空间几何体的结构特征及三视图和直观图
高考数学(理)(全国通用版)一轮复习课件:空间几何体的结构及其三视图和直观图

【教材母题变式】 1.如图所示,在三棱台A′B′C′-ABC中,沿A′BC截去三棱锥A′-ABC,则剩余的部分是 ( A.三棱锥 C.三棱柱 ) B.四棱锥 D.组合体
【解析】选B.如图所示, 在三棱台A′B′C′-ABC中, 沿A′BC截去三棱锥A′-ABC, 剩余部分是四棱锥A′-BCC′B′.
【解析】(1)选C.对于A,它的每相邻两个四边形的公共边不一定互相平行,故错; 对于B,也是它的每相邻两个四边形的公共边不一定互相平行,例如,两个底面全等的 斜四棱柱拼接在一起,故错;
对于C,它符合棱柱的定义,故对; 对于D,它的截面与底面不一定互相平行,故错.
【误区警示】棱柱的侧面为平行四边形,但上下两底面是全等多边形,但侧面是平行四 边形的图形不一定是棱柱.
【母题变式溯源】
题号
1 2 3 4
知识点
空间几何体的结构 空间几何体的结构 三视图 斜二测画法
源自教材 P10· B组T1 P9· T2 P15· T1 P19· T3
考向一 空间几何体的结构特征 【典例1】(1)下列命题正确的是 ( ) A.有两个面平行,其余各面都是四边形的几何体叫棱柱 B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱
4.利用斜二测画法得到的 ①三角形的直观图一定是三角形; ②正方形的直观图一定是菱形; ③等腰梯形的直观图可以是平行四边形; ④菱形的直观图一定是菱形. 以上结论正确的个数是______________.
【解析】由斜二测画法的规则可知①正确;②错误,正方形的直观图是一般的平行四边 形;③错误,等腰梯形的直观图不可能是平行四边形;而菱形的直观图也不一定是菱形, ④也错误. 答案:1
平行
(3)长度:原图形中与x轴、z轴平行的,在直观图中长 度不变,原图形中与y轴平行的,长度变成原来的 .
空间几何体的结构、三视图、直观图

【答案】 B
第八章
第1课时
高三数学(· 理)
探究 4
解决这类问题的关键是准确分析出组合体
的结构特征, 发挥自己的空间想象能力, 把立体图和截面 图对照分析,有机结合,找出几何体中的数量关系,为了 增加图形的直观性,常常画一个截面圆作为衬托.
第八章
第1课时
高三数学(· 理)
思考题 4 (2011· 湖北文)设球的体积为 V1,它的内接 正方体的体积为 V2,下列说法中最合适的是( )
第八章
第1课时
高三数学(· 理)
2.棱锥的结构特征 (1)棱锥的定义:有一个面是多边形,其余各面都是有 _____________________ 一个公共顶点的三角形 ,这些面围成的几何体叫做棱锥. (2)正棱锥的定义:如果一个棱锥的底面是正多边形 , 并且顶点在底面内的射影是 底面中心 ,这样的棱锥叫做正 棱锥.
【答案】 ①√ ②× ③× ④√ ⑤√ ⑥×
第八章
第1课时
高三数学(· 理)
探究 1 深刻领会基本概念,熟练掌握基本题型的解 法,是学好立体几何的关键,本课涉及到的概念较多,应 多看、多想、多做.
第八章
第1课时
高三数学(· 理)
思考题 1 以下命题: ①若有两个侧面垂直于底面,则该四棱柱为直四棱柱; ②若有两个过相对侧棱的截面都垂直于底面, 则该四棱柱 为直四棱柱; ③圆柱、圆锥、圆台的底面都是圆; ④一个平面截圆锥,得到一个圆锥和一个圆台. 其中正确命题为________
A.V1 比 V2 大约多一半 B.V1 比 V2 大约多两倍半 C.V1 比 V2 大约多一倍 D.V1 比 V2 大约多一倍半
题型一
空间几何体的结构特征
例 1 判断正误 ①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③三棱锥的四个面中最多只有三个直角三角形; ④棱台的相对侧棱延长后必交于一点.
