42大学物理下册(振动习题课后作业)-江西理工大学

合集下载

江西理工大学 大学物理练习题及答案_张流生

江西理工大学 大学物理练习题及答案_张流生

===《大学物理》课程习题册====运动学(一)一、填空:1、已知质点的运动方程:X=2t,Y=(2-t2)(SI制),则t=1s 时质点的位置矢量_________,速度_________,加速度________,第1s 末到第2s末质点的位移____________,平均速度_________。

2、一人从田径运动场的A点出发沿400米的跑道跑了一圈回到A 点,用了1分钟的时间,则在上述时间内其平均速度为__________________。

二、选择:1、以下说法正确的是:()(A)运动物体的加速度越大,物体的速度也越大。

(B)物体做直线运动前进时,如果物体向前的加速度减小了,则物体前进的速度也减小。

(C)物体加速度的值很大,而物体速度的值可以不变,是不可能的。

(D)在直线运动中且运动方向不发生变化时,位移的量值与路程相等。

2、如图河中有一小船,人在离河面一定高度的岸上通过绳子以匀速度V O拉船靠岸,则船在图示位置处的速率为:()θ(A)V O(B)V O cosθ(C)V O /cosθ(D)V O tgθ三、计算题1、一质点沿OY轴直线运动,它在t时刻的坐标是:Y=4.5t2-2t3(SI制)求:(1) t=1-2秒内质点的位移和平均速度(2) t=1秒末和2秒末的瞬时速度(3)第2秒内质点所通过的路程(4)第2秒内质点的平均加速度以及t=1秒和2秒的瞬时加速度。

运动学(二)一、填空:1、一质点沿X轴运动,其加速度为a=4t(SI制),当t=0时,物体静止于X=10m处,则t时刻质点的速度_______________,位置________________。

2、一质点的运动方程为(SI 制) ,任意时刻t的切向加速度为__________;法向加速度为____________。

二、选择:1、下列叙述哪一种正确()在某一时刻物体的(A)速度为零,加速度一定为零。

(B)当加速度和速度方向一致,但加速度量值减小时,速度的值一定增加。

大学物理(第四版)课后习题及答案 机械振动

大学物理(第四版)课后习题及答案 机械振动

大学物理(第四版)课后习题及答案机械振动13 机械振动解答13-1 有一弹簧振子,振幅A=2.0×10-2m,周期T=1.0s,初相ϕ=3π/4。

试写出它的运动方程,并做出x--t图、v--t 图和a--t图。

13-1分析弹簧振子的振动是简谐运动。

振幅A、初相ϕ、角频率ω是简谐运动方程x=Acos(ωt+ϕ)的三个特征量。

求运动方程就要设法确定这三个物理量。

题中除A、ϕ已知外,ω可通过关系式ω=2π确定。

振子运动的速度T和加速度的计算仍与质点运动学中的计算方法相同。

解因ω=2π,则运动方程 T⎛2πt⎛x=Acos(ωt+ϕ)=Acos t+ϕ⎛⎛T⎛根据题中给出的数据得x=(2.0⨯10-2m)cos[(2πs-1)t+0.75π]振子的速度和加速度分别为v=dx/dt=-(4π⨯10-2m⋅s-1)sin[(2πs-1)t+0.75π] a=d2x/dt2=-(8π2⨯10-2m⋅s-1)cos[(2πs-1)t+0.75πx-t、v-t及a-t图如图13-l所示π⎛⎛13-2 若简谐运动方程为x=(0.01m)cos⎛(20πs-1)t+⎛,求:(1)振幅、频率、角频率、周期和4⎛⎛初相;(2)t=2s 时的位移、速度和加速度。

13-2分析可采用比较法求解。

将已知的简谐运动方程与简谐运动方程的一般形式x=Acos(ωt+ϕ)作比较,即可求得各特征量。

运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t值后,即可求得结果。

解(l)将x=(0.10m)cos[(20πs-1)t+0.25π]与x=Acos(ωt+ϕ)比较后可得:振幅A= 0.10 m,角频率ω=20πs-1,初相ϕ=0.25π,则周期T=2π/ω=0.1s,频率ν=1/T=10Hz。

