减,则f(log3(2))>f(2)>f(23)。

4.已知a=log52,b=log0.5(0.2),c=0.50.2,则a<c<b。

5.设a=log0.2(0.3),b=log20.3,则ab<a+b<ab。

6.设0<a<1,则log2a<log2(1/a)。

7.设x、y、z为正数,且2x=3y=5z,则3y<2x<5z。

8.已知a=log33,b=3,c=log1(2),则c>a>b。

9.若a>b>1,且ab=1,则b<a<log2(a+b)。

10.设a=log32,b=log52,c=log23,则c<a<b。

已知a=log2(3)+log2(3),b=log2(9)-log2(3),c=log3(2),则a,b,c的大小关系是()答案】D解析】化简得a=log2(9),b=log2(3),c=log2(1.5),由于2^3b>c,选D。

已知x=lnπ,y=log5(2),z=e,则()答案】B解析】由于π>2>e,即lnπ>ln2>1>lne,故x>ln2>y>lne>z,即z<x<y,故选B。

已知a1,a2∈(0,1),记M=a1a2,N=a1+a2-1,则M与N的大小关系是()答案】C解析】由于00,故M≠N,故选C。

若x∈(0,π/2),则sinx/x的大小关系是()答案】B解析】当x∈(0,π/2)时,0sin(π/2)/(π/2)=2/π>1/2,故选B。

已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()答案】B解析】设等比数列公比为q,则a1+a2+a3+a4=a1(1+q+q^2+q^3),a1+a2+a3=ln(a1(1+q+q^2)),由题意得a1(1+q+q^2+q^3)=ln(a1(1+q+q^2)),即a1+q+q^2+q^3=ln(a1(1+q+q^2))/(lna1),由于a1>1,故lna1>0,即a1(1+q+q^2)1,故q<1,故1+q+q^2+q^3<1+q+q^2+q^3/(1-q)<1+2q+3q^2<e,即a1+a2+a3+a4<a1+a2+a3,故a4<0,故选B。

2020届高考数学选择题填空题专项练习(文理通用)15 比较大小(含解析)

2020届高考数学选择题填空题专项练习(文理通用)15 比较大小(含解析)

2020届高考数学选择题填空题专项练习(文理通用)15比较大小第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2020·福建高三(理))设12a e-=,24b e -=,12c e -=,323d e -=,则a b c d ,,,的大小关系为( ) A .c b d a >>>B .c d a b >>> C .c b a d >>>D .c d b a >>>.【答案】B 【解析】【分析】利用指数幂的运算性质化成同分母,再求出分子的近似值即可判断大小.【详解】3241e a e e ==,2416b e =,222444e c e e==,249e d e =,由于 2.7e ≈,27.39e ≈,320.09e ≈,所以c d a b >>>,故选:B .【点睛】本题主要考查比较幂的大小,属于基础题.2.(2020·湖南高三学业考试)10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a ,中位数为b ,众数为c ,则有( ).A .a b c >>B .c b a >>C .c a b >>D .b c a >>【答案】B 【解析】【分析】根据所给数据,分别求出平均数为a ,中位数为b ,众数为c ,然后进行比较可得选项. 【详解】1(15171410151717161412)14.710a =+++++++++=,中位数为1(1515)152b =+=,众数为=17c .故选:B.【点睛】本题主要考查统计量的求解,明确平均数、中位数、众数的求解方法是求解的关键,侧重考查数学运算的核心素养.3.(2020·四川省泸县第二中学高三月考(文))已知3log 6p =,5log 10q =,7log 14r =,则p ,q ,r 的大小关系为( )A .q p r >>B .p r q >>C .p q r >>D .r q p >>【答案】C 【解析】【分析】利用对数运算的公式化简,,p q r 为形式相同的表达式,由此判断出,,p q r 的大小关系.【详解】依题意得31+log 2p =,51log 2q =+,71log 2r =+,而357log 2log 2log 2>>,所以p q r >>.【点睛】本小题主要考查对数的运算公式,考查化归与转化的数学思想方法,属于基础题.4. (2020·四川省泸县第四中学高三月考(理))设{a n }是等比数列,则“a 1<a 2<a 3”是数列{a n }是递增数列的A .充分而不必要条件B .必要而不充分条件、C .充分必要条件D .既不充分也不必要条件【答案】C【解析】1212311101a a a a a a q a q q >⎧<<⇒<<⇒⎨>⎩或1001a q <⎧⎨<<⎩,所以数列{a n }是递增数列,若数列{a n }是递增数列,则“a 1<a 2<a 3”,因此“a 1<a 2<a 3”是数列{a n }是递增数列的充分必要条件,选C5.(2020·四川棠湖中学高三月考(文))设log a =log b =,120192018c =,则a ,b ,c 的大小关系是( ).A .a b c >>B .a c b >>C .c a b >>D .c b a >>【答案】C 【解析】【分析】根据所给的对数式和指数式的特征可以采用中间值比较法,进行比较大小.【详解】因为20182018201811log 2018log log ,2a =>=>=201920191log log ,2b ==102019201820181c =>=,故本题选C.【点睛】本题考查了利用对数函数、指数函数的单调性比较指数式、对数式大小的问题.6.(2020·北京八十中高三开学考试)设0.10.134,log 0.1,0.5a b c ===,则 ( )A .a b c >>B .b a c >>C .a c b >>D .b c a >>【答案】C 【解析】0.10.1341,log 0.10,00.51a b c =>=<<=<,a c b ∴>>,故选C 。

压轴题型04 比大小问题(原卷版)-2023年高考数学压轴题专项训练

压轴题型04 比大小问题(原卷版)-2023年高考数学压轴题专项训练

压轴题04比大小问题函数“比大小”是非常经典的题型,难度不以,方法无常,很受命题者的青睐。

高考命题中,常常在选择题或填空题中出现这类型的问题,往往将幂函数、指数函数、对数函数、三角函数等混在一起,进行排序。

这类问题的解法往往可以从代数和几何来那个方面加以探寻,即利用函数的性质与图象解答。

○热○点○题○型比较大小的常见方法1、单调性法:当两个数都是指数幂或对数式时,可将其看成某个指数函数、对数函数或幂函数的函数值,然后利用该函数的单调性比较;2、作差法、作商法:(1)一般情况下,作差或者作商,可处理底数不一样的对数比大小;(2)作差或作商的难点在于后续变形处理,注意此处的常见技巧与方法;3、中间值法或1/0比较法:比较多个数的大小时,先利用“0”“1”作为分界点,然后再各部分内再利用函数的性质比较大小;4、估值法:(1)估算要比较大小的两个值所在的大致区间;(2)可以对区间使用二分法(或利用指对转化)寻找合适的中间值;5、构造函数,运用函数的单调性比较:构造函数,观察总结“同构”规律,很多时候三个数比较大小,可能某一个数会被可以的隐藏了“同构”规律,所以可能优先从结构最接近的的两个数规律(1)对于抽象函数,可以借助中心对称、轴对称、周期等性质来“去除f()外衣”比较大小;(2)有解析式函数,可以通过函数性质或者求导等,寻找函数的单调性、对称性,比较大小。

6、放缩法:(1)对数,利用单调性,放缩底数,或者放缩真数;(2)指数和幂函数结合来放缩;(3)利用均值不等式的不等关系进行放缩;(4)“数值逼近”是指一些无从下手的数据,如果分析会发现非常接近某些整数(主要是整数多一些),那么可以用该“整数”为变量,构造四舍五入函数关系。

