第六章 频率法校正
合集下载
孙炳达 自动控制原理笫6章

Gc
s
Ts 1
Ts 1
3.33s 33.3s
1 1
校正后开环系统和校正装置的对数频率特性如图6-15所示。
33
从上例可归纳出利用博德图设计滞后校正装置的步骤为
1. 画出满足稳态精度指标的未校正系统开环对数频率特性, 并查出原系统截止频率和相角稳定裕度的数值。
2. 根据要求的相位裕度,确定校正后系统的截止频率。
Gs s z 式中: z 1 , p 1
s p
T
T
校正装置的零点较极点更靠近原点,对输入信号有明
显的微分作用,故也称微分校正装置。
7
串联超前校正
2. 校正装置的频率特性 G( j) jT 1 jT 1
1
当 为不同值时,其频率特性曲线如图所示。
8
该频率特性的主要特点是,所有频率下相频特性曲线具 有正相移,表明网络在正弦信号作用下,稳态输出电压的 相位超前于输入,故也称为相位超前校正装置。
上述的结论表明,频率校正的实质就是引入校正装置的特性去改变
原系统开环对数幅频特性的形状,使其满足给出的性能指标。
5
三、校正方式-----最常用两种:串联;局部反馈
校正装置在系统的前向通路与被校正 对象相串联,称为串联校正,如图6-2 所示。
校正装置在局部反馈通道中接入校正 装置,称为局部反馈校正,如图6-3所 示。
显的积分作用,故也称积分校正装置。
21
2. 校正装置的频率特性为
G( j) jT 1 jT 1
1
当 为不同值时,其频率特性 曲线如图6-5所示。
22
该频率特性的主要特点是所有频率下相频特性曲线具有滞 后相移,表明网络在正弦信号作用下,稳态输出电压的相位滞后 于输入,故称为相位滞后校正装置。
第六章校正3精品PPT课件

m a
T0.054
10.227s Gc(s)0.23810.054s
为了补偿因超前校正网络的引入而造成系统开环增益的衰减, 必须使附加放大器的放大倍数为1/a=4.2
aGc(s)1100..0252472ss
11/29/2020
9
40 20 0 -20 -40 -60
0
10 50 0 -50 -100 -150 -200
(c ') 1 8 0 9 0 a r c t g 0 . 1 c ' a r c t g 0 . 2 c ' 4 6 . 5
' (c ') (c ') 4 6 . 5 5 . 2 4 1 . 3 4 0 满足要求
未校正前的相位穿越频率 g
(g)180
1 0 .1 g 0 .2 g 0 ,g 7 .0 7 r a d /s
11/29/2020
22
100
50
21dB
0
50
46.5
G0
-50
Gc
G cG 0
-100
10-2
10-1
100
101
102
0
-100
-200
-300
10-2
10-1
100
101
102
11/29/2020
23
验算指标(相位裕度和幅值裕度)
c (c ') a r c t a n 3 . 7 c ' a r c t a n 4 1 . 1 c ' 5 . 2 1
11/29/2020
25
超前校正需要增加一个附加的放大器,以补偿超前校正网络 对系统增益的衰减。
自控理论 6-3频率响应法校正

