平面图形的镶嵌练习评测练习

合集下载

多边形镶嵌问题

多边形镶嵌问题
解:如图所示:
综合应用 5.如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,
如果铺成一个2×2的正方形图案(如图②),其中完整的 圆共有5个,如果铺成一个3×3的正方形图案(如图③), 其中完整的圆共有13个,如果铺成一个4×4的正方形图案 (如图④),其中完整的圆共有25个,若这样铺成一个 10×10的正方形图案,则其中完整的圆共有______个.
方形、正六边形、正八边形,且它们的边长都相等,同时
选择其中两种镶嵌地面,选择的方式有(

A.2种 B B.3种
C.4种
D.5种
3.如果在一个顶点周围用两个正方形和 n个正三角
形恰好无缝隙、无重叠嵌入,则 n 的值是(

A.3A
B.4
C.5
D.6
4.试用边长相等的一个正六边形、6个正方形、6个 正三角形镶嵌成一个平面图案,画出草图.
各个顶点数上的内角之和等于360°.
练习2 欣赏下面两组美丽的图案,看看中间空缺 处应补上什么图形才完成平面镶嵌?
A组
B组
随堂演练
基础巩固
1.只用下列正多边形地砖中的一种,能够无缝隙,不
重叠地铺满地面的是(

A
A.正三角形
B.正五边形
C.正七边形
D.正八边形
2.现有四种地面砖,它们的形状分别是正三角形、正
课题拓展研究—— 多变形镶嵌问题
正十二边形,正六边形,正方形
正多边形的镶嵌图共有几种?
●所有的方法:用1种:(3,3,3,3,3,3) (4,4,4,4)(6,6,6);
● 用2种:(4,8,8)(3,12,12)(3,3,6,6) (3,3,3,3,6)(3,3,3,4,4)(*5,10,10)

浙教版九年级数学上册《阅读材料 平面图形的镶嵌》一等奖创新教学设计

浙教版九年级数学上册《阅读材料 平面图形的镶嵌》一等奖创新教学设计

浙教版九年级数学上册《阅读材料平面图形的镶嵌》一等奖创新教学设计浙教版九年级上册阅读材料:《美妙的镶嵌》《平面图形的镶嵌》教案内容分析:这是浙教版九年级上册阅读材料的内容,旨在帮助学生了解更多有趣的数学史实,开阔学生的数学视野。

平面图形的镶嵌在现实生活中随处可见。

由于这一内容是现实的且有一定的实践性,所以能够让学生充分感受到“数学来源于生活”,进一步认识到学习数学的必要性,利于激发学生的兴趣,使学生乐于参与其中;由于该问题的解决,需要综合应用前面所学内容,是学生对所学平面图形有关知识的一次综合应用。

教学目的:1. 通过生活中的实例,理解镶嵌的含义、本质及平面图形镶嵌的条件。

2. 通过解决从特殊到一般的问题,培养观察能力、探究能力以及把实际问题转化为数学问题的能力。

3. 通过实验活动、设计、绘制一些平面镶嵌图形,体会镶嵌在日常生活中的广泛应用。

教学重点:1. 平面图形镶嵌的本质及条件的探究。

2. 平面图形的镶嵌在生活中的广泛应用。

教学难点:平面图形镶嵌的条件。

教学准备:1. 学生准备:(1)正三、四、五、六、七、八边形纸片;(2)生活中平面图形镶嵌的图片。

2. 教师准备:平面图形镶嵌的图片及课件。

教学流程框图:预计时间教学内容教师活动学生活动教学评价4分一、创设情境引出课题问:请大家仔细观察这几幅图片,它们有什么共同的特点呢?引出课题:《平面图形的镶嵌》答:都很平整;答:而且非常的美观;答:图形之间没有缝隙,也没有重叠;答:我觉得形状特别规则;答:大面积都铺成了一整片。

……1、让学生感受到生活中处处有数学。

2、突出平面图形镶嵌的特征:没有空隙、不重叠。

3、训练学生的观察力。

15分二、提出问题实验探究单种正多边形镶嵌问题的研究正方形,是非常常见的镶嵌,它被广泛的应用于我们的地面以及墙面。

问1:其他的正多边形能够发挥这样的作用吗?比如说正五边形,正八边形?探索发现镶嵌的本质和条件。

问2:正方形严丝合缝,正五边形有一个空缺的部分,正八边形有重叠的部分,那么正方形、正五边形和正八边形,是图形上哪方面的特性导致了它们产生这种情况呢?问3:平面图形的镶嵌它的关键是不能有什么?不能有什么?问4:那么你要想实现没有缝隙,没有重叠,那就得保证什么?也就是它的条件是什么?探索其他能单独进行平面的镶嵌的正多边形。