一、单选题1.已知函数()f x 满足()()1ln 0f x x f x x '+<(其中()f x '是()f x 的导数),若12e a f ⎛⎫= ⎪⎝⎭,13e bf ⎛⎫= ⎪⎝⎭,14e c f ⎛⎫= ⎪⎝⎭,则下列选项中正确的是()A .643a b c<<B .634a c b<<C .463b a c<<D .436b c a<<2.已知0.01a =,0.1e 1b =-,1ln 0.01c =+,则().A .a c b>>B .a b c>>C .c b a >>D .b a c>>3.设0.25e a =,1b =,4ln 0.75c =-,则()A .a b c<<B .b a c <<C .c<a<bD .b<c<a4.已知2()cos f x x x =+,若3441e ,ln ,54a f b f c f -⎛⎫⎛⎫⎛⎫===- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则a ,b ,c 的大小关系为()A .b c a<<B .c a b<<C .c b a<<D .a c b<<5.已知ln 20.69≈,设3ln 8 3.527 3.536,132a b c e ===,则()A .a c b >>B .b c a >>C .a b c>>D .b a c>>6.已知函数()31sin 2f x x x =-,若π0,12θ⎛⎫∈ ⎪⎝⎭,()()sin cos a fθθ=,()()sin sin b f θθ=,12c f ⎛⎫=-- ⎪⎝⎭,则a ,b ,c 的大小关系为()A .a b c >>B .b a c>>C .a c b>>D .c a b>>7.已知定义在R 上的函数()y f x =,当0x >时,()0f x >,()f x '为其导函数,且满足()()f x f x '<恒成立,若01a <<,则()30f ,()f a ,()1af 三者的大小关系为()A .()()()130af f a f >>B .()()()301f f a af >>C .()()()301f af f a >>D .()()()301f a f af >>8.已知a ,b ,()1,c ∈+∞,且ln 2a a -=,1ln 2ln 22b b -=+,sin1ln tan1c c -=+,其中e 是自然对数的底数,则()A .a b c<<B .b a c <<C .a c b<<D .b<c<a9.设实数,,a b c满足 1.0011.001e e , 1.001 1.001a b c ==-=,则()A .b c a<<B .b a c<<C .c b a <<D .a c b <<10.已知 1.4a =,0.41.1e b =,0.5e c =,则,,a b c 的大小关系是()A .a b c <<B .a c b <<C .b c a<<D .c b a<<11.设130121,sin ,e 124330a b c ===-,则a ,b ,c 的大小关系是()A .b a c>>B .a b c>>C .a c b >>D .c a b>>12.已知0.1e a =,1110b =,c =,则()A .c b a>>B .b a c >>C .a b c>>D .a c b>>13.已知0.992sin1,2a b c ===,则,,a b c 的大小关系是()A .c b a <<B .a c b <<C .c a b<<D .a b c<<14.已知 1.01 1.03 1.021.03, 1.01, 1.02a b c ===,则a ,b ,c 的大小关系是()A .c b a<<B .c<a<bC .b<c<aD .a c b<<15.已知函数()ex x b f x -=,且e ln ba c ==,则()A .()()()f a f b f c <<B .()()()f b f c f a <<C .()()()f a f c f b <<D .()()()f c f b f a <<16.若 1.1ln1.1a =,0.10.1e b =,110c =,则a ,b ,c 的大小关系为()A .a b c<<B .c a b<<C .b a c<<D .a c b<<17.已知12,ln3e 3a b c ===-,则,,a b c 的大小关系为()A .a b c <<B .b<c<aC .a c b<<D .b a c<<18.实数x ,y ,z 分别满足2022e x =,20222023y =,20222023z =,则x ,y ,z 的大小关系为()A .x y z >>B .x z y >>C .z x y >>D .y x z >>19.已知27a =,ln1.4b =,0.2e 1c =-,则()A .a b c <<B .a c b<<C .c<a<b D .c b a<<20.设1111ln ,tan ,101011a b c ===,则()A .a b c <<B .c b a <<C .a c b<<D .c<a<b二、多选题21.已知函数()f x 在R 上可导,其导函数为()f x ',若()f x 满足:[](1)()()0x f x f x -'->,()()222exf x f x --=,则下列判断一定不正确的是()A .(1)(0)f f <B .()()22e 0f f >C .33e 0f f >()()D .()()44e 0f f <22.已知函数()x x xf x a b c =+-,其中a ,b ,()0,c ∈+∞,()20f =,则下列结论正确的是()A .102f ⎛⎫> ⎪⎝⎭B .()30f <C .()f x 在R 上单调递减D .()()11f f -最大值为4-23.若ln1.1a =,111b =,sin 0.1c =,21220d =,则().A .a b<B .b c <C .a d<D .c d<24.设 2.983.02a =, 2.993.01b =, 3.013c =,则()A .c b>B .0.013ab<C .b c >D .0.013ab>25.下列不等关系中成立的有()A .()ππsin *n nn>∈N B .2log 3>C .3e ln 3<D .e ln 9>26.已知当关于x 的不等式21e 0x λλ-≥在()1,+∞上恒成立时,正数λ的取值范围为集合D ,则下列式子的值是集合D 的元素的是()A .ln 2ln 3B .5131log log 53-C .3π2tan 5e D .22cos 1sin 1-27.已知定义域为R 的函数()f x 在(]1,0-上单调递增,()()11f x f x +=-,且图像关于()2,0对称,则()f x ()A .()()02f f =B .周期2T =C .在(]1,2单调递减D .满足()()()202120222023f f f >>三、填空题28.已知sin13a =,b =π9c =,则,,a b c 的大小关系是___________.29.设191e 10a =,19b =,32ln 2c =,则____>______>______(填a ,b ,c ).四、解答题30.已知函数()y f x =的定义域为D ,区间M D ⊆,若存在非零实数t 使得任意x M ∈都有x t D +∈,且()()f x t f x +>,则称()y f x =为M 上的t -增长函数.(1)已知()f x x =,判断函数()y f x =是否为区间[]1,0-上的32-增长函数,并说明理由;(2)已知0n >,设()2g x x =,且函数()y g x =是区间[]4,2--上的n -增长函数,求实数n 的取值范围;(3)如果函数()y h x =是定义域为R 的奇函数,当0x ≥时,()22h x x a a =--,且函数()y h x =为R 上的4-增长函数,求实数a 的取值范围.。

高考数学复习专题 比大小 全套练习题及答案解析

高考数学复习专题 比大小 全套练习题及答案解析
8.【2018届福建省龙岩市4月检查】已知定义在 上的偶函数 对于 上任意两个不相等实数 和 , 都满足 ,若 ,则 的大小关系为()
A. B. C. D.
【答案】D
【解析】分析:根据条件判断出函数的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可.
详解:因为定义在 上的偶函数 对于 上任意两个不相等实数 和 ,
详解: , 在 上为减函数,
且 时, 时, ,
且 , ,
且 ,
且 , ,
在 上单调递减,

即 ,故选D.
点睛:本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间 );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用
B. (log3 )> ( )> ( )
C. ( )> ( )> (log3 )
D. ( )> ( )> (l的偶函数, .

又 在(0,+∞)上单调递减,
∴ ,
即 .
故选C.
例4.【2017天津,文理】已知奇函数 在R上是增函数, .若 , , ,则a,b,c的大小关系为()
11.【2018届天津市9校联考】定义在 上的奇函数 满足 ,当 时, ,设 , , ,则()
A. B.
C. D.
【答案】A
【解析】∵f(x+2)=﹣f(x),
∴f(x+4)=f[(x+2)+2]=﹣f(x+2)=f(x),
∴函数f(x)是周期为4的周期函数,



又 ,且 在 上单调递增,
∴ ,即
详解:因为 时, , , ,

高考数学复习选填题专项练习22---比较大小(解析版)

高考数学复习选填题专项练习22---比较大小(解析版)