(2)t= 2s时的位移、速度、加速度分别为x=(0.10m)cos(40π+0.25π)=7.07⨯10-2m v=dx/dt=-(2πm⋅s-1)sin(40π+0.25π)a=d2x/dt2=-(40π2m⋅s-2)cos(40π+0.25π)13-3 设地球是一个半径为R的均匀球体,密度ρ5.5×103kg•m。

江西理工大学大学物理(下)习题册及答案详解

江西理工大学大学物理(下)习题册及答案详解

班级_____________ 学号___________姓名________________ 简谐振动1. 一质点作谐振动, 振动方程为X=6COS (8πt+π/5) cm, 则t=2秒时的周相为:π5116, 质点第一次回到平衡位置所需要的时间为:s 0375.0.2. 一弹簧振子振动周期为T 0, 若将弹簧剪去一半, 则此弹簧振子振动周期T 和原有周期T 0之间的关系是:022T T =.3. 如图为以余弦函数表示的谐振动的振动曲线, 则其初周相φ=π-,P 时刻的周相为:0.4. 一个沿X 轴作谐振动的弹簧振子, 振幅为A , 周期为T , 其振动方程用余弦函数表示, 如果在t=0时, 质点的状态分别是:(A) X 0=-A; (B) 过平衡位置向正向运动;(C) 过X=A/2 处向负向运动; (D) 过A x 22-= 处向正向运动.2 1 0 P t(s) X(m)试求出相应的初周相之值, 并写出振动方程.)2cos()(ππ+=t T A x A ; )22cos()(ππ-=t T A x B )32cos()(ππ+=t TA x C ; )452cos()(ππ+=t TA x D5.一质量为0.2kg 的质点作谐振动,其运动议程为:X=0.60 COS(5t -π/2)(SI)。

求(1)质点的初速度;(2)质点在正向最大的位移一半处所受的力。

解(1))5sin(00.32π--==t dtdxv 10.00.3,0-==s m v t(2)x x dtdv a 2520-=-==ω 22.5.7,30.0--===sm a m x AN ma F 5.1-==班级_____________ 学号___________姓名________________简谐振动的合成1. 两个不同的轻质弹簧分别挂上质量相同的物体1和2, 若它们的振幅之比A 2 /A 1=2, 周期之比T 2 / T 1=2, 则它们的总振动能量之比E 2 / E 1 是( A )(A) 1 (B) 1/4 (C) 4/1 (D) 2/11)()(;)(2222221122112=⋅==A A T T E E T A m E π2.有两个同方向的谐振动分别为X 1=4COS(3t+π/4)cm ,X 2 =3COS(3t -3π/4)cm, 则合振动的振幅为:cm A 1=, 初周相为:4πφ=. 3. 一质点同时参与两个同方向, 同频率的谐振动, 已知其中一个分振动的方程为X 1=4COS3t cm, 其合振动的方程为分振动的振幅为A 2 =cm 4, 4. 动方程分别为X 1=A COS(ωt+π/3), X 2 =A COS (ωt+5π/3), X 3 =A COS(ω程为:)6cos(3πω+=t A x5. 频率为v 1和v 2的两个音叉同时振动时,可以听到拍音,可以听到拍音,若v 1>v 2,则拍的频率是(B )(A)v 1+v 2 (B)v 1-v 2 (C)(v 1+v 2)/2 (D)(v 1-v 2)/26.有两个同方向,同频率的谐振动,其合成振动的振幅为0.20m ,周相与第一振动周相差为π/6。

大学物理-机械振动习题-含答案

大学物理-机械振动习题-含答案

大学物理-机械振动习题-含答案一、选择题1. 质点作简谐振动,距平衡位置 2。

0cm 时, ,则该质点从一端运动到 C )C:2.2s --- 加速度 a=4.0cm /s 另一端的时间为( A:1.2s B: 2.4sD:4.4sX ,22.2s.2上 2 42 •—个弹簧振子振幅为2 10 2m 当t 0时振子在x 1.0 10 2m 处,且向 正方向运动,则振子的振动方 程是:[A ]A : 1.2题图22 10 cos( t )m ;3’6)m; 3)m;2 10 2 cos( t2 10 2 cos( tD :2x 2 10 cos( t —)m;解:由旋转矢量可 以得出振动的出现初相为:?3 •用余弦函数描述一简谐振动,若其速度与时间 -1v (m.s )1.3题图t (s )—►o 1 —v 2 m vm如图示,则振动的初相位为: (v —t )关系曲线[A ]A: e ; B : 3 ; C : 2 ;D : 2- ;E :「3丁6解:振动速度为:V V max Si n( t 0)t 0时,sin 01,所以。