初中数学多边形与平面镶嵌

初中数学多边形与平面镶嵌

初中数学——多边形与平面镶嵌一、选择题。

1.只用下列图形中的一种,能够进行平面镶嵌的是()A.正十边形B.正八边形C.正六边形D.正五边形2.一个四边形截去一个角后内角个数是()A.3个B.4个C.5个D.3个或4个或5个3.已知一个多边形的内角和等于它的外角和,则这个多边形的边数为()A.3B.4C.5D.64.如图,四边形ABCD中,∠A=135°,∠B=∠D=90°,BC=2√3,AD=2,则四边形ABCD的面积是()A.4√2B.4√3C.4D.65.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定满足()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线相等且相互平分6.如果一个多边形的每一个内角都等于相邻外角的2倍,那么这个多边形的边数为()A.4B.5C.6D.87.如果一个正多边形的中心角为72°,那么这个正多边形的边数是( )A. 4B. 5C. 6D. 78.一个多边形的内角和是它的外角和的5倍,那么这个多边形的边数为 ( )A. 19B. 10C. 11D. 129.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是( )A. 5B. 6C. 7D. 810.如图,一束平行太阳光线FA 、GB 照射到正五边形ABCDE 上,50ABG ∠=︒,则FAE ∠的度数是( )A.22︒B.32︒C.50︒D.130︒11.若一个五边形有三个内角都是直角,另两个内角的度数都等于α,则α等于( )A. 30B. 120C. 135D. 10812.已知一个多边形的内角和是外角和的4倍,则这个多边形的边数是( )A.9B.10C.11D.12二、填空题。

13.若将多边形边数增加1倍,则它的外角和是__________度.14.一个多边形的每一个内角都是108°,你们这个多边形的边数是 .15.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .一个多边形的每个内角都等于150°,则这个多边形是 边形.B .用计算器计算:sin15°32' (精确到0.01)16.若一个多边形的每个外角都是 72° ,则这个多边形是 边形.三、解答题。

19.4 综合与实践 多边形的镶嵌(教案练习)

19.4 综合与实践 多边形的镶嵌(教案练习)

沪科版数学八年级下册19.4多边形的镶嵌教学设计课题19.4多边形的镶嵌单元第19章= 学科数学年级八年级下学习目标【知识与技能】了解镶嵌的数学思想及其应用.【过程与方法】经历探究利用一种正多边形以及任意多边形镶嵌的过程,增进应用数学的自信心;【情感态度与价值观】通过研究多边形镶嵌获得成功的体验和克服困难的经历,体会数学之美,认识数学的应用价值.重点镶嵌的含义及平面镶嵌条件的探究.难点怎样进行镶嵌.教学过程教学环节教师活动学生活动设计意图导入新课师:请同学们观看课件,这是生活中常见的镶嵌图案,体会数学的生活化。

师:请问拼接点处是否被瓷砖完全覆盖,有空隙吗?是否重叠?师:通过观察上面的地面及墙面,你发现它们有哪些共同特点?认真观察,积极思考并回答问题,通过生活场景到新课,讲授新课师:下面我们来描述一下平面镶嵌的定义:用形状相同或不同的平面封闭图形,覆盖平面区域,使图形间既无缝隙又不重叠地全部覆盖,这在几何里叫做平面镶嵌。