2021届高考数学一轮复习第1讲空间几何体的结构及其三视图和直观图创新教学案(含解析)

第1讲 空间几何体的结构及其三视图和直观图[考纲解读] 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间几何体的三视图,并能根据三视图识别几何体,会用斜二测画法画出它们的直观图.(重点、难点)[考向预测] 从近三年高考情况来看,本讲一直是高考的重点内容之一.预测2021年会一如既往地进行考查,以三视图和直观图的联系与转化为主要命题方向,考查题型有:①根据三视图还原几何体;②根据几何体求体积.试题以客观题形式呈现,难度一般不大,属中档题.1.多面体的结构特征 名称棱柱棱锥棱台图形底面 互相□01平行且□02相等 多边形互相□03平行 侧棱 □04平行且相等 相交于□05一点,但不一定相等延长线交于□06一点 侧面 形状□07平行四边形 □08三角形 □09梯形 2.旋转体的结构特征名称圆柱圆锥圆台球图形母线互相平行且相等, □01垂直于底面 相交于□02一点 延长线交于□03一点 —轴截 面全等的□04矩形 全等的□05等腰三角形 全等的□06等腰梯形□07圆3.直观图(1)画法:常用□01斜二测画法. (2)规则①原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴与y ′轴的夹角为45°(或135°),z ′轴与x ′轴(或y ′轴)□02垂直. ②原图形中平行于坐标轴的线段,直观图中仍□03平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度□04不变,平行于y 轴的线段的长度在直观图中变为原来的□05一半. 4.三视图(1)几何体的三视图包括□01正视图、□02侧视图、□03俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:□04正侧一样高,□05正俯一样长,□06侧俯一样宽;看不到的线画虚线.1.概念辨析(1)棱柱的侧棱都相等,侧面都是全等的平行四边形.( ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( ) (3)棱台各侧棱的延长线交于一点.( )(4)夹在圆柱的两个平行截面间的几何体还是旋转体.( ) 答案 (1)× (2)× (3)√ (4)× 2.小题热身(1)如图所示,在三棱台A ′B ′C ′-ABC 中,沿A ′BC 截去三棱锥A ′-ABC ,则剩余的部分是( )A .三棱锥B .四棱锥C .三棱柱D .组合体答案 B解析 剩余的部分是四棱锥A ′-B ′C ′CB .(2)用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )答案 A解析由斜二测画法的原理可知.(3)若一个三棱柱的三视图如图所示,其俯视图为正三角形,则这个三棱柱的高和底面边长分别为( )A.2,2 3 B.22,2C.4,2 D.2,4答案 D解析由三视图可知,正三棱柱的高为2,底面正三角形的高为23,故底面边长为4,故选D.(4)如图,长方体ABCD-A′B′C′D′被截去一部分,其中EH∥A′D′,则剩下的几何体是________,截去的几何体是________.答案五棱柱三棱柱题型一空间几何体的结构特征下列结论正确的个数是________.①有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱;②棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥;③有两个平面互相平行,其余各面都是梯形的多面体是棱台;④直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;⑤若在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线.答案0解析①③④错误,反例见下面三个图.②错误,若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.⑤错误,平行于轴的连线才是母线.识别空间几何体的两种方法(1)定义法:紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本要素,根据定义进行判定.(2)反例法:通过反例对结构特征进行辨析,要说明一个结论是错误的,只要举出一个反例即可.(2019·青岛模拟)以下命题:①以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;②圆柱、圆锥、圆台的底面都是圆面;③一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为( )A.0 B.1C.2 D.3答案 B解析由圆台的定义可知①错误,②正确.对于命题③,只有平行于圆锥底面的平面截圆锥,才能得到一个圆锥和一个圆台,③错误.题型 二 空间几何体的直观图(2019·桂林模拟)已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A.34a 2B.38a 2C.68a 2 D.616a 2 答案 D解析 如图(1)所示的是△ABC 的实际图形,图(2)是△ABC 的直观图.由图(2)可知A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图(2)中作C ′D ′⊥A ′B ′于点D ′,则C ′D ′=22O ′C ′=68a .∴S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2.故选D. 条件探究 将本例中的条件变为“△ABC 的直观图△A 1B 1C 1是边长为a 的正三角形”,则△ABC 的面积为________.答案62a 2解析 如图(1)所示的是△ABC 的直观图,图(2)是△ABC 的实际图形.在图(1)中作C 1D 1∥y 1轴,交x 1轴于点D 1,在图(2)中作CD ⊥x 轴,交x 轴于点D ,设C 1D 1=x ,则CD =2x .在△A 1D 1C 1中,由正弦定理a sin45°=x sin120°,得x =62a ,∴S △ABC =12AB ·CD =12×a ×6a =62a 2.用斜二测画法画直观图的技巧(1)在原图形中与x 轴或y 轴平行的线段在直观图中仍然与x ′轴或y ′轴平行. (2)原图中不与坐标轴平行的直线段可以先画出线段的端点再连线.