§6-3 频率响应法校正
1﹑校正的作用
曲线Ⅰ 小 系统稳定 曲线Ⅰ: K小,系统稳定 具有良 系统稳定,具有良 好暂态性能,但稳态性能不满 好暂态性能 但稳态性能不满 足要求。 足要求。 曲线Ⅱ 曲线Ⅱ: K大,稳态性能满足要 大 稳态性能满足要 但闭环系统不稳定。 求,但闭环系统不稳定。 但闭环系统不稳定 曲线Ⅲ 加校正后,稳态 稳态、 曲线Ⅲ: 加校正后 稳态、暂态 性能及稳定性均满足要求。 性能及稳定性均满足要求。 2﹑频率法校正的指标: 频率法校正的指标: 开环 : γ,K g,ω c ; 闭环: ω 闭环: r,M r,ω b
二.串联滞后校正 串联滞后校正
1.滞后校正的原理 滞后校正的原理
(1)利用滞后校正装置的高 频幅值衰减特性 ↓ ωc →↑ γ (2)保持系统的暂态性能不 (γ 不变, c不 变 不变, ω , 变),提高低频段幅值 以减小系统ess 。 ),提高低频段幅值
2. 设计步骤 (1) 据ess的要求确定 的要求确定K; (2) 绘未校正系统 绘未校正系统Bode图,求未校系统 γ0 ; 图 求未校系统
0.38 s + 1 12 ⋅ 开环传函 G ( s ) = GcG0 = 0.12 s + 1 s( s + 1)
检验 γ (ω c2 ) = 1800 + ∠G(jω c2 )
将ωc2 = 4.6代入
= 1800 + ( tg −1 0.38 × 4.6 - tg −1 0.12 × 4.6 - 90o - tg −1 4.6)
-40 19dB
ω
2 -60 -60
0.1 Gc(s)
0.55
1 -40
Gc(s)G0(s)
∠Gc(s)G0(s)
1﹑校正的作用
曲线Ⅰ 小 系统稳定 曲线Ⅰ: K小,系统稳定 具有良 系统稳定,具有良 好暂态性能,但稳态性能不满 好暂态性能 但稳态性能不满 足要求。 足要求。 曲线Ⅱ 曲线Ⅱ: K大,稳态性能满足要 大 稳态性能满足要 但闭环系统不稳定。 求,但闭环系统不稳定。 但闭环系统不稳定 曲线Ⅲ 加校正后,稳态 稳态、 曲线Ⅲ: 加校正后 稳态、暂态 性能及稳定性均满足要求。 性能及稳定性均满足要求。 2﹑频率法校正的指标: 频率法校正的指标: 开环 : γ,K g,ω c ; 闭环: ω 闭环: r,M r,ω b
二.串联滞后校正 串联滞后校正
1.滞后校正的原理 滞后校正的原理
(1)利用滞后校正装置的高 频幅值衰减特性 ↓ ωc →↑ γ (2)保持系统的暂态性能不 (γ 不变, c不 变 不变, ω , 变),提高低频段幅值 以减小系统ess 。 ),提高低频段幅值
2. 设计步骤 (1) 据ess的要求确定 的要求确定K; (2) 绘未校正系统 绘未校正系统Bode图,求未校系统 γ0 ; 图 求未校系统
0.38 s + 1 12 ⋅ 开环传函 G ( s ) = GcG0 = 0.12 s + 1 s( s + 1)
检验 γ (ω c2 ) = 1800 + ∠G(jω c2 )
将ωc2 = 4.6代入
= 1800 + ( tg −1 0.38 × 4.6 - tg −1 0.12 × 4.6 - 90o - tg −1 4.6)
-40 19dB
ω
2 -60 -60
0.1 Gc(s)
0.55
1 -40
Gc(s)G0(s)
∠Gc(s)G0(s)
频率法校正

[-60]
(如兰线)可使
稳定性变好。
()
原开环+串联
0
环节叠加(紫)
180
该校正以损失 开环频宽换得
系统性能提高
滞后校正环节组成
L()
20
Gc
s 1
Ts 1
( T ) 积分作用强
0
20 ( )
90
●
●
1
1
T
0
90
幅频:ωc 减小,适合响应速度要求不高的系统 高频部分下降,高频抗干扰能力得到提高
三、校正方式
输入
前置校正
串联校正 控制装置
干扰
干扰 补偿
输出
控制装置
反馈校正 测量装置
反馈校正
前置校正——改变输入信号的形式来提高系统性能。 串联校正——增设开环零、极点,改善系统性能。 干扰补偿校正——改善系统抗干扰性能。 反馈校正——改变局部环节特性来提高系统性能。
§6.2 串联超前校正 该系统开环频宽不大,且
相频:对 ωc 附近的相位影响不大。
RC 滞后网络
R1 R2
C
Gc
(s)
R2Cs 1
R1 R2 R2
R2Cs
1
s 1 s 1
其中 R2C
R1 R2 1
R2
①通常α=10 ,α 愈大,中频及高频段下降愈大
② p=1/τ、 z=1/ατ 要远离 ωc 点。
§6.4 相位滞后—超前校正
20db
0 ( )
90
[+20]
●
0.1 0.2
●
12
10 20
100
1
1
T
0
90 幅频:高频段上升,对抑制系统高频噪声不利 相频:在 ωc 附近产生超前相位的影响
第6章-频率法校正

