关于切比雪夫多项式的一些研究
切比雪夫多项式的应用

4 3.5 3 2.5 2
←f(x)
1.5 1 0.5
→L3(x)
0 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
对于连续函数 g ( x) = x 20 , e x , sin(5πx), e − x sin(2πx) ,分别绘出 n = 10,13,20,21 次拉格朗日 插值多项式 Ln ( x) 的图像和原函数的图像如图 1-4 所示
>> k=0:1:10; >> X=cos((2*k+1)*pi/22); >> %求出 10 次切比雪夫多项式的零点 syms x >> F=inline('x.^20'); >> %要插值的原函数 f(x)=x.^20 >> t=linspace(-1,1,100000); >> yt=F(t); y=F(X); yi=interp1(X,y,t,'language'); plot(t,yt,'r--',t,yi,'k-')
k=0:1:20; X=cos((2*k+1)*pi/42); syms x >> F=inline('sin(5*pi*x)'); %要插值的原函数 f(x)=sin(5*pi*x) t=linspace(-1,1,100000); yt=F(t); y=F(X); yi=interp1(X,y,t,'language'); plot(t,yt,'r--',t,yi,'k-')
Rn ( x ) =
1 f ( n +1) (ξ x )ω n ( x) (n + 1)!
关于两类切比雪夫多项式及三角函数的一些恒等式

关于两类切比雪夫多项式及三角函数的一些恒等式
切比雪夫多项式是一类多项式,它们可以用来描述在多维空间中的曲线或曲面。
两类切比雪夫多项式是一类特殊的切比雪夫多项式,它们的形式如下:
$P_n(x)=\sum_{k=0}^n c_kT_k(x)$
其中$T_k(x)$ 是切比雪夫多项式,$c_k$ 是常数。
三角函数是指以弧度制为单位的角度所对应的函数,这些函数包括正弦函数(sin)、余弦函数(cos)和正切函数(tan)。
在数学中,恒等式是指两个数学表达式,它们对于任意可以取到的值都相等。
例如,以下是一些有关两类切比雪夫多项式和三角函数的恒等式:
切比雪夫多项式的级数展开:$P_n(x)=\sum_{k=0}^n
c_kT_k(x)=c_0+c_1T_1(x)+c_2T_2(x)+...+c_nT_n(x)$
切比雪夫多项式的级数逆展开:$T_n(x)=\frac{P_n(x)-P_{n-1}(x)}{c_n}$
三角函数的恒等式:$\sin^2 x+\cos^2 x=1$
反三角函数的恒等式:$\sin^{-1} x=\arcsin x$、$\cos^{-1} x=\arccos x$、
$\tan^{-1} x=\arctan x$
这些恒等式在数学中都有广泛应用。
切比雪夫多项式的三角函数表示

切比雪夫多项式的三角函数表示切比雪夫多项式是一类重要的数学函数,它可以通过三角函数来表示。
在本文中,我们将介绍切比雪夫多项式的定义、性质以及如何使用三角函数来表示它。
让我们来了解一下切比雪夫多项式的定义。
切比雪夫多项式是由切比雪夫多项式方程所定义的一组多项式。
切比雪夫多项式方程可以表示为T_n(x) = cos(n\arccos(x)),其中n是多项式的阶数,x是自变量。
切比雪夫多项式是一个在区间[-1, 1]上定义的函数,它具有一些特殊的性质。
切比雪夫多项式具有递推关系,即T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x),其中T_0(x) = 1,T_1(x) = x。
这个递推关系可以用来计算高阶切比雪夫多项式。
切比雪夫多项式的性质非常丰富。
首先,切比雪夫多项式是一个奇函数,即T_n(-x) = -T_n(x)。
其次,切比雪夫多项式在区间[-1, 1]上具有n个不同的实根,这些实根被称为切比雪夫节点,可以用来进行数值计算和插值。
现在让我们来看一下如何使用三角函数来表示切比雪夫多项式。
我们知道,三角函数是一个周期函数,可以用来表示周期性的现象。
而切比雪夫多项式是一个在区间[-1, 1]上定义的函数,因此可以通过三角函数来表示。
具体来说,我们可以使用余弦函数来表示切比雪夫多项式。
根据切比雪夫多项式的定义,可以将cos(n\arccos(x))展开为cos(n\theta),其中\theta = \arccos(x)。
然后,利用三角函数的和差化积公式,可以将cos(n\theta)表示为余弦函数的线性组合。
例如,切比雪夫多项式T_2(x) = 2x^2 - 1可以表示为cos(2\arccos(x)) = 2\cos^2(\arccos(x)) - 1。
进一步化简,可以得到T_2(x) = 2\cos^2(\arccos(x)) - 1 = 2x^2 - 1。
这就是切比雪夫多项式T_2(x)的三角函数表示形式。
切比雪夫多项式(上)