平面镶嵌也叫密铺。

师:同学们注意各种图形拼接后要既无缝隙,又不重叠师:接下来我们来探索一下如何利用正多边形以及任意多边形进行平面镶嵌,探究一:师:请同学们拿出准备好的正多边形纸片,以小组为单位,试一试,用同一种正多边形(如正三角形、正四边形、正五边形、正六边形)能否镶嵌成平面图案?(1)正三角形能平面镶嵌吗?师:请问在拼接点处角度之和为多少?正三角形能平面镶嵌(2)正方形能平面镶嵌吗?认真思考以及描述定义,在老师的引导下认真思考,积极探索平面镶嵌的有关内容学生拿手中正三边形进行实验并得出结论学生拿手中正方形进行实验并得出结论引出课题(板书)明确镶嵌含义通过分类讨论培养学生的逻辑思维能力学生通过拿手中的多边形进行实验探究得出结论,能够给学生加深印象,掌握知识点师:请问在拼接点处角度之和为多少?正方形能平面镶嵌(3)正五边形能平面镶嵌吗?正五边形不能平面镶嵌(4)正六边形能平面镶嵌吗?师:请问在拼接点处角度之和为多少?正六边形能平面镶嵌师:思考为什么边长相等的正五边形不能镶嵌,而边长相等的正六边形能镶嵌?师:由以上可得出结论:如果用一种正多边形可以进行镶嵌,那么每个内角学生拿手中正五边形进行实验并得出结论学生拿手中正六边形进行实验并得出结论都是360°的约数.所以说:在正多边形里只有正三角形、正四边形、正六边形可以镶嵌,而其他的正多边形不能镶嵌.探究二:小明搬新家了,他的房间要自己设计,地板想用两种正多边形来镶嵌,帮忙设计一个方案吧?活动1:师:用边长相等的正三角形和正方形,能否镶嵌成平面图案?请你试一试!你知道正三角形及正方形各需要多少吗?解:设在一个拼接点周围有m 个正三角形的角,n 个正方边形的角,则有m·60°+n·90°=360°2m+3n=12∵m,n 为正整数∴解为m=3.n=2需要三个正三角形及两个正方形镶嵌。

初中数学《平面镶嵌》课件

初中数学《平面镶嵌》课件

360
mn 14,
m 2 n 2
(2)正三角形与正六边形的平面镶嵌 图案(Ⅱ)
60° 60°
每个顶点处正三角形4个,正六边形1个。
(3)正三角形和正十二边形平面镶嵌图案
(05山东)9.用两种正多边形镶嵌,不能与正三 角形匹配的正多边形是
(A)正方形
(B)正六边形
(C)正十二边形 (D)正十八边形
只用一种正多边形 进行平面镶嵌,有三种 方法:3个六边形;4个 四边形;6个三角形。
正三角形
能否 平面 镶嵌

正方形

正五边形 正六边形
不能 能
图形
一个顶点周 围正多边形 的个数
6
4
3
1、三角形可以作 平面镶嵌吗?如果 能三角形如何镶嵌
呢?
2、四边形呢?
如图,四边形ABCD中,因为 ∠A+∠B+∠C+ ∠D = 360°,所以
每个顶点处几个角的和为360°
若用一种正多边形进行镶嵌 , 下列哪些正多边形可以镶嵌? 为什么呢? ①正三角形; ②正方形 ; ③正五边形; ④正六边形; ⑤正八边形; ⑥正十二边形。
还有其他的正多边形可以进行 镶嵌吗?
1、 正三角形的平面镶嵌
60°
60°
60°
60° 60° 60°
2、 正方形的平面镶嵌
1、镶嵌的要求:
无缝隙,不重叠的和为
360°
90°
3、 正六边形的平面镶嵌
F
E
A
D
B
C
你能只用一种正五边形拼成一个地面吗?为什么正五
边形拼不成地面?而用正三角形可以?可以拼成一个地
面条件是什么?
仅用正多边形进行镶

平面图形的镶嵌课题学习

平面图形的镶嵌课题学习

1.任意全等的三角形都 __可__以__密铺, 2.在每个拼接点处有 _六__个角,而这 _六__个角的
和恰好是这个三角形的内角和的 _两__倍,也 就是它们的和为 _3_6_0_o,
3.任意全等的四边形 __可__以_密铺. 4.在每个拼接点处有 _四__个角,而这 __四_个角的
和恰好是这个四边形的四个内角之 _和__,也就 是它们的和为 _3_6_0_o.
4、在边长相等的正三角形、正方形、正五边形、正六 边形中取两种正多边形镶嵌,哪两种正多边形 可以进 行平面镶嵌?
⑤设一个拼接点处有x个正方形,y个正六边形, 则有90x+120y=360, 方程没有正整数解, 所以用正方形和正六边形不能进行平面镶嵌;
4、在边长相等的正三角形、正方形、正五边形、正六 边形中取两种正多边形镶嵌,哪两种正多边形 可以进 行平面镶嵌?
的正多边 边之间的关 形 系
A、 3
B 、4
C、5
D 、6
3、如果只用一种正多边形作平面镶嵌,而且在每一 个正多边形的每一个顶点周围都有6个正多边形,则 该正多边形的边数为( A )
A、3
B、4
C、5
D、6
4、用正五边形和什么多边形能密铺?请你 设计一种图案。
解:如下图所示,
概念
平面镶嵌
可以进行
平面镶嵌
拼接点 处各角 之间的 关系
3、在边长相等的正三角形、正方形、正五边形、正 六边形中取一种正多边形镶嵌,哪几种正多边形 可 以进行平面镶嵌?
所以正三角形、正方形、正六边形能单独 进行平面镶嵌, 正五边形不能进行平面镶嵌。
用同种正多边形能进行镶嵌的条件是:
正多边形的一个内角的度数能整除 360 ° 可以用一种图形单独作平面镶嵌的 正多边形有 正三角形、正方形、正 六边形