(3)原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点,然后用平滑曲线连接.(2019·福州调研)已知等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.答案22解析 如图所示,图(1)是等腰梯形ABCD 的实际图形,O 为AB 的中点,图(2)是等腰梯形ABCD 的直观图.在图(2)中作E ′F ⊥x ′轴,交x ′轴于F , 因为OE =22-1=1,所以O ′E ′=12,E ′F =24,则直观图A ′B ′C ′D ′的面积S ′=1+32×24=22.题型 三 空间几何体的三视图角度1 已知几何体识别三视图1.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )答案 A解析观察图形易知卯眼处应以虚线画出,俯视图为,故选A.角度2 已知三视图还原几何体2.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( )A.217 B.2 5C.3 D.2答案 B解析根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽、圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为42+22=25,故选B.角度3 已知三视图中的部分视图,判断其他视图3.把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成的三棱锥C-ABD的正视图与俯视图如图所示,则侧视图的面积为( )A.12B.22C.24D.14答案 D解析由三棱锥C-ABD的正视图、俯视图得三棱锥C-ABD的侧视图为直角边长是22的等腰直角三角形,其形状如图所示,所以三棱锥C -ABD 的侧视图的面积为14.三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意观察方向,注意能看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形状,然后再找其剩下部分三视图的可能形状.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.1.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其中DD 1=1,AB =BC =AA 1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是( )答案 C解析 由直观图和俯视图知,其正视图的长应为底面正方形的对角线长,宽应为正方体的棱长,故排除B ,D ,又正视图中点D 1的射影是B 1,侧棱BB 1是看不见的,在正视图中用虚线表示,所以正视图是C 中的图形.故选C.2.(2019·河北衡水中学调研)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 为棱BB 1的中点,用过点A ,E ,C 1的平面截去该正方体的上半部分,则剩余几何体的侧视图为( )答案 C解析如图所示,过点A,E,C1的截面为AEC1F,则剩余几何体的侧视图为C中的图形.3.(2017·北京高考)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.3 2 B.2 3C.2 2 D.2答案 B解析在正方体中还原该四棱锥,如图所示,可知SD为该四棱锥的最长棱.由三视图可知正方体的棱长为2,故SD=22+22+22=2 3.故选B.组基础关1.某几何体的正视图和侧视图均为如图所示的图形,则在下图的四个图中可以作为该几何体的俯视图的是( )A.①③B.①④C.②④D.①②③④答案 A解析由正视图和侧视图知,该几何体为球与正四棱柱或球与圆柱体的组合体,故①③正确.2.如图,直观图所表示的平面图形是( )A.正三角形B.锐角三角形C.钝角三角形D.直角三角形答案 D解析由直观图可知,其表示的平面图形△ABC中AC⊥BC,所以△ABC是直角三角形.3.日晷是中国古代利用日影测得时刻的一种计时工具,又称“日规”.通常由铜制的指针和石制的圆盘组成,铜制的指针叫做“晷针”,垂直地穿过圆盘中心,石制的圆盘叫做“晷面”,它放在石台上,其原理就是利用太阳的投影方向来测定并划分时刻.利用日晷计时的方法是人类在天文计时领域的重大发明,这项发明被人类沿用达几千年之久.上图是一位游客在故宫中拍到的一个日晷照片,假设相机镜头正对的方向为正方向,则根据图片判断此日晷的侧视图可能为( )答案 D解析因为相机镜头正对的方向为正方向,所以侧视图中圆盘为椭圆,指针上半部分为实线,下半部分为虚线,故选D.4.如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形)( )A.①②⑥B.①②③C.④⑤⑥D.③④⑤答案 B解析正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①,侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.5.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )答案 D解析由三视图知该几何体的上半部分是一个三棱柱,下半部分是一个四棱柱.故选D.6.(2019·四川省南充高中模拟)在正方体中,M,N,P分别为棱DD1,A1D1,A1B1的中点(如图),用过点M,N,P的平面截去该正方体的顶点C1所在的部分,则剩余几何体的正视图为( )答案 B解析由已知可知过点M,N,P的截面是过正方体棱BB1,BC,CD的中点的正六边形,所以剩余几何体如图所示,其正视图应是选项B.7.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是( )A.8 B.7C.6 D.5答案 C解析画出直观图可知,共需要6块.8.如图,点O为正方体ABCD-A′B′C′D′的中心,点E为平面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的投影可能是________(填出所有可能的序号).答案①②③解析空间四边形D′OEF在正方体的平面DCC′D′上的投影是①;在平面BCC′B′上的投影是②;在平面ABCD上的投影是③,而不可能出现的投影为④的情况.9.