十二、切比雪夫多项式(上)前面我们已经看到,作为指数型母函数,1)(-x e x生成了伯努利数B n ;+++++=-n n x n•B x •B x B B x e x!!21)(2210,1)()(-x e tx xe 生成了伯努利多项式)(t n β:+++++=-n n x n•t x •t x t t x e tx xe !)(!2)()()(1)()(2210ββββ,伯努利数和伯努利多项式在数学分析中有许多作用,前面讲到的求自然数方幂和的公式只是其中之一.数学中有不少重要的特殊函数可以通过相应的母函数产生,这是母函数的一个重要作用. 本节介绍的切比雪夫多项式就是这些重要的特殊函数中的一个.我们来研究把函数22444xtx x +-- (117)作为普通母函数(不是指数型母函数)所生成的函数列. 这里分子是一个x 的多项式;如果把分母中的t 看作常数,则也是x 的多项式. 我们设法把它展开成x 形式幂级数.因为分子分母都是x 的二次多项式,故先把它写成22244481444xtx tx xtx x +--+-=+--, (118)右边第二项分子是x 的一次多项式,分母是x 的二次多项式,因而是个真分式,故可把它写成部分分式(把t 看成常数).为了便于讨论,我们令θθθsin cos ,cos i •z •t +==.这里1-=i 是虚数单位. 于是,sin cos )sin )(cos sin (cos sin cos sin cos 11••i ••i i i ••i z θθθθθθθθθθ-=-+-=+=所以 t zz 2cos 21==+θ. 这样一来,(118)右边第二项的分母便可写成,2112141244422••x z x z ••••••••••x x z z x tx ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=+⎪⎭⎫ ⎝⎛+-=+-于是,211121121121244482•x zx z ••••••••••x z x z txx tx tx-+-=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛--=+-- 代入(118),便得(117)的部分分式展式:x zx z x tx x 2111211144422-+-+-=+-- . (119) 注意到,2221100∑∑∞=∞==⎪⎭⎫⎝⎛=-n n n nn nx z x z x z ,2121211100∑∑∞=∞==⎪⎭⎫ ⎝⎛=-n n n n n nnx z x z x z代入(119)得)120(.1211212144410022•••••••••••••x z z ••••••••••x zx z x tx x n n n n nnn nnnn nn⎪⎭⎫ ⎝⎛++=++-=+--∑∑∑∞=∞=∞=根据棣莫佛公式:)122(,sin cos )sin (cos 1)121(,sin cos )sin (cos ••••••••••••n i n i z••••••••••••n i n i z nnn n θθθθθθθθ-=-=+=+=由此得θn zz nn cos 21=+. (123)代入(120)有n n n x n x tx x ∑∞=-+=+--11222cos 1444θ,而t ••t•cos arc ,cos ==θθ,所以n n n x t n x tx x ∑∞=-+=+--11222)(arccos cos 1444.记),2,1(,)(arccos cos 21)(,1)(10 ••••n •••t n t ••T •t T n n ===- (124)这就是由母函数(117)所生成的函数列,称它们为切比雪夫多项式何以见得(124)是t 的多项式呢?仍用t arccos =θ代回,并注意到(121),(122),(123),就得,])1()1[(21])sin (cos )sin [(cos 21121cos 21)(arccos cos 21)(2211••t i t t i t ••••i i ••••z z t n t T n n nnn nn n n n n n --+-+=-++=⎪⎭⎫⎝⎛+===--θθθθθ利用二项式定理:,)1()1()1(,)1()1(202202•t i t C t i t ••t i t C t i t kn k k k k n k nn k nk k k n k n n--=---=-+∑∑=-=-于是∑=--+-=nk k k kk n k n nn t i t C t T 02])1(1[)1(21)(, (125)当k 取奇数值时,0)1(1=-+k ,故和式中只有k 取偶数值的那些项. 这样一来,(125)便可写成)126(.)1()1(21)1(221)(]2[02221]2[022222••••••••t t C ••••t i t C t T n r rn r r n r n n r rr r n r n nn ∑∑=--=---=-=这就证明了)(t T n 确实是个多项式,而且是n 次多项式,其中⎥⎦⎤⎢⎣⎡2n 如前所说是表示2n的整数部分,例如当n =8时,⎥⎦⎤⎢⎣⎡2n =[4]=4,当n =9时,4]5.4[292==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡n .。
切比雪夫多项式定理