高考数学复习选填题专项练习22---比较大小第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2020·福建高三期末)若0,a b c R >>∈,则( )A .ac bc >B .32a bC .2233a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D .22log log a b >【答案】D 【解析】【分析】取特殊值排除AB 选项,根据指数函数以及对数函数的单调性判断CD 选项. 【详解】当1c =-时,a b ac bc >⇒<,故A 错误;当3,1a b ==时,3212a b=<=,故B 错误; 由于函数23xy ⎛⎫= ⎪⎝⎭在R 上单调递减,a b >,则2233ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故C 错误;由于函数2log yx =在0,上单调递增,0a b >>则22log log a b >,故D 正确;故选:D【点睛】本题主要考查了根据所给条件判断不等式是否成立以及利用函数单调性比较大小,属于基础题.2.(2020·江西省南城一中高三期末)三个数0.20.40.44,3,log 0.5的大小顺序是 ( )A .0.40.20.43<4log 0.5<B .0.40.20.43<log 0.5<4C .0.40.20.4log 0.534<<D .0.20.40.4log 0.543<<【答案】D【解析】由题意得,120.20.4550.40log0.514433<<<==<== D.3.(2020·重庆高三)己知命题:0p x ∀>,lg ln x x <,:0q x ∃>,2x <则下列命题中真命题是( ) A .p q ∧ B .()p q ∧⌝C .p q ∨D .()p q ∨⌝【答案】C 【解析】【分析】分别判断命题,p q 的真假再利用或且非的关系逐个选项判断即可. 【详解】易得当1x =时, lg ln x x =,故p 为假命题.当14x =时, 2x <.故q 为真命题.故p q ∨为真命题.故选:C【点睛】本题主要考查了命题真假的判断,属于基础题型. 4.(2020·钦州市第三中学高三月考)设sin6a π=,2log 3b =,2314c ⎛⎫= ⎪⎝⎭,则( )A .a c b <<B .c a b <<C .b a c <<D .c b a <<【答案】B 【解析】 【分析】利用相关知识分析各值的范围,即可比较大小.【详解】1sin 62a π==,21log 32b <=<,12343111421202c ⎛⎫=<= ⎛⎫⎛⎫<= ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭,c a b ∴<<,故选:B 【点睛】本题主要考查了指数函数的单调性,对数函数的单调性,属于中档题. 5.(2020·福建高三)已知log e a π=,lneb π=,2e lnc π=,则( )A .a b c <<B .b c a <<C .b a c <<D .c b a <<【答案】B 【解析】【分析】因为1b c +=,分别与中间量12做比较,作差法得到12b c <<,再由211log e log e 22a ππ==>,最后利用作差法比较a 、c 的大小即可.【详解】因为1b c +=,分别与中间量12做比较,2223111ln ln e ln 022e 2e b ππ⎛⎫-=-=< ⎪⎝⎭,432211e 1e ln ln e ln 0222c ππ⎛⎫-=-=> ⎪⎝⎭,则12b c <<,211log e log e 22a ππ==>,()112ln ln 20ln ln a c ππππ-=--=+->,所以b c a <<,故选:B . 【点睛】本题考查作差法比较大小,对数的运算及对数的性质的应用,属于中档题.6.(2020·天津二十五中高三月考)已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】D 【解析】 【详解】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a ,b ,c 的大小关系.详解:由题意可知:3337392log log log <<,即12a <<,13111044⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭=,即01b <<, 133317552log log log =>,即c a >,综上可得:c a b >>.本题选择D 选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.7.(2020·榆林市第二中学高三月考)已知函数()f x 是定义在R 上的偶函数,当0x ≥,3()3f x x x =+,则32(2)a f =,31(log )27b f =,c f =的大小关系为( ) A .a b c >> B .a c b >>C .b a c >>D .b c a >>【答案】C 【解析】 【分析】利用导数判断3()3f x x x =+在[0,)+∞上单调递增,再根据自变量的大小得到函数值的大小.【详解】函数()f x 是定义在R 上的偶函数,31(log )(3)(3)27b f f f ∴==-=,320223<<=,当0x ≥,'2()330f x x =+>恒成立,∴3()3f x x x =+在[0,)+∞上单调递增,3231(log )(2)27f f f ∴>>,即b a c >>.故选:C.【点睛】本题考查利用函数的性质比较数的大小,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意将自变量化到同一个单调区间中.8.(2020·内蒙古高三期末)已知π为圆周率,e 为自然对数的底数,则A .e π<3eB .π23e -<32e π-C .log e π>3log eD .π3log e >3log e π【答案】D 【解析】【分析】利用指数函数与对数函数的单调性、不等式的性质即可得出.【详解】对于A :函数y=x e 是(0,+∞)上的增函数,A 错;对于B :π3e ﹣2<3πe ﹣2⇔3e ﹣3<πe ﹣3,而函数 y=x e ﹣3是(0,+∞)上的减函数,B 错;对于C :31133e e e e log e log e log log log log πππ⇔⇔>><,而函数y=log e x 是(0,+∞)上的增函数,C 错,对于D :33333333e e e e log e log e log log log log ππππππππ⇔⇔⇔>>>>,D 正确;故答案为:D .【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题. 9.(2020·天津静海一中高三学业考试)已知()f x 是定义在R 上的偶函数,且在(],0-∞上是增函数.设()8log 0.2a f =,()0.3log 4b f =,()1.12c f =,则a ,b ,c 的大小关系是( )A .c b a <<B .a b c <<C .a c b <<D .c a b <<【答案】A 【解析】 【分析】利用偶函数的对称性分析函数的单调性,利用指数函数、对数函数的单调性比较出 1.180.3log 0.2log 42、、的大小关系从而比较函数值的大小关系.【详解】由题意可知()f x 在(],0-∞上是增函数,在0,上是减函数.因为0.30.30.3100102log log 4log 193-=<<=-,3881log 0.125log 0.2log 10-=<<=, 1.122>, 所以 1.180.3log 0.2log 42<<,故c b a <<.故选:A【点睛】本题考查函数的性质,利用函数的奇偶性及对称性判断函数值的大小关系,涉及指数函数、对数函数的单调性,属于基础题.10.(2020·湖南高三期末)已知 3x >,且357log log log ==x y z ,则下列不等式关系中正确的是( )A .357<<x y zB .753<<z y xC .735<<z x yD .537<<y x z【答案】B 【解析】【分析】令357log log log x y z k ===,求得1313k x -=,1515k y -=,1717k z -=,再根据幂函数的单调性即可得出结论.【详解】令357log log log x y z k ===()1k >,∴3k x =,5ky =,7k z =,∴133133k k x -==,155155k k y -==,177177k k z -==,∵3x >,∴1k >,∴10k ->,∴幂函数1k y x -=在()0,∞+上单调递增,∴1110357k k k ---<<<,∴111111753k k k ---<<,即753<<z y x ,故选:B . 【点睛】本题主要考查指数式与对数式的互化,考查根据幂函数的单调性比较大小,属于中档题.11.(2020·福建高三月考)函数()f x 的定义域为R ,其导函数为()f x ',()01f x x '>+,且(1)=-y f x 为偶函数,则( )A .(2)(1)f f -<B .(2)(1)f f -=C .(2)(1)f f ->D .|(2)||(1)|f f ->【答案】A 【解析】 【分析】根据()01f x x '>+以及(1)=-y f x 为偶函数判断出函数()f x 的单调性和对称性,由此判断出()2f -和()1f 的大小关系.【详解】由于(1)=-y f x 为偶函数,所以函数()f x 关于1x =-对称.由于()01f x x '>+,所以当1,10x x <-+<时()'0f x <,()f x 递减,当1,10x x >-+>时,()'0f x >,()f x 递增.所以(2)(1)f f -<.故选:A【点睛】本小题主要考查利用导数研究函数的单调性,考查函数的奇偶性,考查函数的图像变换,考查函数的对称性,属于中档题.12.(2020·福建高三月考)已知25log 5log 2a =+,25log 5log 2b =⋅,25log 5log 2c =,则( ) A .b a c << B .a b c <<C .b c a <<D . c b a <<【答案】A 【解析】【分析】根据2225552log log 5log 83,0log log 24log 511=<<==<=<,得24a <<,25221log 5log 2log 51log 5b =⋅=⋅=,()()222225log 5log 5log 44log 2c ==>=,再比较. 【详解】因为2225552log log 5log 83,0log log 24log 511=<<==<=<,所以252log 5log 24<+<, 所以24a <<,又因为25221log 5log 2log 51log 5b =⋅=⋅=,()()222225log 5log 5log 44log 2c ==>=, 所以b a c <<.故选:A 【点睛】本题主要考查对数的换底公式和对数比较大小,还考查了运算求解的能力,属于中档题.13.(2020·江西省南城一中高三期末)若23a ⎛= ⎪⎝⎭,log 3b π=,2log ec π=,则a 、b 、c 的大小关系为( )A .c a b >>B .b c a >>C .a b c >>D .b a c >>【答案】D 【解析】 【分析】利用指数函数与对数函数比较a 、b 、c 三个数与0和23的大小关系,进而可得出这三个数的大小关系. 【详解】指数函数23xy ⎛⎫= ⎪⎝⎭为R上的减函数,则22033⎛<<⎪⎝⎭,即023a <<;对数函数log y x π=为()0,∞+上的增函数,()322333ππ⎡⎤=<⎢⎥⎣⎦,233π∴<,所以,232log log 33πππ=<,即23b >;对数函数2log y x =为()0,∞+上的增函数,则22log log 10ec π=<=.因此,b a c >>.故选:D.【点睛】本题考查指数式和对数式的大小比较,一般利用指数函数、对数函数的单调性结合中间值法来得出各数的大小关系,考查推理能力,属于基础题.14.(2020·山西高三月考)若()10,,2nm m n a b e e c >>==+=,则( )A .b a c >>B .a c b >>C .c b a >>D .b c a >>【答案】A 【解析】 【分析】由基本不等式得出2m nm n ++>>,再根据函数的单调性即可比较大小.【详解】当0m n >>时,2m n m n ++>>,且xy e =是定义域R 上的单调增函数,2m n a e+==,所以2m ne+>a c >;又22m n m n e e e++>=,所以21()2m nm ne e e ++>,即b a >;所以b a c >>.故选:A .【点睛】本题主要考查了根据基本不等式和函数的单调性比较大小的问题,意在考查学生对这些知识的理解掌握水平.15.(2020·广西师大附属外国语学校高三)已知函数()1y f x =+是偶函数,且函数()y f x =在区间[)1,∞+上是增函数,则下列大小关系中正确的是( )A .()211log 323f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()211log 323f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭ C .()211log 332f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()211log 332f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】 【分析】根据函数()1y f x =+是偶函数,关于x =0对称,则()y f x =的图象关于直线x =1对称,结合单调性比较大小.【详解】函数()1y f x =+是偶函数,关于x =0对称,()y f x =的图象关于直线x =1对称,且在区间[)1,∞+上是增函数,则在(0,1)上为减函数,1123>,2211322303327log log --=>, ()22119230228log log --=>, 所以()2211112332323log f f log f ⎛⎫⎛⎫>-><< ⎪ ⎪⎝⎭⎝⎭.故选:D 【点睛】此题考查函数奇偶性的辨析,根据对称性和单调性比较函数值的大小关系,关键在于准确识别函数的单调区间.16.(2020·山西高三月考)已知()f x 是定义在(0,)+∞上的可导函数,满足(1)1f =,2()()xf x f x x '-<,则不等式①(2)2f <,②(2)4f <,③1122⎛⎫> ⎪⎝⎭f ,④1124f ⎛⎫< ⎪⎝⎭中一定成立的个数为( ) A .1 B .2C .3D .4【答案】A 【解析】【分析】根据题意构造函数()()f x g x x=-x ,并判断其在(0,+∞)上单调递减,然后分别算出g (1)、g (2)和g (12),并利用单调性比较大小,即可判断每个选项. 【详解】令()()f x g x x=-x ,则()()()2''xf x f x g x x -=-1()()22'xf x f x x x --=,∵xf '(x )﹣f (x )<x 2,∴g '(x )<0在(0,+∞)上恒成立,即g (x )在(0,+∞)上单调递减, ∵f (1)=1,∴()()1111101f g =-=-=,对于()()()222102f g g =-=<,即f (2)<4,∴①错误,②正确;对于()1112101222f g g ⎛⎫ ⎪⎛⎫⎝⎭=-= ⎪⎝⎭>,即1124f ⎛⎫ ⎪⎝⎭>,∴③和④均错误;因此一定成立的只有②,故选:A .【点睛】本题主要考查导数的综合应用,构造新函数是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.。

高考数学复习---《指、对、幂形数的大小比较问题》专项练习题(含答案解析)

高考数学复习---《指、对、幂形数的大小比较问题》专项练习题(含答案解析)