(2019·福州质检)如图,网格纸上小正方形的边长为1,粗线画的是某几何体的三视图,则此几何体各面中直角三角形的个数是________.答案 4解析由三视图可得该几何体是如图所示的四棱锥P-ABCD,由图易知四个侧面都是直角三角形,故此几何体各面中直角三角形有4个.10.如图,一立在水平地面上的圆锥形物体的母线长为 4 m ,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥表面爬行一周后回到点P 处.若该小虫爬行的最短路程为4 2 m ,则圆锥底面圆的半径等于________ m.答案 1解析 把圆锥侧面沿过点P 的母线展开成如图所示的扇形, 由题意知OP =4 m ,PP ′=4 2 m ,则cos ∠POP ′=42+42-4222×4×4=0,且∠POP ′是三角形的内角,所以∠POP ′=π2.设底面圆的半径为r cm ,则2πr =π2×4,所以r =1.组 能力关1.“牟合方盖”(如图1)是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图2所示,图中四边形是为体现其直观性所作的辅助线,其实际直观图中四边形不存在,当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是( )A .a ,bB .a ,cC .c ,bD .b ,d答案 A解析 当正视图和侧视图均为圆时,有两种情况,一种正视图为a ,此时俯视图为b ;另一种情况的正视图和俯视图如下图所示.故选A.2.一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为( )A .8B .4C .4 3D .4 2答案 D解析 由三视图可知该几何体的直观图如图所示,由三视图特征可知,PA ⊥平面ABC ,DB ⊥平面ABC ,AB ⊥AC ,PA =AB =AC =4,DB =2,则易得S △PAC =S △ABC =8,S △CPD =12,S梯形ABDP=12,S △BCD =12×42×2=42,故选D.3.(2020·江西赣州摸底)某几何体的正视图和侧视图如图1,它的俯视图的直观图是矩形O1A1B1C1,如图2,其中O1A1=6,O1C1=2,则该几何体的侧面积为( )A.48 B.64C.96 D.128答案 C解析由题图2及斜二测画法可知原俯视图为如图所示的平行四边形OABC,设CB与y 轴的交点为D,则易知CD=2,OD=2×22=42,∴CO=CD2+OD2=6=OA,∴俯视图是以6为边长的菱形,由三视图知几何体为一个直四棱柱,其高为4,所以该几何体的侧面积为4×6×4=96.故选C.4.(2019·石家庄质检)一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为( )答案 D解析由题图可知,该几何体为如图所示的三棱锥,其中平面ACD⊥平面BCD.所以该三棱锥的侧视图可能为D项.5.(2018·河南郑州质检)某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy的最大值为________.答案64解析由三视图知三棱锥如图所示,底面ABC是直角三角形,AB⊥BC,PA⊥平面ABC,BC=27,PA2+y2=102,(27)2+PA2=x2,因此xy=x102-[x2-272]=x128-x2≤x2+128-x22=64,当且仅当x2=128-x2,即x=8时取等号,因此xy的最大值是64.6.(2019·全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.答案26 2-1解析先求面数,有如下两种方法.解法一:由“半正多面体”的结构特征及棱数为48可知,其上部分有9个面,中间部分有8个面,下部分有9个面,共有2×9+8=26(个)面.解法二:一般地,对于凸多面体,顶点数(V)+面数(F)-棱数(E)=2(欧拉公式).由图形知,棱数为48的半正多面体的顶点数为24,故由V+F-E=2,得面数F=2+E-V=2+48-24=26.再求棱长.作中间部分的横截面,由题意知该截面为各顶点都在边长为1的正方形上的正八边形ABCDEFGH,如图,设其边长为x,则正八边形的边长即为半正多面体的棱长.连接AF,过H,G分别作HM⊥AF,GN⊥AF,垂足分别为M,N,则AM=MH=NG=NF=22x.又AM+MN+NF=1,即22x+x+22x=1.解得x=2-1,即半正多面体的棱长为2-1.。
人教a版高考数学(理)一轮课件:8.1空间几何体的结构、三视图和直观图

3.简单组合体 简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;一 种是由简单几何体截去或挖去一部分而成,有多面体与多面体、 多面体与旋 转体、旋转体与旋转体的组合体.
4. 三视图 几何体的三视图包括正视图、侧视图、俯视图 , 分别是从几何体的 正前方、正左方、正上方观察几何体画出的轮廓线.
考纲解读
空间几何体的结构 和三视图部分 重点考 查柱、锥、台、球 的定义和以三 视图为 载体考查柱、锥、 台、球的表面 积和体 积, 难度 不大. 空间几 何体的 性质是 基础, 以它们为载体考查 线线、线面、 面面间 的 关 系 是 重点 . 三 视图 的 还 原在 各 地 高 考 试 题 中 频繁 出 现 , 已 经 成 为高 考 的 热 点 问 题, 题型 多以 选择 题和 填空 题为 主 , 有时也会作为解答题的背景出现.
三视图的长度特征: “ 长对正, 宽相等, 高平齐” , 即正视图和侧 视图一样高, 正视图和俯视图一样长, 侧视图和俯视图一样宽. 若相邻两物 体的表面相交, 表面的交线是它们的分界线, 在三视图中, 要注意实、 虚线的 画法 .
5. 空间几何体的直观图 空间几何体的直观图常用斜二测画法来画, 其规则是: (1) 原图形中 x轴、 y轴、 z轴两两垂直, 直观图中, x' 轴、 y' 轴的夹角为 45° , z' 轴与 x' 轴和 y' 轴所在平面垂直. (2) 原图形中平行于坐标轴的线段, 在直观图中仍分别平行于坐标轴. 平 行于 x轴和 z轴的线段在直观图中保持原长度不变, 平行于 y轴的线段长度 在直观图中变为原来的一半. 6. 中心投影与平行投影 (1) 平行投影的投影线互相平行, 而中心投影的投影线相交于一点. (2) 从投影的角度看, 三视图和用斜二测画法画出的直观图都是在平行 投影下画出来的图形.