-或。

2 6由知1.3图,t 0时,速度的大小是在增加,由旋转矢量图知,旋转矢量在 第一象限内,对应质点的运动是由正最大 位移向平衡位置运动,速度是逐渐增加的, 旋转矢量在第二象限内,对应质点的运动 是由平衡位置向负最大位移运动,速度是 逐渐减小的,所以只有。

-是符合条件的。

64 •某人欲测钟摆摆长,将钟摆摆锤上移 1毫 米,测得此钟每分快0。

1秒,则此钟摆的 ) B:30cm C:45cm丄理丁 160mm 30cm2 dT 2 ( 0.1):、填空题1 •有一放置在水平 面上的弹簧振子。

振幅A = 2.0 X 0_2m 周期摆长为( A:15cm D:60cm 解:单摆周期 有: 他2 . g,两侧分别对「和l 求导,j*T = 0.50s ,根据所给初始条件,作出简谐振动的矢量图,并写出振动方程式或初位相。

江西理工大学-大学物理习题册及答案

江西理工大学-大学物理习题册及答案
(1)质点的运动轨道方程
(2)写出t=1s和t=2s时刻质点的位矢;并计算这一秒内质点的平均速度;
(3)t=1s和t=2s时刻的速度和加速度;
(4)在什么时刻质点的位矢与其速度恰好垂直?这时,它们的X、Y分量各为多少? y
(5)在什么时刻,质点离原点最近?距离是多少?
解:(1)轨道方程: (
(2)任意时刻t 质点的位矢:
运动学(二)
一、填空:
1、一质点沿X轴运动,其加速度为a=4t(SI制),当t=0时,物体静止于X=10m处,则t时刻质点的速度: ,位置: 。( )
2、一质点的运动方程为SI制),任意时刻t的切向加速度为: ;法向加还度为: 。
解: ; ; ;
;
二、选择:
1、下列叙述哪一种正确(B)
在某一时刻物体的
o
R
解:如图为t时刻质点的运动情况,设此时其加速度与速度的夹角为 ,则有: ;而
∴ ;
积分: 得:
即:
班级_____________学号____________姓名____________
运动学(习题课后作业)
一、选择题:
1、一质点在平面上运动,已知质点位置矢量的表示式为=at2+bt2(式中,a,b为常量)则该质点作:(B)
式中负号表示平均速度方向沿x轴负向。
(2)
t=1s时: ; t=2s时:
(3)令 ,得: t=1.5s,此后质点沿反向运动。
∴路程:
(4)
式中负号表示平均加速度方向沿x轴负向。
t=1s时:
t=2s时:
式中负号表示加速度方向沿x轴负向。
班级_____________学号____________姓名____________

大学物理振动习题含答案

大学物理振动习题含答案

一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。

第一个质点的振动方程为x 1 = A cos(ωt + α)。

当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。

则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。

若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。

其运动速度与时间的曲线如图所示。

若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ]5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。

将它们拿到月球上去,相应的周期分别为1T '和2T '。

则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。

大学物理振动习题含答案

一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。

第一个质点的振动方程为x 1 = A cos(ωt + α)。

当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。

则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。

若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。

其运动速度与时间的曲线如图所示。

若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ]5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。