高考数学复习---《指、对、幂形数的大小比较问题》专项练习题(含答案解析)一、单选题1.(2022春·天津和平·高三耀华中学阶段练习)已知0.5x x =,0.5log y y x =,log 0.5zx z =,则( ) A .y x z << B .z x y << C .x z y << D .z y x <<【答案】A【解析】要比较0.5x x =,0.5log y y x =,log 0.5zx z =中的,,x y z 大小,等价于比较0.5log x x =,0.5log y y x =,log 0.5zx z =中的,,x y z 大小,∵0.5log x x =,由定义域可知0x >, 故0.50.51log 0log x >=,∵0.5log y x =在定义域上单调递减, 0.501,0log 1x x ∴<<<<, 0.51x ∴<<,∵0.50z >, ∴1log 0log x x z >=, ∵0.51x <<, ∴01z <<,故()0.50,1z∈,则()log 0,1x z ∈,1x z ∴<<,0.5log y y x =,由定义域可知:0y >,又∵0.51x <<,∴()0,1yx ∈,则()0.5log 0,1y ∈,()0.5,1y ∴∈,故y x x <,∵0.5log x x =,0.5log yy x =,∴0.50.5log log x y <,x y ∴>,y x z ∴<<.故选:A.2.(2022·浙江·模拟预测)已知正数a ,b ,c 满足3e 1.1a =,251030b b +−=,e 1.3c =,则( ) A .a c b << B .b a c << C .c<a<b D .c b a <<【答案】D【解析】由251030b b +−=解得1b =−,构造函数21()ln(1)2f x x x x =−−+,(1)x >−,显然2()01x f x x −'=<+, 故()f x 是减函数,结合(0)0f =,故0x >时,()0f x <,故21ln(1)2x x x +>−,(0)x >,再令2311()ln(1)23g x x x x x =−+−+,(1)x >−,3()1x g x x'=+,当0x >时,()0g x '>,故()g x 在(0,)+∞单调递增,结合(0)0g =,故2311ln(1)23x x x x +<−+,(0)x >,则11ln1.3ln(10.3)0.30.090.0270.26423c ==+<−⨯+⨯=,13ln1.13(0.10.01)0.2852a =>⨯−⨯=,所以22(1)(10.285) 1.651225a +>+=,28(1) 1.65b +==,22(1)(10.264) 1.597696c +=+=,故222(1)(1)(1)a b c +>+>+,由a ,b ,c 都是正数,故a b c >>. 故选:D .3.(2022·天津滨海新·天津市滨海新区塘沽第一中学校考模拟预测)已知正实数x ,y ,z 满足236x y z ==,则不正确的是( )A .111x y z +=B .236x y z >>C .236x y z >> D .24xy z >【答案】B【解析】设236x y z t ===,1t >,则2log x t =,3log y t =,6log z t =.选项A ,1log 2t x =,1log 3t y =,1log 6t z =,则111log 2log 3log 6t t t x y z +=+==,故A 正确;选项B ,222log x t ==,333log y t ==,666log z t ==,因为68=69=66=,所以666<<,,又1t >,所以=<=<326y x z <<,故B 不正确; 选项C ,241log log 22x t t ==,3271log log 33y t t ==,6661log log 66z t t ==, 因为64276<<,又1t >,所以642766lg lg lg log log log lg 4lg 27lg 6t t t t t t =>=>=,即236x y z>>,故C 正确;选项D ,()223lg lg lg log log lg 2lg3lg 2lg3t t tt t xy ⨯===⨯⨯, 因为()22lg 6lg 2lg3lg 2lg324+⎛⎫⨯<= ⎪⎝⎭,所以()()224lg lg 6t xy >, 又()()()2622244lg log lg 64t z t ==,所以24xy z >,故D 正确;故选:B.4.(2023春·山东济南·高三统考期中)设方程e e 0x x ++=和ln e 0x x ++=的根分别为p 和q ,函数()()e xf x p q x =++,则( )A .()42033f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭B .()24033f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()24033f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()24033f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭【答案】B【解析】方法一:由e e 0x x ++=得e e x x =−−,由ln e 0x x ++=得ln e x x =−−,因为方程e e 0x x ++=的根为p ,所以函数e x y =与e y x =−−的图象交点P 的横坐标为p , 同理:函数ln y x =与e y x =−−的图象交点Q 的横坐标为q , 因为e x y =与ln y x =互为反函数,所以两函数图象关于y x =对称,易知直线y x =与直线e y x =−−互相垂直,所以,P Q 两点关于直线y x =对称, 即,P Q 的中点M 一定落在y x =,亦即点M 为y x =与e y x =−−的交点,联立e y x y x =⎧⎨=−−⎩,解得e 2e2x y ⎧=−⎪⎪⎨⎪=−⎪⎩,即e e ,22M ⎛⎫−− ⎪⎝⎭,所以e p q +=−,故()()e e e x x f x p q x x =++=−,则()e e xf x '=−,令()0f x ¢>,得1x >;令()0f x '<,得1x <;所以()f x 在(),1−∞上单调递减,在()1,+∞上单调递增,所以()203f f ⎛⎫< ⎪⎝⎭,而()01f =,2322e e 33f ⎛⎫=− ⎪⎝⎭,4344e e 33f ⎛⎫=− ⎪⎝⎭,则()43440e e 133f f ⎛⎫−=−− ⎪⎝⎭,4242333342422e e e e e e e 33333f f ⎛⎫⎛⎫⎛⎫−=−−−=−− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令()()4341e 3g x x x x =−−≥,则()11133344444e e 1033333g x x ⎛⎫'=−≥−=−> ⎪⎝⎭,所以()g x 在[)e,+∞上单调递增,所以()()()4433e 33503811255g g <=−<=<=,即434e e 1<03−−,故()403f f ⎛⎫< ⎪⎝⎭, 令()()4233213h x x x x x =−−≥,则()1133422333h x x x −'=−−,令()0h x '>,得1x >,所以()h x 在[)1,+∞上单调递增, 所以()4233423327272722781918e 101010310101010h h ⎛⎫⎛⎫⎛⎫⎛⎫>=−−⨯=−−⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21113333811090101809109101020100100⎡⎤⎛⎫⨯−⨯−==⨯−−⎢⎥⎪⎢⎥⎝⎭⎣⎦()()3992.159 2.1510200.1025010 2.15100100⎡⎤>⨯−−=⨯>>⎣⎦, 则42332e e e 03−−>,故4233f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,综上:()24033f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭.故选:B.方法二:前面部分同方法一得,()()e e e x x f x p q x x =++=−,则()e e xf x '=−,令()0f x ¢>,得1x >;令()0f x '<,得1x <;所以()f x 在(),1−∞上单调递减,在()1,+∞上单调递增,所以()203f f ⎛⎫< ⎪⎝⎭,而()01f =,2322e e 33f ⎛⎫=− ⎪⎝⎭,4344e e 33f ⎛⎫=− ⎪⎝⎭,因为e 1x x ≥+,当且仅当0x =时取等号,所以e 1x x −≥−+,当()0,1x ∈时,1e 1xx <−,所以413344414e 1e e=e e e 133336213f ⎛⎫⎪⎛⎫⎛⎫=−−<−=< ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪−⎝⎭,即()403f f ⎛⎫< ⎪⎝⎭,下面比较42,33f f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭的大小关系, 设()()()2g x f x f x =−−,()0,1x ∈,所以()()()222e e e e e e 2e 0x x x x g x f x f x −−'''=+−=−+−=+−=,故()g x 在()0,1x ∈上递增,()()10g x g <=,即有222033f f ⎛⎫⎛⎫−−< ⎪ ⎪⎝⎭⎝⎭,亦即4233f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,综上:()24033f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭.故选:B.5.(2023春·福建宁德·高三校考阶段练习)已知e 1.02, 1.01a cb ===,则( ) A .a bc << B .b a c <<C .b c a <<D .c a b <<【答案】A【解析】由题可得:ln1.02,2ln1.01a c ==,令()()[]2ln 11,0,1f x x x =+∈,则()f x '2121x x −==+, 当[]0,1x ∈0,10x +>,又()()22120x x x −+=−−≥,10x −≥,即()f x '0≥,故()f x 在[]0,1单调递增,()()00f x f ≥=,则当0.01x =时,()2ln 1.0110>,即()2ln 1.011>,c b >;令()()[]ln 11,0,1h x x x =+∈,则()h x '11x ==+ 当[]0,1x ∈0,10x +>,又()22210x x −+=−≤,1x +,即()h x'0≤,故()h x 在[]0,1单调递减,()()00h x h ≤=, 故当0.02x =时,ln1.0210<,即ln1.021<,a b <;综上所述,a b c <<. 故选:A.6.(2023·江苏·高三专题练习)已知正实数a ,b ,c 满足2e e e e c a a c −−+=+,28log 3log 6b =+,2log 2c c +=,则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<【答案】B【解析】22e e e e e e e e c a a c c c a a −−−−⇒+=+−=−,故令()e e x x f x −=−,则()e e c c f c −=−,()e e a af a −=−.易知1eexx y −=−=−和e x y =均为()0,+∞上的增函数,故()f x 在()0,+∞为增函数. ∵2e e a a −−<,故由题可知,2e e e e e e c c a a a a −−−−=−>−,即()()f c f a >,则0c a >>.易知222log 3log log 2b =+>,2log 2c c =−, 作出函数2log y x =与函数2y x =−的图象,如图所示,则两图象交点横坐标在()1,2内,即12c <<,c b ∴<,a cb ∴<<.故选:B .7.(2023·全国·高三专题练习)已知02,1,1b a b a b <<<≠≠,且满足log b a a b =,则下列正确的是( ) A .1ab >B .1(1)b a ab +<+ C .11a b a b a a b b ++−>− D .52+>a b 【答案】B【解析】由log b a a b =,可得1log log log b a b a b a==, 所以log 1b a =,或log 1b a =−, ∴b a =(舍去),或1b a=,即1ab =,故A 错误;又02b a b <<<,故120a a a<<<,∴1a <<(11y x x x=+<<,则2221110x y x x−'=−=>,函数(11y x x x =+<<单调递增,∴1a b a a ⎛+=+∈ ⎝⎭,故D 错误;∵02b a b <<<,11a b<=< ∴1212a b b <<<+<,令()()ln 12x g x x x=<<,则()21ln 0xg x x −'=>,∴函数()()ln 12xg x x x=<<单调递增, ∴()ln 1ln 1b a a b +<+,即()()1ln ln 1b a a b +<+, ∴()1ln ln 1ab a b +<+,即1(1)b a a b +<+,故B 正确;∵011b a b <<<<+,∴函数,x x y a y b ==−单调递增,故函数x xy a b =−单调递增,∴11a a b b a b a b ++−<−,即11a b a b a a b b ++−<−,故C 错误. 