三、校正方法 方法多种,常采用试探法 试探法。 方法多种,常采用试探法 总体来说,试探法步骤可归纳为: 总体来说,试探法步骤可归纳为: 1.根据稳态误差的要求 确定开环增益K 根据稳态误差的要求, 1.根据稳态误差的要求,确定开环增益K。 2.根据所确定的开环增益 根据所确定的开环增益K 画出未校正系统的博特图,量出(或计算) 2.根据所确定的开环增益K,画出未校正系统的博特图,量出(或计算)未 校正系统的相位裕度。若不满足要求,转第3 校正系统的相位裕度。若不满足要求,转第3步。 3.由给定的相位裕度值 计算超前校正装置应提供的相位超前量( 由给定的相位裕度值, 3.由给定的相位裕度值,计算超前校正装置应提供的相位超前量(适当增 加一余量值) 加一余量值)。 4.选择校正装置的最大超前角频率等于要求的系统截止频率 选择校正装置的最大超前角频率等于要求的系统截止频率, 4.选择校正装置的最大超前角频率等于要求的系统截止频率,计算超前网 络参数a 若有截止频率的要求,则依该频率计算超前网络参数a 络参数a和T ;若有截止频率的要求,则依该频率计算超前网络参数a和 T。 5.验证已校正系统的相位裕度 若不满足要求,再回转第3 验证已校正系统的相位裕度; 5.验证已校正系统的相位裕度;若不满足要求,再回转第3步。
Gc ( s )Go ( s ) = 4.2 × 40( s + 4.4) 20(1 + 0.227 s ) = ( s + 18.2) s ( s + 2) s(1 + 0.5s )(1 + 0.0542s )
未校正系统、校正装置、校正后系统的开环频率特性: 未校正系统、校正装置、校正后系统的开环频率特性:
↑ 指标要求值 ↑ 可取 − 6°
根据上式的计算结果,在曲线上可查出相应的值。 根据上式的计算结果,在曲线上可查出相应的值。 根据下述关系确定滞后网络参数b和 如下 如下: 5根据下述关系确定滞后网络参数 和T如下: ′ 20 lg b + L ′(ω c′ ) = 0
《自动控制原理》第6章_自动控制系统的校正

频率法校正的基本原理: 利用校正网络的特性来增大系统的相位裕度,
改善系统瞬态响应。
校正装置分类
校正装置按 控制规律分
超前校正(PD) 滞后校正(PI)
滞后超前校正(PID)
校正装置按 实现方式分
有源校正装置(网络) 无源校正装置(网络)
有源超前校正装置
R2
u r (t)
i 2 (t)
R1
i1(t)
(aTa s
1)(Tb a
s
1)
滞后--超前网络
L'()
20db / dec
20 lg K c
1 1/ T1 2 1/ T2
设相角为零时的角频率
1
()
a)
20db / dec
5
1 T1T2
90
5 校正网络具有相
5
位滞后特性。
90
b)
5 校正网络具有相位
超前特性。
G( j)
Kc
( jT1
G1 (s)
N (s) C(s)
G2 (s)
性能指标
时域:
超调量 σ%
调节时间 ts
上升时间 tr 稳态误差 ess
开环增益 K
常用频域指标:
开环频域 指标
截止频率: 相角裕度:
c
幅值裕度:
h
闭环频域 指标
峰值 : M p
峰值频率: r
带宽: B
复数域指标 是以系统的闭环极点在复平面
上的分布区域来定义的。
解:由稳态速度误差系数 k v 1应00 有
G( j)
100
j( j0.1 1)( j0.01 1)
100 A()
1 0.012 1 0.00012
改善系统瞬态响应。
校正装置分类
校正装置按 控制规律分
超前校正(PD) 滞后校正(PI)
滞后超前校正(PID)
校正装置按 实现方式分
有源校正装置(网络) 无源校正装置(网络)
有源超前校正装置
R2
u r (t)
i 2 (t)
R1
i1(t)
(aTa s
1)(Tb a
s
1)
滞后--超前网络
L'()
20db / dec
20 lg K c
1 1/ T1 2 1/ T2
设相角为零时的角频率
1
()
a)
20db / dec
5
1 T1T2
90
5 校正网络具有相
5
位滞后特性。
90
b)
5 校正网络具有相位
超前特性。
G( j)
Kc
( jT1
G1 (s)
N (s) C(s)
G2 (s)
性能指标
时域:
超调量 σ%
调节时间 ts
上升时间 tr 稳态误差 ess
开环增益 K
常用频域指标:
开环频域 指标
截止频率: 相角裕度:
c
幅值裕度:
h
闭环频域 指标
峰值 : M p
峰值频率: r
带宽: B
复数域指标 是以系统的闭环极点在复平面
上的分布区域来定义的。
解:由稳态速度误差系数 k v 1应00 有
G( j)
100
j( j0.1 1)( j0.01 1)
100 A()
1 0.012 1 0.00012
自动控制原理第六章频率法校正