8.1 空间几何体的结构及其三视图和直观图

答案 D
金太阳新课标资源网
题型二
几何体的直观图
【例2 】 一个平面四边形的斜二测画法的直观图 是一个边长为a的正方形, 是一个边长为a的正方形,则原平面四边形的面
积等于( 积等于( A.
2 2 a 4
) B. 2 2a 2 C. 2 a 2 D. 2 2 a 2 2 3 按照直观图的画法, 按照直观图的画法,建立适当的坐
金太阳新课标资源网
(2)已知图形中平行于x (2)已知图形中平行于x轴、y轴的线段,在直观 已知图形中平行于 轴的线段, 图中平行于 x′轴、y′轴 轴 轴 . (3)已知图形中平行于x轴的线段, (3)已知图形中平行于x轴的线段,在直观图中长 已知图形中平行于 度保持不变,平行于y轴的线段, 度保持不变,平行于y轴的线段,长度变为原来 的一半 . (4)在已知图形中过O点作z轴垂直于xOy平面, (4)在已知图形中过O点作z轴垂直于xOy平面, 在已知图形中过 xOy平面 在直观图中对应的z 轴也垂直于x 在直观图中对应的z′轴也垂直于x′O′y′平 面,已知图形中平行于z轴的线段,在直观图中 已知图形中平行于z轴的线段, 仍平行于z 仍平行于z′轴且长度 不变 .
金太阳新课标资源网
B错误.如下图,若△ABC不是直角三角 错误.如下图, ABC不是直角三角
形或是直角三角形, 形或是直角三角形,但旋转轴不是直角 边,所得的几何体都不是圆锥. 所得的几何体都不是圆锥. C错误.若六棱锥的所有棱长都相等, 错误.若六棱锥的所有棱长都相等, 则底面多边形是正六边形.由几何图形知, 则底面多边形是正六边形.由几何图形知,若以正 六边形为底面,侧棱长必然要大于底面边长. 六边形为底面,侧棱长必然要大于底面边长. D正确. 正确.
【创新课堂】高考数学总复习 专题07 第1节 空间几何体的结构及其三视图和直观图课件 文

()
A. ①② B. ②③ C. ①③ D. ②④
4. 如图,几何体的正视图和侧视图都正确的是 ( )
5. 如图是利用斜二测画法画出的△ABO的直观图,已知O′B′=4, A′B′∥y′轴,且△ABO的面积为16,过A′作A′C′⊥x′轴,则A′C′的 长为________.
答案:
1. C 解析:由棱柱定义可判断,最简单的棱柱为三棱柱,故C
答案:2 3 解析:由正视图和俯视图可知几何体是正方体切割后的一部分
(四棱锥C1ABCD),还原在正方体中,如图所示.
多面体最长的一条棱即为正方体的体对角线,
由正方体棱长AB=2知最长棱的长为2 3
9.若一个底面是正三角形的直三棱柱的正视图如图所示,
则其侧面积等于
()
A. 3
B.2
C.2 3
D.6
图1
图2
高考体验
(2012 高考浙江文 3)已知某三棱锥的三视图(单位:cm)如图 所示,则该三棱锥的体积是
A.1cm3 B.2cm3 C.3cm3 D.6cm3
【答案】C
【解析】由题意判断出,底面是一个直角三角形,两个直角
边分别为 1 和 2,整个棱锥的高由侧视图可得为 3,所以三棱
锥的体积为
1 3
3. D 解析:由母线的定义可知①、③错.
4. B 解析:注意实、虚线的区别.
5.2 2 解析:由题意知,在△ABO中,边OB上的高AB=16/4*2=8,
则在直观图中A′B′=4,∴A′C′=A′B′sin 45°=4*
2 2 2. 2
6.如图所示,矩形O′A′B′C′是水平放置的一个平面图形的直观 图,其中O′A′=6 cm,O′C′=2 cm,则原图形是 ( )
7-1第一节 空间几何体的结构特征及三视图和直观图(2015年高考总复习)
新课标A版数学
变式思考 2
某几何体的正视图和侧视图均如右图所示,则 )
该几何体的俯视图不可能是(
考源教学资源网
第34页
返回导航
第七章
疑 点 清 源 1.对三视图的认识及三视图画法 (1)空间几何体的三视图是该几何体在三个两两垂直的平面上 的正投影,并不是从三个方向看到的该几何体的侧面表示的图形. (2)在画三视图时,重叠的线只画一条,能看见的轮廓线和棱 用实线表示,挡住的线要画成虚线. (3)三视图的正视图、侧视图、俯视图分别是从几何体的正前 方、正左方、正上方观察几何体用平行投影画出的轮廓线.