7.4 平面镶嵌

无空隙、不重叠铺成一片。
探究
哪些图形可以密铺, 哪些图形不可以密铺?
探究活动1:用一种正多边形镶嵌
正三角形的平面镶嵌
60° 60° 60° 60° 60° 60°
接点处的六个 角和为360°
正方形的平面镶嵌
90°
想一想:
正五边形可以密铺吗?
1 3 2
正六边形可以密铺吗?
正六边形的平面镶嵌
练习:
1、下列多边形一定不能进行平面镶嵌的是( D ) A、三角形 B、正方形 C、任意四边形 D、正八边形
2、用正方形一种图形进行平面镶嵌时,在它的一个顶点周围的 正方形的个数是( B )
A、 3
B 、4
C、5
D 、6
3、如果只用一种正多边形作平面镶嵌,而且在每一个正多边形的 每一个顶点周围都有6个正多边形,则该正多边形的边数为( A ) A、3 B、4 C、5 D、6
7.4 平面镶嵌
请观察,这些图形在拼接时有什么特点?
如果你是设计师, 让你设计几种地板 图案,你如何设计 呢?
学一学 平面图形的密铺(平面图形的镶嵌):
用形状和大小完全相同的一种或几种 平面图形进行拼接,彼此之间不留空 隙、不重叠地铺成一片,这就是平面 图形的密铺,又称平面图形的镶嵌.
密铺的条件:
常见的同种正多边形的镶嵌
正多边形边数
3 180° 60° 能 6
4 360° 90° 能 4
5 540° 108° 不能
6 720° 120° 能 3
7
8
… … … … …
内角和 一个内角 能否镶嵌
一个顶点周 围角的个数
900° 1080°
900°/7
135° 不能
不能

《平面图形的镶嵌》教案

《平面图形的镶嵌》教案教学内容分析:本节课是八年级下册第二十二章第九节内容,属于“实践与综合应用”这一学习范畴。

平面图形的镶嵌在现实生活中随处可见。

由于这一内容是现实的且有一定的实践性,所以能够让学生充分感受到“数学来源于生活”,进一步认识到学习数学的必要性,利于激发学生的兴趣,使学生乐于参与其中;由于该问题的解决,需要综合应用前面所学内容“三角形”、“生活中的轴对称”、“图形的平移与旋转”、“四边形”、“多边形内角和外角的和”等知识,是学生对所学平面图形有关知识的一次综合应用,问题的这种综合性既能检查学生对旧知识的掌握程度,又能加深学生对所学内容的理解,进一步认识学习的价值;由于解决这一问题需要师生、生生之间的合作与交流,利于发展学生的合作与交流的意识与能力;由于本节课学生需要经历观察、归纳、猜想、实验、推理及应用的全过程,既能丰富学生的活动经验,又能获得课题学习的基本模式,对于今后的学习具有重要的指导意义。

教学目的:1、在实验与探究的学习活动中,理解平面图形镶嵌的含义、本质及平面图形镶嵌的条件。

2、通过动手操作与合作交流,积累数学活动的经验,发展学生的合作交流、实践操作及推理能力。

3、通过平面图形镶嵌图案的设计,培养学生综合运用知识的能力和审美情趣。

教学重点:1、平面图形镶嵌的本质及条件的探究。

2、掌握课题学习的基本模式:现实生活中的问题——确立研究课题——搜集相关材料——提出研究子问题——归纳猜想、实验探究(推理、证明)——应用研究成果——形成研究报告。