将它们拿到月球上去,相应的周期分别为1T '和2T '。

则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。

GL.大学物理(2)-1振动波动作业习题及解答

谐振子的动能与势能表达式分别为
2 2 2 2 1 EK ( t ) = 1 2 mv ( t ) 2 mA sin ( t 0 ) ; 2 2 2 2 2 2 1 1 Ep ( t ) = 1 2 kx ( t ) 2 kA cos ( t 0 ) 2 m A cos ( t 0 )
则该振子谐振动表达式为 x( t ) = 0.24cos( t 2 ) (SI) 则 t=0.5s 时,该振子的位置为 x( t = 0.5s) = 0.24cos( 4 ) 0.12 2 0.17(m)
解(2): t=0.5s 时物体所受作用力为
F ( t = 0.5s) kx( t = 0.5s) = m 2 x( t = 0.5s) 4019 103 (N)
sin 2 ( t 0 ) cos 2 ( t 0 ) tan 2 ( t 0 ) 1 tan( t 0 ) 1 ( t 0 ) (2n 1) 4 , n 0,1, 2, 3,
解(2):由 t=0s 时,该振子位于 x0=A, 则可知其振动初相为
解(1):由振动规律表达式知系统的圆频率、周期、振幅和初相分别为
8π(s1 ) ; T = 2 ( 4) s ; A 0.5(cm) ; 0 π 3 ;
vm 4π(cms1 ) ; am 32π2 (cms2 )
系统振动速度、加速度的表式分别为
v = 4 sin(8π t t (2 ) x ( 3) y( x, t ) 0.10cos t 5.0 x ( 3) (SI)
解(3):若为负向波,由 t0=1/3(s)时 x0=0 处质元的旋矢图知该质元此时刻的相位为

(完整版)大学机械振动课后习题和答案(1~4章总汇)

1.1 试举出振动设计、系统识别和环境预测的实例。

1.2 如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?1.3 设有两个刚度分别为1k ,2k 的线性弹簧如图T —1.3所示,试证明:1)它们并联时的总刚度eq k 为:21k k k eq +=2)它们串联时的总刚度eq k 满足:21111k k k eq +=解:1)对系统施加力P ,则两个弹簧的变形相同为x ,但受力不同,分别为:1122P k xP k x=⎧⎨=⎩由力的平衡有:1212()P P P k k x =+=+故等效刚度为:12eq Pk k k x ==+2)对系统施加力P ,则两个弹簧的变形为: 1122Px k Px k ⎧=⎪⎪⎨⎪=⎪⎩,弹簧的总变形为:121211()x x x P k k =+=+故等效刚度为:122112111eq k k P k x k k k k ===++1.4 求图所示扭转系统的总刚度。

两个串联的轴的扭转刚度分别为1t k ,2t k 。

解:对系统施加扭矩T ,则两轴的转角为: 1122t t Tk T k θθ⎧=⎪⎪⎨⎪=⎪⎩系统的总转角为:121211()t t T k k θθθ=+=+,12111()eq t t k T k k θ==+故等效刚度为:12111eq t t k k k =+1.5 两只减振器的粘性阻尼系数分别为1c ,2c ,试计算总粘性阻尼系数eq c1)在两只减振器并联时,2)在两只减振器串联时。

解:1)对系统施加力P ,则两个减振器的速度同为x &,受力分别为:1122P c x P c x =⎧⎨=⎩&& 由力的平衡有:1212()P P P c c x =+=+&故等效刚度为:12eq P c c c x ==+& 2)对系统施加力P ,则两个减振器的速度为: 1122P x c P x c ⎧=⎪⎪⎨⎪=⎪⎩&&,系统的总速度为:121211()x x x P c c =+=+&&& 故等效刚度为:1211eq P c x c c ==+&1.6 一简谐运动,振幅为0.5cm,周期为0.15s,求最大速度和加速度。

大学物理(第四版)课后习题及答案机械振动.docx

13机械振动解答13-1 有一弹簧振子,振幅A=2.0 X 10-2m,周期T=1.Os ,初相=3 π /4。

试写岀它的运动方程,并做岀x--t图、v--t图和a--t图。

13-1分析弹簧振子的振动是简谐运动。

振幅A、初相「、角频率•■是简谐运动方程X=ACoSlQt亠。

的三个特征量。

求运动方程就要设法确定这三个物理量。

题中除A、「已知外,2 Tr-■ ■可通过关系式•=—确定。

振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。

解因.=Z ,则运动方程TX=ACOS讥=ACOS i2 t t : !■ I1W尸I T丿根据题中给出的数据得X =(2.0 10 ^m)cos[( 2":S A)t 0.75二]振子的速度和加速度分别为V =dχ∕dt - 10^m s1)sin[(2∏s')t 亠0.75二]a =d2χ∕dt2二2 10 2m S 丄)cos[(2二S 丄)t 0.75二x-t、v-t及a-t图如图13-1所示13-2 若简谐运动方程为X =(0.01m)cos(20:s」)t ',求:(1)振幅、频率、角频率、周期和- 4初相;(2) t=2s时的位移、速度和加速度。