故选:B.8.(2023·全国·高三专题练习)已知函数()e 2xf x x =+−的零点为a ,函数()ln 2g x x x =+−的零点为b ,则下列不等式中成立的是( ) A .1a b ⋅> B .e ln 2a b +<C .223a b +<D .2214a b >【答案】C【解析】由()0f x =,()0g x =得e 2x x =−,ln 2x x =−, 因为e x y =与ln y x =关于直线y x =对称,在同一坐标系下,画出e x y =,ln y x =,y x =,2y x =−的图象,则()1,12y xC y x=⎧⇒⎨=−⎩,(),e a A a ,(),ln B b b ,,A B 关于()1,1对称. 所以2a b +=,e ln 2a b +=,故B 错误. 因为0a >,0b >,a b ¹,所以()214a b ab +<=,故A 错误.因为()e 2x f x x =+−,()e 10xf x '=+>,()f x 在R 上为增函数,()00e 20f =−<,13022f ⎛⎫=> ⎪⎝⎭,所以102a <<.又因为点(),e aa 在直线2y x =−上,且2ab +=,所以e 2a a b =−=.22221e e 34a a b a +=+<+<,故C 正确. 因为e a b =,所以e aa ab =, 设()10e 2x x h x x ⎛⎫=<< ⎪⎝⎭,()10e x x h x −'=>,()h x 在10,2⎛⎫⎪⎝⎭为增函数.所以()12h x h ⎛⎫< ⎪⎝⎭即a b <22114e 4a b <<,故D 错误. 故选:C9.(2023·全国·高三专题练习)在给出的①3log 3ππ<;②56log 6log 7>ln 21<.三个不等式中,正确的个数为( ) A .0个B .1个C .2个D .3个【解析】①令3log ()x f x x=,则3log ()f πππ=,3log 31(3)33f ==, 所以21ln ()ln 3xf x x −'=,在(e,)+∞上()0f x '<,即()f x 递减,而3e π>>, 所以()(3)f f π<,即3log 13ππ<,故3log 3ππ<,正确;②令ln(1)()log (1)ln xx f x x x+=+=,则2ln (1)ln(1)()(1)(ln )x x x x f x x x x −++'=+, 又ln y x x =,在(1,)+∞上ln 10y x '=+>,则y 递增,所以,在(1,)x ∈+∞上ln (1)ln(1)0x x x x −++<,即()0f x '<,则()f x 递减, 所以56(5)log 6(6)log 7f f =>=,正确;③2ln 2(e e ==>=>,而e xy =ln 21>,错误.故选:C10.(2023·全国·高三专题练习)设2022ln 2020a =,2021ln 2021b =,2020ln 2022c =,则下列选项正确的是( ) A .a c b >> B .c b a >> C .b a c >> D .a b c >>【答案】D 【解析】令()ln x f x x =,则'()f x 21ln x x−=,令'()f x 0=,解得e x =, 故当e x >时,()f x 单调递减,故()()20202022f f >,即ln 2020ln 202220202022>, 则2022ln 2020a =>2020ln 2022c =.令()()ln 1h x x x =−+,则'()h x 1111x x x =−=++, 故当0x >时,()h x 单调递增,10x −<<时,()h x 单调递减, 则()()00h x h ≥=,即()ln 1x x +≤.b a −=2021ln 20212022ln 20202021ln 20212021ln 2020ln 2020−=−−112021ln 1ln 20202021ln 2020020202020⎛⎫=+−≤⨯−< ⎪⎝⎭,故b a <; 2020ln 20222021ln 20212021ln 2022ln 20222021ln 2021c b −=−=−−112021ln 1ln 20222021ln 2022020212021⎛⎫=+−≤⨯−< ⎪⎝⎭,故c b <; 综上所述:c b a <<. 故选:D.11.(2023·全国·高三专题练习)已知1ln 2a =,()ln lg 2b =,()lg ln 2c =则a ,b ,c 的大小关系是( ) A .c a b >> B .c b a >> C .a b c >> D .b c a >>【答案】A【解析】先比较,a b ,易知1lg 22<,故1ln(lg 2)ln 2<,即b a < 又10e <,故1x >时ln lg x x >,01x <<时ln lg x x < 故11lgln 22>, 而1ln 22>,故11lg(ln 2)lg ln 22>>,有c a > 故选:A12.(2023·全国·高三专题练习)已知实数a ,b 满足28log 3log 6a =+,51213a a b +=,则下列判断正确的是( ) A .2a b >> B .2b a >> C .2b a >> D .2a b >>【答案】D【解析】()28221log 3log 6log 3log 233a =+=+⨯2241414317log 3log 233333233=+>=⨯+=>,所以2a >; 由51213a a b +=且2a >,所以51225144169a a +>+=,所以2b >,令()51213x x xf x =+−,2x >,令20t x =−>,则2x t =+,则()51213x x x f x =+−,2x >等价于()2551441216913t t tg t =⨯+⨯−⨯,0t >; 又()255144121691316912169130t t t t tg t =⨯+⨯−⨯<⨯−⨯<,所以当2x >时,()512130x x xf x =+−<,故5121313a a b a +=<,所以2a b >>.故选:D.13.(2023·全国·高三专题练习)已知24ln 25a =+, 1.222b =+, 2.12c =,则( )A .a b c <<B .b a c <<C .c b a <<D .a c b <<【答案】D 【解析】因为()()221.22.10.220.10.10.10.122222222212222120b c ⎡⎤−=+−=+⋅−⋅=−⋅+=−>⎢⎥⎣⎦, 所以b c >;令()()1ln 1f x x x x =−−>,1()10'=−>f x x, 所以()f x 在()1,+∞上单调递增,因为0.221>,所以0.2(2)(1)f f >,即0.20.221ln 20−−>,所以()1.20.20.20.20.22224ln 22222ln 2221ln 205b a −=+−−=⋅−−=−−>,所以b a >;同理0.121>,所以0.1(2)(1)f f >,即0.10.121ln 20−−>,也即0.10.112ln 20−+<,所以()2.10.120.10.10.124ln 2244ln 22241ln 2205a c −=+−=+−⋅=+−<,所以a c <. 综上,a c b <<, 故选:D.14.(2023·全国·高三专题练习)已知a =eb =,c =,则( )A .a b c <<B .b<c<aC .b a c <<D .c<a<b【答案】B【解析】解析:因为01a e =>=,1eb =<=所以a b >;又()222c ==+−构造()2222xf x e x x =−++,则a c f−=因为()()()22222222211x xx x e f x e x x x ⎡⎤−+−⎣⎦=−=−+−+,()21110x −+≥> , 由于函数()f x 的分母为正数,此时只需要判断分子()2222xx x e ⎡⎤−+−⎣⎦的符号,设22()(22)2,()0,x xg x x x e g x x e '=−+−=≥则()g x 在R上递增,(0)0g g >=,即当0x > 时,()f x 的分子总是正数,()()()00,f x x ∴>∈+∞ ,0a c f−=>,即a c >,应用排除法, 故选:B.15.(2023·全国·高三专题练习)已知ln72a =,ln63b =,ln54c =,则( ) A .b<c<a B .a b c <<C .b a c <<D .a c b <<【答案】B【解析】对a ,b ,c 取对数得:ln ln 2ln 7a =⋅,ln ln3ln 6b =⋅,ln ln 4ln5c =⋅, 令()()ln ln 9f x x x =⋅−(24x ≤≤),()()ln 9x f x x−'=−()()()9ln 9ln ln 99x x x xx x x x −−−=−−, 令()ln ,1g x x x x =>,()ln 10g x x '=+>,即()ln g x x x =在(1,)+∞上单调递增, 由24x ≤≤得,951x x −≥>>,于是得()()9ln 9ln x x x x −−>,又()90x x −>,因此,()0f x ¢>,即()f x 在[]2,4上单调递增,从而得()()()234f f f <<, 即ln 2ln 7ln3ln 6ln 4ln5<<,ln ln ln a b c <<,所以a b c <<. 故选:B16.(2023·全国·高三专题练习)设2ln1.01a =,ln1.02b =,1c =.则( )A .a b c <<B .b<c<aC .b a c <<D .c<a<b【答案】B【解析】[方法一]:2ln1.01a =2ln1.01=()2ln 10.01=+()2ln 120.010.01=+⨯+ln1.02b >=,所以b a <;下面比较c 与,a b 的大小关系.记()()2ln 11f x x =+,则()00f =,()2121x f x x −='=+, 由于()()2214122x x x x x x +−+=−=−所以当0<x <2时,()21410x x +−+>()1x >+,()0f x ¢>,所以()f x 在[]0,2上单调递增,所以()()0.0100f f >=,即2ln1.011,即a c >;令()()ln 121g x x =+,则()00g =,()212212x g x x −=+', 由于()2214124x x x +−+=−,在x >0时,()214120x x +−+<,所以()0g x '<,即函数()g x 在[0,+∞)上单调递减,所以()()0.0100g g <=,即ln1.021,即b <c ;综上,b<c<a , 故选:B.[方法二]:令()21ln 1(1)2x f x x x ⎛⎫+=−−> ⎪⎝⎭()()221-01x f x x =+'−<,即函数()f x 在(1,+∞)上单调递减()10,ff b c <=∴<令()232ln 1(13)4x g x x x ⎛⎫+=−+<< ⎪⎝⎭()()()21303x x g x x −−+'=>,即函数()g x 在(1,3)上单调递增()10,gg a c =∴综上,b<c<a , 故选:B.17.(2023·全国·高三专题练习)设4log 3a =,5log 4b =,0.012c −=,则,,a b c 的大小关系为( ) A .b a c << B .a b c <<C .a c b <<D .b<c<a【答案】B【解析】1041048576=,85390625=,951953125=,8465536=,10359049=,10945∴<,即91045<,91055log 4log 50.9∴<=;10845>,即84105455>=,4555log 4log 50.8∴>=;81043>,即84105344<=,4544log 3log 40.8∴<=;54log 4log 3∴>,即a b <.设()()210x f x x x =−−<,则()2ln 21xf x '=−,当0x <时,()20,1x ∈,又()ln 20,1∈,()2ln 20,1x∴∈,()0f x '∴<,()f x \在(),0∞−上单调递减,()()00f x f ∴>=,即当0x <时,21x x >+,0.0120.0110.990.9−∴>−+=>,0.015log 42−∴<,即b c <.综上所述:a b c <<. 故选:B . 二、多选题18.(2023·全国·高三专题练习)当121x x <<时,不等式1221e e 0x xx x −<成立.