考源教学资源网
第13页
返回导航
第七章
第一节
高考总复习模块新课标
新课标A版数学
答案
D
考源教学资源网
第14页
返回导航
第七章
第一节
高考总复习模块新课标
新课标A版数学
2.一个几何体的三视图形状都相同、大小均相等,那么这个 几何体不可能是( A.球 C.正方体 ) B.三棱锥 D.圆柱
第4页
返回导航
第七章
第一节
高考总复习模块新课标
新课标A版数学
D 读教材· 抓基础
回扣教材 扫除盲点
考源教学资源网
第5页
返回导航
第七章
第一节
高考总复习模块新课标
新课标A版数学
课 本 导 读 1.多面体的结构特征
考源教学资源网
第6页
2 2
第20页
返回导航
第七章
第一节
高考总复习模块新课标
新课标A版数学
Y 研考点· 知规律
探究悟道 点拨技法
考源教学资源网
2015高考数学(理)一轮复习考点突破课件:7.1空间几何体的结构及其三视图和直观图
2 则在 Rt△ABE 中,AB=1,∠ABE=45° ,∴BE= 2 . 而四边形 AECD 为矩形,AD=1, ∴EC=AD=1.∴BC=BE+EC 2 = 2 +1. 由
此可还原原图形如图②. 在原图形中,A′D′=1,A′B′=2, 2 B′C′= 2 +1,且 A′D′∥B′C′, A′B′⊥B′C′, 1 ∴这块菜地的面积为 S= (A′D′+B′C′)· A′B′ 2 1 2 2 =2×1+1+ ×2=2+ 2 . 2 2 【答案】 2+ 2
称
正视图 几何体的三视图有:
侧视图
、
、
俯视图
1.画三视图时,重叠的线只画一条,挡
画 住的线画成虚线. 2.三视图的正视图、侧视图、俯视图分 别是从几何体的 下 方、
右
正前 左 正上
法
方、
方观
察几何体得到的正投影图. 1.画法规则:长对正、高平齐、宽相
• • • •
• 对点演练 (1)(教材改编)无论怎么放置,其三视图完全相同的几何体是 • ( A.正方体 B.长方体 C.圆锥 D.球 答案:D
• 解析:①正确;由原图形中平行的线段在直观图中仍平行可知②正 确;但是原图形中垂直的线段在直观图中一般不垂直,故③错;④ 正确;⑤中原图形中相等的线段在直观图中不一定相等,故错误. • 答案:①②④
• •
•
1.正棱柱与正棱锥 (1)底面是正多边形的直棱柱,叫正棱柱,注意正棱柱中“正” 字包含两层含义:①侧棱垂直于底面;②底面是正多边形. (2)底面是正多边形,顶点在底面的射影是底面正多边形的中心 的棱锥叫正棱锥,注意正棱锥中“正”字包含两层含义:①顶点 在底面上的射影必需是底面正多边形的中心,②底面是正多边形, 特别地,各棱均相等的正三棱锥叫正四面体.
高中数学立体几何PPT课件
旋转 体
(1)圆柱可以由____矩__形____绕其任一边所在直线旋 转得到. (2)圆锥可以由直角三角形绕其____直__角__边____所在 直线旋转得到. (3)圆台可以由直角梯形绕___直__角__腰___所在直线或 等腰梯形绕_上__、__下__底__中__点__连__线___旋转得到,也可 由___平__行__于__底__面____的平面截圆锥得到. (4)球可以由半圆或圆绕__地,它的水平放置的平面图形的斜二测直 观图是直角梯形(如图),∠ABC=45°,AB=AD=1,DC⊥ BC,则这块菜地的面积为________.
答案:2+
2 2
目录
5.(2011·高考北京卷改编)某四面体的三视图如图所示,该四 面体四个面的面积中最大的是________.
目录
3.(教材习题改编)有下列四个命题:
①底面是矩形的平行六面体是长方体;
②棱长相等的直四棱柱是正方体;
③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;
④对角线相等的平行六面体是直平行六面体.
其中真命题的个数是( )
A.1
B.2
C.3
D.4
目录
解析:选A.命题①不是真命题,因为底面是矩形,但侧棱不 垂直于底面的平行六面体不是长方体; 命题②不是真命题, 因为底面是菱形(非正方形),底面边长与侧棱长相等的直四棱 柱不是正方体;命题③也不是真命题,因为有两条侧棱都垂 直于底面一边不能推出侧棱与底面垂直;命题④是真命题, 由对角线相等,可知平行六面体的对角面是矩形,从而推得 侧棱与底面垂直,故平行六面体是直平行六面体.
目录
解析:
将三视图还原成几何体的直观图如图所示. 它的四个面的面积分别为 8,6,10,6 2,故面积最大的应为 10.