切比雪夫多项式定理切比雪夫多项式定理(Chebyshev Polynomial Theorem)是一个数学定理,由俄国数学家切比雪夫(Pafnuty Chebyshev)首先提出。
它是关于多项式的定理,描述了多项式在有界域内的行为。
该定理可以用来证明许多关于多项式的性质,也可以用来解决许多多项式问题。
定理的形式如下:给定函数f(x)在区间[a,b]上单调,其中a<b,假设函数f(x)具有n次可导的连续导数,并且f(x)的n-1次导数在[a,b]上单调。
如果f(x)可以由n 次切比雪夫多项式Pn(x)表示,则有:f(x)=Pn(x)+Rn(x)其中,Pn(x)是n次切比雪夫多项式,Rn(x)是n次余项,称为切比雪夫多项式定理。
从定理可以看出,如果f(x)在[a,b]上可以由n次切比雪夫多项式表示,那么f(x)可以被分解为两部分,一部分是切比雪夫多项式Pn(x),另一部分是余项Rn(x)。
该定理的重要性在于它提供了一种精确的方法来表示函数f(x)的行为,而不必使用近似解法。
此外,该定理也显示了函数f(x)的收敛性,即当n越大时,Pn(x)越接近f(x),Rn(x)越小。
根据切比雪夫多项式定理,可以得出一些有用的结论,如:(1)在[a,b]上,所有可导的函数f(x)都可以表示为一组切比雪夫多项式的和;(2)在[a,b]上,函数f(x)的收敛性,即当n越大时,Pn(x)越接近f(x),Rn(x)越小;(3)在[a,b]上,f(x)的最大值和最小值可以由切比雪夫多项式的绝对值来确定,即f max=max{|Pn(x)|}, f min=min{|Pn(x)|}(4)在[a,b]上,有f'(x)=P'n(x)+R'n(x)其中,P'n(x)是n次切比雪夫多项式的导数,R'n(x)是n次余项的导数。
切比雪夫多项式定理的应用非常广泛,在许多领域都有着广泛的应用,如量子力学、量子物理、量子化学、量子计算机、光电子学、电磁学、可编程逻辑控制器、信号处理、机器人学、计算机图形学、计算几何学、数值分析、系统工程、模式识别等等。
切比雪夫多项式拟合

切比雪夫多项式拟合切比雪夫多项式是一种用于曲线拟合的多项式函数。
它以俄国数学家切比雪夫命名,因为他在19世纪中期首先系统地研究了这些多项式的性质。
这种拟合方法在数学、物理学、工程学等领域广泛应用。
切比雪夫多项式的特点是它可以最小化在某个区间内的最大偏差。
因此,它特别适用于需要高精度拟合的情况,比如研究高精度数值计算的学者常常使用切比雪夫多项式拟合。
切比雪夫多项式的定义为:$T_{n}(x)=\cos(n\arccos x)$其中$n$为多项式次数,$x$为自变量。
可以看出,切比雪夫多项式是基于余弦函数定义的。
在实际应用中,我们通常以切比雪夫多项式的线性组合形式来表示拟合函数:$f(x)=\sum_{n=0}^{N}a_{n}T_{n}(x)$其中,$N$为拟合多项式的次数,$a_{n}$是拟合函数的系数。
切比雪夫多项式拟合在实际应用中有很多好处。
首先,切比雪夫基函数具有良好的正交性质,因此可以减少系数矩阵的计算量。
其次,切比雪夫多项式可以在最大误差允许范围内获得最佳逼近结果。
但是,切比雪夫多项式拟合也存在一些缺点。
首先,切比雪夫多项式并不是唯一的最佳逼近函数,因此需要根据实际需求选择最佳的拟合函数。
其次,切比雪夫多项式拟合的误差分布不均匀,当$n$较大时,误差主要分布在两端,中间的误差较小。
因此,在实际应用中,我们需要根据具体情况选择拟合方法,比较常见的方法有线性拟合、多项式拟合、样条拟合等。
总之,切比雪夫多项式拟合是一种重要的曲线拟合方法,它可以最小化在某个区间内的最大偏差,获得高精度的拟合结果。
在应用中需要根据实际需求选择最佳的拟合函数,避免误差过大或分布不均匀的情况。
有关切比雪夫多项式的几个组合恒等式