教学难点:平面图形镶嵌的本质。

教学准备:1、学生准备:(1)正三、四、五、六、七边形纸片。

(2)生活中平面图形镶嵌的图片。

2、教师准备:平面图形镶嵌的图片及课件。

预计时间(分)教学内容教师活动学生活动教学评价4分一、创设情境,引出课题问1:在现实生活中,我们所见到的地面、墙面乃至于服装面料,常常都是由一些图形拼接而成的。

请同学们展示课前收集的镶嵌图案,并观看老师搜集到的一些生活中地砖图片,说一说这些图形都有怎样的共同特征?出示课题:《平面图形的镶嵌》问2:下面这个图形是镶嵌吗?像这样,用形状、大小完全相同的平面图形进行拼接,使图形之间没有空隙,也没有重叠地铺成一片,叫做平面图形的镶嵌。

平面图形的镶嵌报告

《平面图形的镶嵌》综合实践活动方案一.活动目标1.让学生了解密铺的特点,会辨别一些能密铺的图形,创作密铺图案。

2.提高分析图形、合情推理的能力,发展图形观念,积累数学活动经验,培养审美情趣。

3.在自主探索平面图形密铺的过程中,经历观察、拼图、交流等活动,体验在解决问题过程中与他人合作的重要性,体验学习活动充满着探索与创造,体验学习带来的快乐;培养学生应用数学解决实问题的意识和能力;优化思维品质,培养学生发散性思维能力及由特殊到一般的归纳能力;通过合作学习,培养学生团结协作的团队精神。

二.活动准备一是收集生活中镶嵌图案,观察、思考并提出问题。

二是用纸片做一些全等正多边形,边长(边长均为3厘米),全等的任意三角形、全等的四边形的图片。

三.活动过程(一)小组分工把全班同学分为11个小组,每组选出一个小组长,资料员,记录员,监督员。

小组长负责指导整组的活动,资料员负责准备所需材料工具,记录员负责记录每个活动得出的数据结论。

监督员负责监督记录员记录的真实性,小组活动的效率。

(二)活动安排活动一:1.师问:你会用大小完全相同的等边三角形地砖铺满地面吗?你会用大小完全相同的正方形地砖铺满地面吗?你会用形状、大小完全相同的长方形地砖铺满地面吗?请动手试一试!(实物投影展示,最后点出课题)2.请学生观察一组密铺图案。

3.师问:平面图形镶嵌的特点是什么?学生先分组讨论,动手操作,然后交流自己的拼法学生观察一组密铺图案,思考平面图形镶嵌的特点,记录员记录。

活动二1.师问:(1)、形状、大小完全相同的正五边形能否密铺?(2)、形状、大小完全相同的正六边形能否密铺?(3)、你还能找到能够密铺的其他正多边形吗?2.师问:用一种正多边形密铺有几种情况?为什么?学生先分组讨论,动手操作,然后交流自己的拼法,学生思考并记录。

活动三1.师问:用下列图形能否密铺?(1)、形状、大小完全相同的任意三角形(2)、形状、大小完全相同的任意四边形请动手试一试,如果能,你能发现什么规律?如果不能,请说明理由2.师问:用全等的三角形(或四边形)密铺的方法?3.师问:用正五边形与什么图形搭配就能密铺?用正八边形与什么图形搭配就能密铺?正三角形、正方形、正六边形两两组合能否密铺?学生动手操作,组内交流自己的拼法(三)教师指导1.“活动一”是让学生在动手实践中学习,通过“做一做”形成对图形密铺的感性认识,增加生活实践经验,引出课题,并得出正三角形、正方形、长方形可以密铺的结论。