空间几何体的结构特征、三视图和直观图
全国卷五年考情图解高考命题规律把握1.考查形式本章内容在高考中一般为2道小题和1道解答题,分值约占22分.2.考查内容高考基础小题主要考查几何体的三视图的识别,几何体表面积、体积的求解及线面角问题,与球有关的切接问题,解答题主要考查平行与垂直的关系和表面积、体积及点到平面距离的求法.3.备考策略(1)熟练掌握解决以下问题的方法和规律①应用线面、面面平行、垂直的判定定理、性质定理问题;②求几何体表面积、体积的计算问题;③线面角、点到平面距离的求法问题;④球与几何体的切接问题.(2)重视分类讨论、转化化归思想的应用.第一节空间几何体的结构特征、三视图和直观图[最新考纲] 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.1.多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且全等多边形互相平行且相似侧棱互相平行且相等相交于一点,但不一定相等延长线交于一点侧面形状平行四边形三角形梯形(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.3.旋转体的结构特征名称圆柱圆锥圆台球图形母线互相平行且相等,垂直于底面长度相等且相交于一点延长线交于一点轴截面全等的矩形全等的等腰三角形全等的等腰梯形圆侧面展开图矩形扇形扇环旋转图形矩形直角三角形直角梯形半圆(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方和正上方观察几何体画出的轮廓线.(2)在画三视图时,重叠的线只画一条,挡住的线要画成虚线.(3)三视图的长度特征:“长对正、高平齐、宽相等”,即正俯同长、正侧同高、俯侧同宽.5.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.[常用结论]1.特殊的四棱柱2.球的截面的性质(1)球的任何截面是圆面;(2)球心和截面(不过球心)圆心的连线垂直于截面;(3)球心到截面的距离d与球的半径R及截面的半径r的关系为r=R2-d2.3.按照斜二测画法得到的平面图形的直观图,其面积与原图形面积的关系如下:S直观图=24S原图形,S原图形=22S直观图.一、思考辨析(正确的打“√”,错误的打“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.()(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱台. ()(4)菱形的直观图仍是菱形.()[答案](1)×(2)×(3)×(4)×二、教材改编1.下列说法正确的是()A.相等的角在直观图中仍然相等B.相等的线段在直观图中仍然相等C.正方形的直观图是正方形D.若两条线段平行,则在直观图中对应的两条线段仍然平行D[根据斜二测画法的规则知,A,B,C均不正确,故选D.]2.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()A B C DB[俯视图中显然应有一个被遮挡的图,所以内部为虚线,故选B.]3.若一个三棱柱的三视图如图所示,其俯视图为正三角形,则这个三棱柱的高和底面边长分别为()A.2,23B.22,2C.4,2D.2,4D[由三视图可知,正三棱柱的高为2,底面正三角形的高为23,故底面边长为4,故选D.]4.如图所示,在三棱台A′B′C′-ABC中,沿A′BC截去三棱锥A′-ABC,则剩余的部分是()A.三棱锥B.四棱锥C.三棱柱D.组合体B[如图所示,在三棱台A′B′C′-ABC中,沿A′BC截去三棱锥A′-ABC,剩余部分是四棱锥A′-BCC′B′.]考点1空间几何体的结构特征空间几何体概念辨析题的常用方法定义法紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,根据定义进行判定反例法通过反例对结构特征进行辨析,即要说明一个结论是错误的,只要举出一个反例即可A.侧面都是等腰三角形的三棱锥是正三棱锥B.六条棱长均相等的四面体是正四面体C.有两个侧面是矩形的棱柱是直棱柱D.用一个平面去截圆锥,底面与截面之间的部分叫圆台B[底面是等边三角形,且各侧面三角形全等,这样的三棱锥才是正三棱锥,所以A错;斜四棱柱也有可能两个侧面是矩形,所以C错;截面平行于底面时,底面与截面之间的部分才叫圆台,所以D错.]2.下列命题正确的是()A.两个面平行且相似,其余各面都是梯形的多面体是棱台B.存在每个面都是直角三角形的四面体C.直角梯形以一条腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台D.用平面截圆柱得到的截面只能是圆和矩形B[如图1所示,可排除A,如图2所示,正方体ABCD-A1B1C1D1中的三棱锥C1-ABC.四个面都是直角三角形,故B正确.图1图2选项C中,应以直角腰所在直线为旋转轴,故C错.选项D中,只有截面与圆柱的母线平行或垂直,截得的截面才为矩形或圆,否则为椭圆或椭圆的一部分.故选B.]3.下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线D[A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.图1图2B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.]把一摞书摆成长方体形状,沿一个方向轻轻一推,成为一个平行六面体,此时平行六面体有两个平行的面是矩形.考点2空间几何体的三视图(多维探究)已知几何体识别三视图识别三视图的步骤(1)弄清几何体的结构特征及具体形状、明确几何体的摆放位置;(2)根据三视图的有关定义和规则先确定正视图,再确定俯视图,最后确定侧视图;(3)被遮住的轮廓线应为虚线,若相邻两个物体的表面相交,表面的交线是它们的分界线;对于简单的组合体,要注意它们的组合方式,特别是它们的交线位置.(1)(2019·武汉模拟)如图是一个正方体,A,B,C为三个顶点,D是棱的中点,则三棱锥A-BCD的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)()A B C D(2)(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()(1)A(2)A[(1)正视图和俯视图中棱AD和BD均看不见,故为虚线,易知选A.