若e e a b >>,则( ) A .e 1e e b b −> B .e e e aa b b +<C .e ln b a b a <D .e ln a ab b >【答案】AD【解析】当121x x <<时,不等式12122112e e e e 0x x x x x x x x −<⇔<,令e (),1xf x x x=>,则()f x 在(1,)+∞上单调递增,因e>1b >,则ee 1e e ()(e)e e eb b f b f b b −>⇔>⇔>,A 正确;因e a b >>1,则e e e e ()(e )e e eaa b aa b a f b f b b +>⇔>⇔>,B 不正确;由e e a>知,1a >,有()()e 1e 1e a a f a f a a>⇔>>⇔>,则ln ln 1a a a a >⇔<, 由选项A 知,e 1b b>,即e ln e ln b b aa b a b a >⇔>,C 不正确; 由e e ab >>得,ln 1b a >>,则ln e e (ln )()e ln ln b aa fb f a ab b b a>⇔>⇔>,D 正确. 故选:AD19.(2023·全国·高三专题练习)已知01b a <<<,则下列不等式成立的是( ) A .log log a b b a < B .log 1a b >C .ln ln a b b a <D .ln ln a a b b >【答案】BC【解析】选项A :()()22lg lg lg lg lg lg lg lg log log lg lg lg lg lg lg a b b a b a b a b a b a a b a b a b−+−−=−==由01b a <<<,可得lg lg 0b a <<,则lg lg 0b a >,lg lg 0b a −<,lg lg 0b a +< 则()()lg lg lg lg 0lg lg b a b a a b−+>,则log log a b b a >.判断错误;选项B :由01a <<,可得log a y x =为(0,)+∞上减函数, 又0b a <<,则log log 1a a b a >=.判断正确;选项C :由01a <<,可知xy a =为R 上减函数,又b a <,则a b a a >由0a >,可知a y x =为(0,)+∞上增函数,又b a <,则a a b a <,则b a a b > 又ln y x =为(0,)+∞上增函数,则ln ln b a a b >,则ln ln a b b a <.判断正确; 选项D :令211e e a b ==,,则01b a <<<,e ln l 111e n e a a =−=,222ln ln 112e e eb b =−=则22122e0e ln eln e a a b b −−+==<−,即ln ln a a b b <.判断错误.故选:BC20.(2022·全国·模拟预测)下列不等式关系成立的是( ) A .57log 6log 8< B .118cos 173>C .0.40.60.40.6<D .π3sin3>+【答案】BCD【解析】A 选项:当n ∈N 且3n ≥时,有()log 1n n −+()()22log 1log 1log 2n n n n n n +=−<=,进一步可得()()log 1log 11n n n n −⋅+<,(()()2log 1log 1n n n n >−++>) 从而得当n ∈N 且3n ≥时,有()()1log 1log n n n n −+<, 所以567log 6log 7log 8>>,故A 选项不成立.B 选项:令π()sin ,(0)2f x x x x =−<<,则()cos 10f x x '=−<,所以在π(0,)2上函数()f x 单调递减,所以()(0)0f x f <=,也即在π(0,)2上,()sin 0f x x x =−<,即sin x x <,所以当π02α<<时,0sin 22αα<<,22cos 12sin1222ααα⎛⎫=−>− ⎪⎝⎭, 即21cos 12αα>−,在上式中取13α=,得211117cos 132318⎛⎫>−⨯= ⎪⎝⎭,即118cos 173>,故B 选项成立.C 选项:因为()()520.40.40.40.16==,()50.630.60.60.216==,所以0.40.60.40.6<,故C 选项成立.D 选项:当π02α<<时,sin αα<,取π3α=−,得()sin π3π3−<−,即π3sin3>+,故D 选项成立.21.(2022春·广东深圳·高三深圳中学校考阶段练习)下列大小关系正确的是( ). A .2 1.91.92< B . 2.922 2.9<C .712log 4log 7<D .712log 4log 7+<【答案】ABC 【解析】设ln ()x f x x =,则21ln ()xf x x −'=, 0e x <<时,()0f x '>,()f x 递增,而0 1.92e <<<,所以(1.9)(2)f f <,即ln1.9ln 21.92<,2 1.9ln1.9ln 2<, 即2 1.91.92<,A 正确;2.9322288.41 2.9<=<=,B 正确;770log 4log 12<<,所以222777777(log 4log 12)(log 48)(log 49)log 4log 121444+⋅<=<=,所以71271log 4log 7log 12<=,C 正确; 10102264(2)102410==>,76107823543104=<<, 7107710log 4log 417=>,所以77log 40.710>=, 472401=,341217287=<,所以3412124log 7log 713=>,123log 70.754>=,所以712log 4log 70.70.75 1.45+>+=>D 错. 故选:ABC .22.(2022·湖南·模拟预测)已知1x >,1y >,且()()1e 11e yx x y ++=+,则下列结论一定正确的是( ) A .()ln 0x y −> B .122x y +< C .226x y +> D .()ln ln 3x y +<【答案】AC【解析】令()e x f x x =,则()()2e 1e e xx x x x f x x x−−'==, 所以当1x >时,()0f x ¢>,所以()f x 在()1,+∞上单调递增; 由()()1e 11e yxx y ++=+得1e e 111x y x y y +=+++,即1e e 111x y x y y +−=++,∵1y >,∴11012y <<+, ∴1e e 1012x y x y +<−<+,即()()1012f x f y <−+<, ∴1x y >+,即1−>x y ,∴()ln 0x y −>,A 正确;由1x y >+知12x y +>+,所以12222x y y ++>>,所以选项B 错误; 由1x y >+知12222326x y y y y ++>+=⋅>,所以选项C 正确.由1x y >+,1y >知213x y y +>+>,所以()()ln ln 21ln 3x y y +>+>,所以D 错误, 故选:AC .23.(2022·福建泉州·统考模拟预测)若2ln ln b b a a a +=+,则下列式子可能成立的是( ) A .1a b >> B .1b a >> C .1b a >> D .1a b >>【答案】BCD【解析】令()ln f x x x =+,0x > 则()110f x x=+>'恒成立, 所以()ln f x x x =+单调递增,其中1110e ef ⎛⎫=−< ⎪⎝⎭,()110f =>,则存在01,1x e ⎛⎫∈ ⎪⎝⎭,使得()00f x =①当a b >时,2ln ln ln a a a b b a a +=+<+ 即()()1ln 0a a a −+<,若1a ≥,则ln 0a a +>,且10a −≥,则()()1ln 0a a a −+≥, 不满足()()1ln 0a a a −+<,故1a <,且()0f a >, 所以01x a <<又因为a b >,所以1a b >>,D 正确; ②当a b <时,2ln ln ln a a a b b a a +=+>+,即()()1ln 0a a a −+>(1)当1a >时,10a −>,ln 0a a +>,则()()1ln 0a a a −+>成立,故1b a >>,B 正确; (2)当1a <时,10a −<,若()()1ln 0a a a −+>,则ln 0a a +<, 因为()00f x =,且()ln f x x x =+在()0,∞+上单调递增,所以当00a x <<时,ln 0a a +<,则2ln 0a a a +<,所以ln 0b b +<,所以1b <,又因为a b <,所以1b a >>,选项C 正确. 故选:BCD24.(2022春·江苏泰州·高三泰州中学校考开学考试)已知0e sin e sin y xx y x y π<<<,=,则( ) A .sin sin x y < B .cos cos x y >− C .sin cos x y > D .cos sin x y >【答案】ABC【解析】由题意,0e sin e sin y xx y x y π<<<,=,得0y x −> ,e sin e sin y xy x=,e 1y x−>,∴sin 1sin y x >,∴sin sin y x >,A 对; e e sin sin y x y x =,令e (),(0,)sin xf x x xπ=∈,即有()()f x f y =, 令2e (sin cos )()0,sin 4x x x f x x x π=='−=,()f x 在0,4π⎛⎫⎪⎝⎭上递减,在,4ππ⎛⎫⎪⎝⎭上递增, 因为()()f x f y = ,∴04x y ππ<<<<,作出函数e (),(0,)sin xf x x xπ=∈以及sin ,[0,]y x x π=∈ 大致图象如图:则30sin sin 4y y x ππ<−<>,,∴sin()sin y x π−>,结合图象则y x π−>, ∴cos()cos y x π−<,∴cos cos x y >−,B 对; 结合以上分析以及图象可得2x y π+>,∴2x y π>−,且,4224y y πππππ<<−<−<,∴sin sin cos 2x y y π⎛⎫>−= ⎪⎝⎭,C 对;由C 的分析可知,224y x πππ−<−<<,在区间[,]24ππ−上,函数cos y x = 不是单调函数,即cos()cos 2y x π−<不成立,即sin cos y x <不成立,故D 错误;故选:ABC .25.(2022·湖南长沙·雅礼中学校联考二模)下列不等式正确的有( )A .90911013100125> B .5645⎛⎛> ⎪⎪⎝⎭⎝⎭C .23e2>D .3tan12> 【答案】AD 【解析】由90901223390909090909090101(10.01)1C 0.01C 0.01C 0.01C 0.01100=+=+⨯+⨯+⨯++⨯122339090901C 0.01C 0.01C 0.01>+⨯+⨯+⨯10.90.40050.11748 2.4=+++>,则有909110130.024100125>=,A 正确;假定56(()45<5625656(452545()4⇔<⇔<<,令2(1)()ln ,11x f x x x x −=−>+,求导得,()f x 在(1,)+∞上单调递增,则()(1)0f x f >=,即当1x >时,2(1)ln 1x x x −>+,62ln 511>,62511>,令()ln 1g x x x=>,求导得,()g x 在(1,)+∞上单调递减,则()(1)0g x g <=,即当1x >时,ln x<25ln 24<2524< 260114911⇔−>⇔>因49>256245<成立,所以56((45<成立,B 不正确;假定23e2<,有23333133e 2ln ln ln 2222222<⇔<⇔−<⇔−< 令()ln ,1h x x x x =−>,,则()h x 在(1,)+∞上单调递增,32>,则3()2h h >,所以23e 2<成立,C 不正确; 令tan ,02y x x π=<<,求导得,,曲线tan y x =在3x π=处切线方程为4()3y x π=−令()tan 4()33x x x x ππϕ=−−<<,求导得,即()ϕx 在(0,)3π上单调递减,而13π<,则(1)()03πϕϕ>=,即3543 3.153tan14(1)()(2.5 1.74)3223232ππ>−+>++−⨯=,D 正确.故选:AD26.(2022·全国·高三专题练习)已知1201x x <<<,下列不等式恒成立的是( )A .1221e e x xx x >B .2112ln ln x x x x <C .1122ln ln x x x x <D .1221ln e l e n x xx x +<+【答案】AB 【解析】令()()()()1,0,1,,e e 0x xx xf x x f x f x '−=∈=>在()0,1x ∈内单调递增. 1201x x ∴<<<时,1212e ex x x x<,即2112e e ,x x x x <A 选项正确;令()()()()2ln 1ln ,0,1,0,x x g x x g x g x x x−=∈>'=在()0,1x ∈内单调递增, 121212ln ln 01,x xx x x x ∴<<<<,即2112ln ln x x x x <,B 选项正确;令()()()()ln ,0,1,ln 1,0,1h x x x x h x x x '=∈=+∈,当10,e ⎛⎫∈ ⎪⎝⎭x 时,()()0,h x h x '<单调递减,当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()0,h x h x '>单调递增,()1h x 与()2h x 大小不确定,C 错误;当1201x x <<<时,2112ln ln 00e e x xx x +<+>,D 错误故选:AB。