沪科版八年级数学下册同步练习题-多边形的镶嵌

19.4 综合与实践多边形的镶嵌1、用一种如下形状的地砖,不能把地面铺得既无缝隙又不重叠的是()A.正三角形B.正方形C.长方形D.正五边形2、某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无隙地板,他购买的瓷砖形状不可以是()A.正三角形 B.长方形 C.正八边形 D.正六边形3、边长相等的下列两种正多边形的组合,不能作平面镶嵌的是()A.正方形与正三角形B.正五边形与正三角形C.正六边形与正三角形D.正八边形与正方形4、一幅美丽图案,在某顶点处由四个边长相等的正多边形镶嵌而成,其中三个分别为正三角形,正四边形,正六边形,那么另一个为( )A.正三角形B.正四边形C.正五边形D.正六边形5、用正多边形镶嵌,设在一个顶点周围有m个正三角形,n个正六边形,则m,n的值分别为()A.0,3B.4,1C.2,2D.2,2或4,16、现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时,选择其中两种地面砖密铺地面,选择方式有(B) A.2种B.3种C.4种D.5种7、利用边长相等的正三角形和正六边形的地砖镶嵌地面时,在每个顶点有a 块正三角形和b块正六边形的地砖(ab≠0),则a+b的值为()A.3或4 B.4或5 C.5或6 D.48、如图,是由6个完全相同的正多边形拼成的无缝隙、不重叠的图形的一部分,那么,这种正多边形是____________.9、用三块正多边形的大理石铺地面,使拼在一起并交于一点的各边完全重合,其中两块大理石均为正五边形,则第三块大理石应该是正_____边形.10、在日常生活中观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角时,就拼成了一个平面图形.11、(1)请根据下列图形,填写表中空格:…正多边形边数 3 4 5 6 …n正多边形每个内角的度数60°90°…(2)如果限于用一种正多边形镶嵌,那么哪几种多边形能镶嵌成一个平面图形?(3)从正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面图形的镶嵌练习1、下列多边形一定不能进行平面镶嵌的是()A、三角形B、正方形C、任意四边形D、正八边形2、用正方形一种图形进行平面镶嵌时,在它的一个顶点周围的正方形的个数是()A、3B、4C、5D、63、如果只用一种正多边形作平面镶嵌,而且在每一个正多边形的每一个顶点周围都有6个正多边形,则该正多边形的边数为()A、3B、4C、5D、64、(2008年中考题)边长为a的正方形与下列边长为a的正多边形组合起来,不能镶嵌成平面的是()①正三角形;②正五边形;③正六边形;④正八边形A. ①②B. ②③C. ①③D. ①④5、(2009年山东烟台)现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有()A.2种B.3种C.4种D.5种6、用两种正多边形镶嵌,不能与正三角形匹配的正多边形是()A、正方形B、正六边形C、正十二边形D、正十八边形7、(2009 佛山课改)如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指钝角)是_____度.8、图中黄色卡片为正五边形,空白处是怎样的四边形?这个四边形各个角的度数是多少?多边形与平面图形的镶嵌一.选择题1.只用下列图形不能镶嵌的是()A.三角形B.四边形C.正五边形D.正六边形2.若n边形的每个内角为150°,则这个n边形是()A.九边形B.十边形C.十一边形D.十二边形3.一个多边形内角和是1080°,则这个多边形是()A.六边形B.七边形C.八边形D.九边形4.若一个多边形的内角和等于720°,则这个多边形的边数是()A.5 B.6 C.7 D.85.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有()A.4种 B.3种 C.2种 D.1种6.如图,在正五边形ABCDE中,连接AC、AD,则∠CAD的度数是度.7.下面各角能成为某多边形的内角和的是()A.430°B.4343°C.4320°D.4360°8.一个多边形的内角和与它的一个外角的和为570°,那么这个多边形的边数为()A.5 B.6 C.7 D.8二、填空题9.四边形的内角和等于度.10.一幅图案在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是.11.一个内角和为1440°的正多边形的外角和为.12.一个多边形的每个外角都等于72°,则这个多边形的边数为.三、解答题13.已知一个多边形的内角和等于外角和的5倍,求这个多边形的内角和及边数.14.在凸多边形中,四边形有2条对角线,五边形有5条对角线,经过观察、探索、归纳,你认为凸八边形的对角线条数应该是多少条?简单扼要地写出你的思考过程.15.请你用正三角形、正方形、正六边形三种图形设计一个能铺满整个地面的美丽图案.16.一个多边形少一个内角的度数和为2300°.(1)求它的边数;(2)求少的那个内角的度数.27.求下图中x的值.多边形与平面图形的镶嵌参考答案与试题解析一.选择题1.只用下列图形不能镶嵌的是()A.