(2)由题意可知,咬合时带卯眼的木构件如图所示,其俯视图为选项A中的图形.]画三视图时,可先找出各个顶点在投影面上的投影,然后再确定连线在投影面上的实虚.已知三视图判断几何体特征由三视图确定几何体的步骤(1)(2018·北京高考)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4(2)(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217 B.2 5 C.3 D.2(1)C(2)B[(1)在正方体中作出该几何体的直观图,记为四棱锥P-ABCD,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3,故选C.(2)先画出圆柱的直观图,根据题图的三视图可知点M,N的位置如图1所示.图1图2圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图2所示,连接MN,则图中MN即为M到N的最短路径.ON=14×16=4,OM=2,∴MN=OM2+ON2=22+42=2 5.故选B.]有三条侧棱互相垂直的三棱锥、四棱锥,都可把它们放置在长方体或正方体中来解决问题.[教师备选例题]已知某四棱锥的三视图如图所示,则该四棱锥的四个侧面中最小的面积为.12[由三视图知,该几何体是在长、宽、高分别为2,1,1的长方体中,截去一个三棱柱AA1D1-BB1C1和一个三棱锥C-BC1D后剩下的几何体,即如图所示的四棱锥D-ABC1D1,其中侧面ADD1的面积最小,其值为12.]由三视图中的部分视图确定剩余视图由几何体的部分视图确定剩余视图的方法解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.如图是一个空间几何体的正视图和俯视图,则它的侧视图为()A B C DA[由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A,故选A.]根据正视图和俯视图的长、宽,可知道侧视图的长、宽.[教师备选例题]如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是()C[由该几何体的正视图和侧视图可知该几何体是柱体,且其高为1,由其体积是12,可知该几何体的底面积是12,由选项图知A的面积是1,B的面积是π4,C的面积是12,D的面积是π4,故选C.]1.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体,其中DD1=1,AB=BC=AA1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是()A B C DC[根据该几何体的直观图和俯视图知,其正视图的长应为底面正方形的对角线长,宽应为正方体的棱长,故排除B、D;而在三视图中看不见的棱用虚线表示,故排除A.故选C.]2.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16B[观察三视图可知该多面体是由直三棱柱和三棱锥组合而成的,且直三棱柱的底面是直角边长为2的等腰直角三角形,侧棱长为2.三棱锥的底面是直角边长为2的等腰直角三角形,高为2,如图所示.因此该多面体各个面中有2个梯形,且这两个梯形全等,梯形的上底长为2,下底长为4,高为2,故这些梯形的面积之和为2×12×(2+4)×2=12.故选B.]考点3空间几何体的直观图1.用斜二测画法画直观图的技巧在原图形中与x轴或y轴平行的线段在直观图中与x′轴或y′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线.2.原图形与直观图面积的关系按照斜二测画法得到的平面图形的直观图与原图形面积的关系:(1)S直观图=2;(2)S原图形=22S直观图.4S原图形(1)[一题多解]已知等腰梯形ABCD,CD=1,AD=CB=2,AB=3,以AB所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为()A. 2B.24 C.22D.2 2(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,O′C′=2 cm,则原图形是()A.正方形B.矩形C.菱形D.一般的平行四边形(1)C(2)C[(1)法一(作图求解):如图,取AB的中点O为坐标原点,建立平面直角坐标系,y轴交DC于点E,O,E在斜二测画法中的对应点为O′,E′,过E′作E′F′⊥x′轴,垂足为F′,因为OE=(2)2-12=1,所以O′E′=12,E′F′=24.所以直观图A′B′C′D′的面积为S′=12×(1+3)×24=22,故选C.法二(公式法):由题中数据得等腰梯形ABCD的面积S=12×(1+3)×1=2.由S直观图=24S原图形,得S直观图=24×2=22,故选C.(2)如图,在原图形OABC中,应有OD=2O′D′=2×22=42(cm),CD =C′D′=2 cm.所以OC=OD2+CD2=(42)2+22=6(cm),所以OA=OC,由题意得OA綊BC,故四边形OABC是菱形,故选C.] 在画直观图或原图时,应先确定坐标轴上的点,非坐标轴上的点,应通过与x轴或y轴平行的线段来确定.1.如图所示,直观图四边形A′B′C′D′是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是.2+2[把直观图还原,原平面图形如图所示:在直角梯形ABCD中,AB=2,BC=2+1,AD=1,所以面积为12(2+2)×2=2+ 2.]2.如图正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图形的周长是cm.8[由题意知正方形O′A′B′C′的边长为1,它是水平放置的一个平面图形的直观图,所以O′B′= 2 cm,对应原图形平行四边形OABC的高为2 2 cm,所以原图形中,OA=BC=1 cm,AB=OC=(22)2+12=3 cm,故原图形的周长为2×(1+3)=8 cm.]。