高考数学专题训练构造函数比大小

高考数学专题训练构造函数比大小

高考数学专题训练构造函数比大小【例1】(2014•山东)已知实数x 满足y x a a <)10(<<a ,则下列关系式中恒成立的是( ) A .111122+>+y x B .)1ln()1ln(22+>+y xC .22y x >D .33y x >【例2】(2020•新课标I )若b a b a 42log 24log 2+=+,则( ) A .b a 2> B .b a 2<C .2b a >D .2b a <【例3】(2020•新课标II )若2233x y x y ---<-,则( ) A .ln(1)0y x -+> B .ln(1)0y x -+< C .ln ||0x y -> D .ln ||0x y -<【例4】(2020•武汉模拟)若10<<<b a ,b a X =,a b Y =,b b Z =,则X ,Y ,Z 的大小关系为( ) A .Y Z X << B .Z X Y << C .X Z Y << D .X Y Z <<【例6】(2020•安徽模拟)若23+-+=a a P ,)0(12>+-+=a a a Q ,则P ,Q 的大小关系是 .【例7】(2021•广东月考)已知54sin =a ,43sin 34=b ,43cos 34=c ,则a ,b ,c 的大小关系为( ) A .c b a << B .a c b <<C .b c a <<D .c a b <<【例8】(2021•洛阳期中)若P 0)Q a =≥,则P ,Q 的大小关系是( ) A .P Q > B .P Q = C .P Q < D .由a 的取值确定【例9】(2005•全国卷Ⅲ)若33ln =a ,44ln =b ,55ln =c ,则a ,b ,c 的大小关系为 .【例10】(2017•新课标Ⅰ)设x ,y ,z 为正数,且zy x 532==,则( )A .z y x 532<<B .y x z 325<<C .x z y 253<<D .z x y 523<<【例11】(2011•全国联赛)若22ln =a ,33ln =b ,ππln =c ,72.272.2ln =d ,2010ln 10=d ,则a ,b ,c ,d ,f 的大小(按从小到大)顺序为 .【例12】(2021•衡水月考)下列四个命题:①2ln 55ln <;②eππ>ln ;③11211<;④242ln 3>e ;其中真命题的个数是( ) A .1 B .2 C .3 D .4【例13】(2021•多选题)设10<<<a b ,则下列不等式成立的是( ) A .a b b a ln ln > B .a b b a ln ln <C .a b be ae <D .a b be ae >【例14】(2021•河南模拟)设10<<x ,则x e a x =,2)(x e b x =,22xe c x =的大小关系是( )A .c b a <<B .b c a <<C .b a c <<D .c a b <<【例15】(2021•河北模拟)若1021<<<x x ,则下列选项正确的是( ) A .12ln ln 12x x e e x x ->- B .12ln ln 12x x e e x x -<- C .2112x x e x e x <D .2112x x e x e x >【例16】(2021•浙江模拟)已知1->>e y x ,比较)1ln(+y e x 与)1ln(+x e y 的大小.1.(2020•陕西模拟)已知10<<<b a ,则下列不等式不成立的是( )A .b a )21()21(>B .b a ln ln >C .ba 11> D .ba ln 1ln 1>2.(2021•宁夏模拟)已知实数x ,y 满足)10(<<<a a a y x ,则下列关系式恒成立的是( ) A .212122+>+y x B .)1ln()1ln(22+>+y x C .y x sin sin > D .55y x >3.(2020•新余期末)已知函数x xx f ln )(=,下列结论不正确的是( )A .)(x f 在)0(e ,上单调递增,在)(∞+,e 上单调递减 B .)(x f 的图象在点)01(,处的切线方程为1-=x y C .)3()2(f f >D .)(x f 在)0(∞+,上有最大值4.(2021•广东模拟)已知0log log log 432<==z y x ,x 2,y 3,z 5的大小排序为( ) A .zy x 532<< B .zx y 533<< C .yx z 325<< D .xy z 235<<5.(2021•山东模拟)若a b b a e e --+≥+ππ,则有( )A .0≤+b aB .0≥-b aC .0≤-b aD .0≥+b a6.(2021•江西模拟)若1>c ,1--=c c a ,c c b -+=1,则下列结论中正确的是( ) A .b a > B .b a =C .b a <D .b a ≤7.(2020•广州模拟)已知e 10<<<βα,则下列不等式中恒成立的是( )A .βαβα<B .βαβα≤C .βαβα>D .βαβα≥8.(2020•大理模拟)已知e b a 10<<<,则下列正确的是( )A .a a b b a b a b >>>B .a b a b b b a a >>>C .a b a b a a b b >>>D .以上都不对9.(2021•唐山月考)已知0>>b a ,a b b a =,有如下四个结论:①e b <;①e b >;①存在a ,b 满足2e b a <⋅;①2e b a >⋅,则正确结论的序号是( ) A .①③ B .②③ C .①④ D .②④10.(2021•浙江月考)若1021<<<x x ,则( )A .1221x x e x e x <B .1221x x e x e x >C .1221ln ln x x x x ≥D .1221ln ln x x x x <11.(2021•烟台期中)设22ln =a ,33ln =b ,ec 1=,则下列选项正确的是( ) A .b a c << B .a b c <<C .c b a <<D .c a b <<12.(2021•襄阳期末)已知21)31(=a ,31)21(=b ,31log 21=c ,则( )A .c b a <<B .b c a <<C .b a c <<D .c a b <<13.(2021•浙江期末)已知51)41(=a ,41)51(=b ,ab c 22log 5log 4=,则a ,b ,c 的大小关系为( )A .c b a <<B .c a b <<C .b a c <<D .a c b <<14.(2021•云南月考)已知函数1122)1ln()(2++-++=x x x x f ,)33ln (f a =,)55ln (f b =,)2(π--=f c .下列结论中正确的是( ) A .c a b >> B .b a c >>C .c b a >>D .a b c >>15.(2021•新疆模拟)a ,b ,+∈R c 且c b a 632==,记a x 2=,b y 3=,c z 6=,则x ,y ,z 的大小关系为( ) A .z x y << B .z y x << C .y x z <<D .y z x <<16.(2015•希望杯)比较2e 和2e 的大小,结果是2e 2e .(填>、<或=,其中e 是自然对数的底数)17.(2013•北京卷)设l 为曲线xxy C ln :=在点)01(,处的切线. (1)求l 的方程;(2)求证:除切点)01(,之外,曲线C 在直线l 的下方.18.(2021•江苏月考)设函数ax x x f -=ln )(,ax e x g x -=)(其中a 为实数.(1)若)(x f 在)1(∞+,上是单调减函数,且)(x g 在)1(∞+,上有最小值,求a 的取值范围; (2)若)(x g 在)1(∞+-,上是单调增函数,试求)(x f 的零点个数,并证明你的结论.19.(2014•江苏卷)已知函数xx e e x f -+=)(,其中e 是自然对数的底数.(1)证明:)(x f 是R 上的偶函数; (2)若关于x 的不等式1)(-+≤-m ex mf x在)0(∞+,上恒成立,求实数m 的取值范围;(3)正数a 满足:存在)1[0∞+∈,x ,使得)3()(0300x x a x f +-<成立,试比较1-a e 与1-e a ,并证明你的结论.20.(2021•湖北模拟)已知π为圆周率,...71828.2=e 为自然对数的底数. (1)求函数xxx f ln )(=的单调区间及最值; (2)求3e ,e 3,πe ,e π,π3,3π这6个数中的最大数与最小数;(3)将3e ,e 3,πe ,e π,π3,3π这6个数按从小到大的顺序排列,并证明你的结论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教案及讲义
课题:比较大小专练
一.选择题(共60小题)
1.设a=log54,则,c=0.5﹣0.2,则a,b,c的大小关系是()
A.a<b<c B.b<a<c C.c<b<a D.c<a<b
2.设a=log5,b=20.1,c=log32,则()
A.a<c<b B.a<b<c C.b<c<a D.c<a<b