有关切比雪夫多项式的几个组合恒等式1 什么是切比雪夫多项式?切比雪夫多项式又称为Chebyshev Polynomials,简称Cheb Poly。
它是一类非常重要的多项式,由俄国数学家谢尔盖·切比雪夫于1859年发明。
它是以一个叫做Tn(x)的函数组合而成,Tn(x)则由一些大家熟知的组合恒等式所求得。
2 切比雪夫多项式的特征切比雪夫多项式的特征是它的几何解释,它是在连续定义函数区间上的Tn(x)多项式在[-1,1]上的最大值与最小值之差最小。
得到最小值这一特点,使得切比雪夫多项式具有以下几个优点:(1)多项式的最值因子是一个趋近于常数的数,这很容易让我们解决极值问题;(2)切比雪夫多项式是等距多项式,即在同一个区间[-1,1]上,多项式的极值点分布均匀;(3)Tn(x)可以直接列出组合的恒等式,甚至可以转化为三角比值函数的组合式,这当然有助于我们解决诸如求积分等问题。
3 切比雪夫多项式的组合恒等式切比雪夫多项式的组合恒等式,根据Tn(x)的数学表达式原理,有如下组合恒等式:(1) Tn(x) = 2Tn-1 (x)-Tn-2 (x);(2)Tn(x) = 2xTn-1 (x) - Tn-2 (x);(3)Tn(x) = x²Tn-1 (x) - Tn-2 (x);(4)Tn(x)= 2n-1T1 (x) - 2n-4T4 (x) +···+(-1)n-1Tn-1 (x);(5)Tn(x)= 2[0]T3 (x) -2[1]T5 (x) +···+2[(n-1)/2]T2 n-1 (x);(6)Tn(x) = (-1)n[T1 (x) -T3 (x) +T5 (x) -T7 (x) +···+(-1)n-1T2 n-1 (x)];(7)Tn(x) = (-2)n-1[T1 (x) -2T3 (x,0.5)+3T5 (x,0.5) -···+(-1)n-1 (2n-1)T2 n-1 (x,2n-2)] 。
切比雪夫多项式 [Chebyshev polynomial]
![切比雪夫多项式 [Chebyshev polynomial]](https://img.taocdn.com/s3/m/bfe7bedf76eeaeaad1f33023.png)
类似地, Un 的n个根分别是:
参看
◾ 切比雪夫节点 ◾ 切比雪夫滤波器
参考
◾ M. Abramowitz and I. A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Chapter 22. New York: Dover, 1972.
定义
第一类切比雪夫多项式由以下递推关系确定
也可以用母函数表示 第二类切比雪夫多项式由以下递推关系给出
此时母函数为
从三角函数定义
第一类切比雪夫多项式由以下三角恒等式确定
其中 n = 0, 1, 2, 3, .... .
是关于
的 n次多项式,这个事实可以这么看:
是:
的实部(参见棣莫弗公式),而
从左边二项展开式可以看出实部中出现含 的项中, 都是偶数次的,从而可以表
其正交化后形成的随机变量是 Wigner 半圆分布).
基本性质
对每个非负整数 ,和 Nhomakorabea都为 次多项式。 并且当 为偶(奇)数时,它们
是关于 的偶(奇)函数, 在写成关于 的多项式时只有偶(奇)次项。
时, 的最高次项系数为
,
时系数为 。
最小零偏差
对
,在所有最高次项系数为1的 次多项式中 ,
对零的偏差最
小,即它是使得 在
在微分方程的研究中,切比雪夫提出切比雪夫微分方程
和
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于切比雪夫多项式的一些研究
切比雪夫多项式是一类重要的函数,在数学中广泛应用。
在1817年,切比雪
夫发现了他著名的“定理”,即任何一个多项式可以被准确的写成一系列的有限条件的和式,即切比雪夫定理--“任何一个多项式可以被一组有限,条件系数的多项式表示出来”。
例如,一个多项式可以写作这样的和式:
P(x) =a0 +a1x+a2x2+a3x3+ …+ adxd
这里,a0, a1, a2,a3,…,ad为多项式的系数,d为该多项式的阶数。
切比雪夫多项式在数学中具有广泛应用,几乎遍及世界各地。
它在微积分、计
算几何学等诸多领域都有广泛应用,而最令人印象深刻的,是在数值分析中,切比雪夫插值方法。
其优点是利用少量数据,克服拟合精度方面的缺陷,实现恒定拟合精度,全面提高了拟合精度。
同时,计算复杂度极低,且不受节点精度的影响。
在更新的大数据时代,切比雪夫多项式也变得越来越重要。
考虑到大数据的特性,切比雪夫多项式的优点更加凸显出来,可以帮助用户建立更加准确的拟合模型,从而更加充分地发挥出大数据的价值。
总之,切比雪夫多项式是一种经典而重要的函数,在不同领域有多种不同的应用。
虽然它仍然有很多需要改进的地方,但它拥有重要的应用价值,在数据分析中的价值也是显而易见的。