13-2分析可采用比较法求解。

将已知的简谐运动方程与简谐运动方程的一般形式X=ACOS ∙∙t ■作比较,即可求得各特征量。

运用与上题相同的处理方法,写岀位移、速度、加速度的表达式,代入t值后,即可求得结果。

解 (l )将X =(0.10m)cos[(20 7s ^)t • 0.25 二]与X=ACOS lU t w]比较后可得:振幅A= 0.10m 角频率• =20二S1,初相=0.25二,则周期T =2TJ=0∙1s ,频率=1∕T =10Hz。

(2) t= 2s时的位移、速度、加速度分别为X =(0.10m)cos(40 二0.25 二)=7.07 10i mV =dx∕dt - -(2~'m S^)Sin(40,亠0.25二)a =d2x∕dt2 = J40 二2m s?)cos(40 ;亠0.25二)13-3设地球是一个半径为R的均匀球体,密度P 5.5 X 103kg? m3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

振动(习题课后作业)
1. 当谐振子的振幅增大到2A时, 它的周期不变, 速度最大值变为原来的2倍, 加速度最大值变为原来的2倍(填增大、减小、不变或变几倍)解: (1)T、ω、ν只决定于谐振子本身的性质
(2) v m=ωA , A'=2A , v m'=ωA'=2ωA=2v m
(3) a m=ω2A , A'=2A , a m'=ω2A'=2ω2A=2a m
2. 如图所示质点的谐振动曲线所对应的振动方程( D )
(A) X=2COS(3t/4+π/4)(m) (B)X=2COS(πt/4+5π/4) (m)
(C) X=2COS(πt-π/4) (m) (D) X=2COS(3πt/4-π/4) (m)
解法一:t=0时, cosφ=x0/A=√2/2 , sinφ=-v0/ωA<0
∴ φ=-π/4 ,
t=1s时, x=2cos(ω-π/4)=0, v=-ωAsin(ω-π/4)<0
即 cos(ω-π/4)=0 , sin(ω-π/4)>0 ,
且(ω-π/4)-π/4<π, (ω-π/4)<5π/4 ,
(ω-π/4)= π/2 , 则ω=π/2+π/4=3π/4(s-1)
∴ x=2cos(3πt/4-π/4)
X(m)
t(s)
2
1
解法二:
t=0时, cosφ=x0/A=√2/2 v0>0, ∴ φ=-π/4
t=1s时, A转过的角度为Δφ=ωt=3π/4
ω=(3π/4)/t=3π/4
∴ x=2cos(3πt/4-π/4)
3. 两个同方向同频率的谐振动, 其合振幅为20cm, 合振动周相与第一个振动的周相差为60°,第一个振动的振幅为A1=10cm ,则第一振动与第二振动的周相为( B )
(A) 0 (B) π/2 (C) π/3 (D) π/4
解:根据余弦定理
A22=A2+A12-2AA1cos60°
=400+100-400×1/2=300
A2=√300 =10√3
A2=A12+A22+2A1A2cos(φ1-φ2)
cos(φ1-φ2)=( A2-A12-A22)/(2A1A2)=0
φ1-φ2=/2
4. 一劲度为k的轻弹簧截成三等份, 取出其中两根, 将它们并联在一起, 下面挂一质量为m的物体, 则振动系统的频率为( B )
(A) (B)
(C) (D)
设每等份弹簧的劲度系数为k'
则由1/k=1/k'+1/k'+1/k'=3/ k' 得:k'=3k
两段并联后的劲度系数为k''= k'+ k'=2 k'=6k
选(B)
5. 已知两谐振动的位置时间及速度时间曲线如图所示, 求它们的振动方程.
X(m)
V(cm/s)
2 10
1
0 1 t(s) 0 1 2 3 4 t(π/10)S
-1
-2-10
解:(a)
(b)。

相关文档
最新文档