3.设a=log32,b=ln2,,则a,b,c的大小关系为()A.a<b<c B.c<a<b C.b<a<c D.c<b<a
4.若a=ln(ln)2,b=2ln(ln2),c=ln2,则a,b,c的大小关系为()
A.b<a<c B.c<a<b C.b<c<a D.a<b<c
5.已知3a=2b=log2c=6,则3a,2b,的大小关系为()
A.B.C.D.
6.设a=log23,b=log34,c=log48,则()
A.b<c<a B.c<b<a C.a<c<b D.a<b<c
7.已知a=21.2,b=log54,,则a,b,c的大小关系为()
A.c<a<b B.c<b<a C.b<a<c D.b<c<a
8.设a=,b=ln2,c=,则a,b,c的大小关系为()
A.a<b<c B.b<c<a C.c<a<b D.c<b<a
9.已知a=log0.92,b=log0.90.7,c=0.70.9,则a,b,c的大小关系是()A.a<b<c B.b<a<c C.a<c<b D.c<a<b
10.已知a=log30.3,b=30.3,c=0.31.3,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.c<a<b D.b<c<a
11.已知,b=log32,c=log2,则a,b,c的大小关系为()
A.a<b<c B.b<a<c C.a<c<b D.c<b<a
12.令a=60.7,b=0.76,c=log0.76,则a,b,c的大小顺序是()
A.b<c<a B.c<b<a C.b<a<c D.c<a<b
13.已知a=log20.3,b=30.2,c=0.32,则()
A.a<b<c B.a<c<b C.c<a<b D.b<c<a
14.已知a=log27,b=log38,c=0.30.2,则a,b,c的大小关系为()A.a<b<c B.c<b<a C.b<c<a D.c<a<b
15.设a=logπ3,b=+log23,c=(),则()
A.b<a<c B.b<c<a C.c<a<b D.c<b<a
16.设a=log35,b=log49,c=log57,则()
A.c<b<a B.b<a<c C.a<c<b D.c<a<b
17.若x=log50.3,y=30.3,z=0.32,则x,y,z的大小关系是()A.y>z>x B.z>y>x C.z>x>y D.y>x>z
18.已知a=0.80.9,b=ln,c=1.20.8,则a,b,c的大小关系是()
A.a>b>c B.c>a>b C.a>c>b D.c>b>a
19.设a=log34,b=,c=,则()
A.a<b<c B.b<c<a C.c<a<b D.c<b<a
20.若a=0.54,b=30.5,c=ln0.5,则下列结论正确的是()A.b>c>a B.b>a>c C.a>b>c D.c>a>b
21.已知,则a,b,c的大小关系为()
A.a<b<c B.b<a<c C.a<c<b D.c<b<a
22.已知a=ln3,b=3﹣0.4,c=3﹣0.5,则()
A.a>b>c B.c>a>b C.a>c>b D.c>b>a
23.已知实数a,b,c满足1.5a=3.1,5b=0.1,c=,则()
A.c>a>b B.a>c>b C.b>a>c D.c>b>a
24.已知a=log35,b=π,c=2﹣0.1,则()
A.a<b<c B.c<a<b C.b<c<a D.a<c<b
25.已知a=e﹣0.5,b=ln5,c=log0.5e,则()
A.c<a<b B.c<b<a C.b<a<c D.a<b<c
26.已知a=log0.20.02,b=log660,c=ln6,则()
A.c<b<a B.b<a<c C.c<a<b D.a<c<b
27.已知a=log0.20.05,b=0.51.002,c=4cos1,则下列判断正确的是()A.a<b<c B.b<c<a C.c<b<a D.b<a<c
28.下列不等式成立的是()
A.log3<log23<log25B.log3<log25<log23
C.log23<log3<log25D.log23<log25<log3
29.已知a=2,b=log2,c=π0,则()
A.a>c>b B.b>c>a C.c>a>b D.c>b>a
30.已知,b=log32,c=cos3,则a、b、c的大小关系为()A.a>b>c B.a>c>b C.b>a>c D.c>a>b
31.a=sin1,b=lg sin1,c=10sin1,则()
A.a<b<c B.b<a<c C.b<c<a D.c<b<a
32.设a=30.3,,c=log0.60.8,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b
33.已知,,c=sin1,则()
A.a<b<c B.b<c<a C.c<b<a D.c<a<b
34.已知a=ln2,,,则()
A.b<c<a B.c<a<b C.a<b<c D.b<a<c
35.已知a=log2π,b=ln,c=π﹣2,则()
A.b<c<a B.b<a<c C.c<a<b D.a<c<b
36.已知a=log52,b=log83,c=2﹣1,则下列判断正确的是()A.c<b<a B.b<a<c C.a<c<b D.a<b<c
37.若,,,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a
38.若,则()
A.a>c>b B.a>b>c C.c>a>b D.b>c>a
39.已知a=ln3,b=sin,c=3,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.c>b>a D.c>a>b
40.以下四组数中大小比较正确的是()
A.log3.1π<logπ3.1B.π﹣0.2<π﹣0.1
C.0.50.3<0.40.3D.0.40.3<0.10.7
41.设a=30.2,b=log0.23,c=sin(﹣2021°),则()
A.c<b<a B.b<c<a C.a<b<c D.b<a<c
42.已知a,b,c均为正实数,且b≠1,若,则下列关系中可能成立的是()
A.a=b<c B.a=c<b C.a<c<b D.b<c<a
43.三个数的大小关系是()
A.B.
C.D.
44.已知,b=log92,,则a,b,c的大小关系为()A.a>b>c B.c>b>a C.b>a>c D.a>c>b
45.已知a=log0.30.5,b=30.5,c=cos3,则a,b,c的大小关系为()A.c<b<a B.b<c<a C.c<a<b D.b<a<c
46.已知,,b=(sinα)α,c=(cosα)α,则()A.c>a>b B.b>c>a C.a>c>b D.c>b>a
47.设a=log20.3,b=0.4,c=0.40.3,则三者大小关系为()
A.a<b<c B.c<a<b C.b<c<a D.a<c<b
48.已知a=log52,b=log83,c=,则下列判断正确的是()
A.c<b<a B.b<a<c C.a<c<b D.a<b<c
49.已知a=log1.10.9,b=0.91.1,c=1.10.9,则a,b,c的大小关系为()A.a<b<c B.a<c<b C.b<a<c D.b<c<a
50.已知a=log65,b=60.1,c=log56,则a,b,c的大小关系为()A.b>a>c B.c>a>b C.b>c>a D.c>b>a
51.已知a=log32,b=ln2,c=0.5﹣0.2,则a,b,c的大小关系为()A.a<c<b B.a<b<c C.b<c<a D.c<a<b
52.已知函数f(x)=e﹣|x|,,,,则下述关系式正
确的是()
A.b>a>c B.b>c>a C.c>a>b D.a>b>c
53.设a=,b=log0.30.4,c=3ln2,则a,b,c的大小关系为()A.b<a<c B.a<c<b C.b<c<a D.a<b<c
54.已知a=log0.22,b=30.3,c=log32,则()
A.a<b<c B.a<c<b C.c<a<b D.b<c<a
55.已知函数f(x)=2|x|,a=f(()),b=f(log3),c=f(log5),则a、b、
c的大小关系为()
A.c>b>a B.b>a>c C.a>b>c D.c>a>b
56.已知a=()﹣0.8,b=,c=40.3,则a,b,c的大小关系是()
A.a<b<c B.a<c<b C.c<b<a D.b<c<a
57.已知2020a=2021,2021b=2020,c=ln2,则()
A.log a c>log b c B.log c a>log c b
C.a c<b c D.c a<c b
58.已知a=4ln3π,b=3ln4π,c=4lnπ3,则a,b,c的大小关系是()
A.c<b<a B.b<c<a C.b<a<c D.a<b<c
59.已知a=,b=,c=2ln,则()
A.a>b>c B.a>c>b C.c>b>a D.c>a>b
60.已知a=log3,b=2cosθ,c=πe,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.c>b>a D.c>a>b。

相关文档
最新文档