三角形B.四边形C.正五边形D.正六边形【考点】平面镶嵌(密铺).【分析】任意三角形的内角和是180°,放在同一顶点处6个即能组成镶嵌.同理四边形的内角和是360°,也能组成镶嵌.正六边形的每个内角是120°,正五边形每个内角是180°﹣360°÷5=108°,其中180°,360°,120°能整除360°,所以不适用的是正五边形.【解答】解:A、任意三角形的内角和是180°,放在同一顶点处6个即能密铺;B、任意四边形的内角和是360°,放在同一顶点处4个即能密铺;C、正五边形的每一个内角是180°﹣360°÷5=108°,不能整除360°,所以不能密铺;D、正六边形每个内角是120度,能整除360°,可以密铺.故选C.【点评】本题考查一种正多边形的镶嵌应符合一个内角度数能整除360°.任意多边形能进行镶嵌,说明它的内角和应能整除360°.2.若n边形的每个内角为150°,则这个n边形是()A.九边形B.十边形C.十一边形D.十二边形【考点】多边形内角与外角.【分析】首先根据内角的度数计算出外角度数,再用360°÷外角的度数即可得到边数.【解答】解:∵n边形的每个内角为150°,∴它的外角是180°﹣150°=30°,∴n=360°÷30°=12,故选:D.【点评】此题主要考查了多边形的内角和外角的关系,关键是掌握多边形的内角与相邻的外角互补.3.一个多边形内角和是1080°,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【考点】多边形内角与外角.【分析】设这个多边形是n(n≥3)边形,则它的内角和是(n﹣2)180°,得到关于n的方程组,就可以求出边数n.【解答】解:设这个多边形是n边形,由题意知,(n﹣2)×180°=1080°,∴n=8,所以该多边形的边数是八边形.故选C.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.4.若一个多边形的内角和等于720°,则这个多边形的边数是()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【专题】压轴题.【分析】利用多边形的内角和公式即可求解.【解答】解:因为多边形的内角和公式为(n﹣2)•180°,所以(n﹣2)×180°=720°,解得n=6,所以这个多边形的边数是6.故选:B.【点评】本题考查了多边形的内角和公式及利用内角和公式列方程解决相关问题.内角和公式可能部分学生会忘记,但是这并不是重点,如果我们在学习这个知识的时候能真正理解,在考试时即使忘记了公式,推导一下这个公式也不会花多少时间,所以,学习数学,理解比记忆更重要.5.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有()A.4种 B.3种 C.2种 D.1种【考点】平面镶嵌(密铺).【分析】由镶嵌的条件知,判断一种图形是否能够镶嵌,只要看一看正多边形的内角度数是否能整除360°,能整除的可以平面镶嵌,反之则不能.【解答】解:①正三角形的每个内角是60°,能整除360°,6个能组成镶嵌②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有3种.故选B.【点评】此题主要考查了平面镶嵌,用一种正多边形的镶嵌应符合一个内角度数能整除360°.任意多边形能进行镶嵌,说明它的内角和应能整除360°.6.如图,在正五边形ABCDE中,连接AC、AD,则∠CAD的度数是36度.【考点】正多边形和圆.【分析】根据正五边形的性质和内角和为540°,得到△ABC≌△AED,AC=AD,AB=BC=AE=ED,先求出∠BAC和∠DAE的度数,再求∠CAD就很容易了.【解答】解:根据正五边形的性质,△ABC≌△AED,∴∠CAB=∠DAE=(180°﹣108°)=36°,∴∠CAD=108°﹣36°﹣36°=36°.【点评】本题考查了正五边形的性质:各边相等,各角相等,内角和为540°.7.下面各角能成为某多边形的内角和的是()A.430°B.4343°C.4320°D.4360°【考点】多边形内角与外角.【分析】利用多边形的内角和公式可知,多边形的内角和是180度的倍数,由此即可找出答案.【解答】解:因为多边形的内角和可以表示成(n﹣2)•180°(n≥3且n是整数),则多边形的内角和是180度的倍数,在这四个选项中是180的倍数的只有4320度.故选:C.【点评】本题主要考查了多边形的内角和定理,是需要识记的内容.8.一个多边形的内角和与它的一个外角的和为570°,那么这个多边形的边数为()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【专题】方程思想.【分析】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,还需要懂得挖掘此题隐含着边数为正整数这个条件.本题既可用整式方程求解,也可用不等式确定范围后求解.【解答】解法1:设边数为n,这个外角为x度,则0<x<180°根据题意,得(n﹣2)•180°+x=570°解之,得n=.∵n为正整数,∴930﹣x必为180的倍数,又∵0<x<180,∴n=5.解法2:∵0<x<180.∴570﹣180<570﹣x<570,即390<570﹣x<570.又∵(n﹣2)•180°=570﹣x,∴390<(n﹣2)•180°<570,解之得4.2<n<5.2.∵边数n为正整数,∴n=5.故选A.【点评】此题较难,考查比较新颖,涉及到整式方程,不等式的应用.二、填空题9.四边形的内角和等于360度.【考点】多边形内角与外角.【分析】n边形的内角和是(n﹣2)•180°,代入公式就可以求出内角和.【解答】解:(4﹣2)•180°=360°.【点评】本题主要考查了多边形的内角和公式,是需要识记的内容.10.一幅图案在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是12.【考点】平面镶嵌(密铺).【分析】正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.【解答】解:∵正方形的一个内角度数为180°﹣360°÷4=90°,正六边形的一个内角度数为180°﹣360°÷6=120°,∴需要的多边形的一个内角度数为360°﹣90°﹣120°=150°,∴需要的多边形的一个外角度数为180°﹣150°=30°,∴第三个正多边形的边数为360÷30=12.故答案为:12.【点评】此题主要考查了平面镶嵌,关键是掌握多边形镶嵌成平面图形的条件:同一顶点处的几个内角之和为360°;正多边形的边数为360÷一个外角的度数.11.一个内角和为1440°的正多边形的外角和为360°.【考点】多边形内角与外角.【专题】计算题.【分析】根据了多边形的外角和定理即可得到答案.【解答】解:∵一个多边形的外角和为360°,∴一个内角和为1440°的正多边形的外角和为360°.故答案为360°.【点评】本题考查了多边形内角和定理和外角和定理:多边形内角和为(n﹣2)•180°,外角和为360°.12.一个多边形的每个外角都等于72°,则这个多边形的边数为5.【考点】多边形内角与外角.【分析】利用多边形的外角和360°,除以外角的度数,即可求得边数.【解答】解:多边形的边数是:360÷72=5.故答案为:5.【点评】本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.三、解答题13.已知一个多边形的内角和等于外角和的5倍,求这个多边形的内角和及边数.【考点】多边形内角与外角.【专题】计算题;方程思想.【分析】多边形的内角和可以表示成(n﹣2)•180°,外角和是固定的360°,从而可根据一个多边形的内角和等于它的外角和的5倍列方程求解.【解答】解:设这个多边形是n边形.则(n﹣2)×180°=5×360°,n=12.5×360°=1800°.答:这个多边形内角和是1800°,是6边形.【点评】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征.14.在凸多边形中,四边形有2条对角线,五边形有5条对角线,经过观察、探索、归纳,你认为凸八边形的对角线条数应该是多少条?简单扼要地写出你的思考过程.【考点】多边形的对角线.【专题】探究型.【分析】首先从特殊四边形的对角线观察起,则四边形是2条对角线,五边形有5=2+3条对角线,六边形有9=2+3+4条对角线,则七边形有9+5=14条对角线,则八边形有14+6=20条对角线.【解答】解:凸八边形的对角线条数应该是20.理由:∵从一个顶点发出的对角线数目,它不能向本身引对角线,不能向相邻的两个顶点引对角线,∴从一个顶点能引的对角线数为(n﹣3)条;∵n边形共有n个顶点,∴能引n(n﹣3)条,但是考虑到这样每一条对角线都重复计算过一次,∴能引条.∴凸八边形的对角线条数应该是:=20.【点评】能够从特殊中找到规律进行计算.15.请你用正三角形、正方形、正六边形三种图形设计一个能铺满整个地面的美丽图案.【考点】平面镶嵌(密铺).【分析】根据多边形镶嵌成平面图形的条件,因为正三角形的内角和为60°,而正方形、正六边形的内角分别为90°、120°,由于60+90×2+120=360,故能进行平面镶嵌,进而得出即可.【解答】解:因为三种瓷砖都必须用到,所以在每一个顶点处正三角形1个,正方形2个,正六边形1个即可.如图:【点评】此题主要考查了平面镶嵌,解这类题,需要掌握多边形镶嵌成平面图形的条件,即围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.16.一个多边形少一个内角的度数和为2300°.(1)求它的边数;(2)求少的那个内角的度数.【考点】多边形内角与外角.【分析】根据n边形的内角和公式,则内角和应是180°的倍数,且每一个内角应大于0°而小于180度,根据这些条件进行分析求解即可.【解答】解:(1)∵2300°÷180°=12…140°,则边数是:12+1+2=15;(2)该内角应是180°﹣140°=40°.【点评】本题主要考查多边形内角和公式的灵活运用,解题的关键是找到相应度数的等量关系.注意多边形的一个内角一定大于0°,并且小于180度.17.求下图中x的值.【考点】多边形内角与外角.【分析】根据五边形的内角和定理即可列方程求解.【解答】解:根据五边形的内角和是(5﹣2)•180=540°得到:2x+120+150+x+90=540解得:x=60.【点评】此题比较简单,只要结合多边形的内角和公式来寻求等量关系,构建方程即可求解.。

相关文档
最新文档