频率特性法校正
厦门大学航空系 吴德志 wdz@
1
6-1系统设计概述
系统分析:在系统的结构、参数已知的情况下, 计算出它的性能。 系统校正:在系统分析的基础上,引入某些参数 可以根据需要而改变的辅助装置,来改善系统的性 能,这里所用的辅助装置又叫校正装置。 一般说来,原始系统除放大器增益可调外,其结 构参数不能任意改变,有的地方将这些部分称之为 “不可变部分”。这样的系统常常不能满足要求。 如为了改善系统的稳态性能可考虑提高增益,但系 统的稳定性常常受到破坏,甚至有可能造成不稳定。 为此,人们常常在系统中引入一些特殊的环节 —— 校正装置,以改善其性能指标。
(ω ) arc tg α Tω arc tg Tω
( )
根据两角和的三角函数公式,可得
(ω ) arc tg
(α 1)Tω 1 α T 2ω2
将上式求导并令其为零,得最大超前角频率
ω
m
1 T α
23
得最大超前相角 或写为 α
m arc sin
60
m arc tg
t s 也小。 明系统自身的系统的快速性好,
15
(2)高阶系统 工程上常用经验公式
Mr 1 sin
35
≤ ≤
90
Kπ ts (s) ωc
p =0.16+0.4(M -1)
r
(1 Mr 1.8)
式中 K=2+1.5(Mr -1)+2.5(Mr -1)2
(1 Mr 1.8)
5
7-2 不同域中动态性能指标的表示及其转换
稳 定 性--是系统工作的前提, 稳态特性--反映了系统稳定后的精度, 动态特性--反映了系统响应的快速性。 人们追求的是稳定性强,稳态精度高,动态响应快。 不同域中的性能指标的形式又各不相同: 1.时域指标:超调量σp、过渡过程时间t s、以及 峰值时间tp、上升时间tr等。 2.频域指标:(以对数频率特性为例) ① 开环:剪切频率ωc、相位裕量r及增益裕量 Kg等。 ②闭环:谐振峰值Mr、谐振频率ωr及带宽ωb等。
厦门大学航空系 吴德志 wdz@
1
6-1系统设计概述
系统分析:在系统的结构、参数已知的情况下, 计算出它的性能。 系统校正:在系统分析的基础上,引入某些参数 可以根据需要而改变的辅助装置,来改善系统的性 能,这里所用的辅助装置又叫校正装置。 一般说来,原始系统除放大器增益可调外,其结 构参数不能任意改变,有的地方将这些部分称之为 “不可变部分”。这样的系统常常不能满足要求。 如为了改善系统的稳态性能可考虑提高增益,但系 统的稳定性常常受到破坏,甚至有可能造成不稳定。 为此,人们常常在系统中引入一些特殊的环节 —— 校正装置,以改善其性能指标。
(ω ) arc tg α Tω arc tg Tω
( )
根据两角和的三角函数公式,可得
(ω ) arc tg
(α 1)Tω 1 α T 2ω2
将上式求导并令其为零,得最大超前角频率
ω
m
1 T α
23
得最大超前相角 或写为 α
m arc sin
60
m arc tg
t s 也小。 明系统自身的系统的快速性好,
15
(2)高阶系统 工程上常用经验公式
Mr 1 sin
35
≤ ≤
90
Kπ ts (s) ωc
p =0.16+0.4(M -1)
r
(1 Mr 1.8)
式中 K=2+1.5(Mr -1)+2.5(Mr -1)2
(1 Mr 1.8)
5
7-2 不同域中动态性能指标的表示及其转换
稳 定 性--是系统工作的前提, 稳态特性--反映了系统稳定后的精度, 动态特性--反映了系统响应的快速性。 人们追求的是稳定性强,稳态精度高,动态响应快。 不同域中的性能指标的形式又各不相同: 1.时域指标:超调量σp、过渡过程时间t s、以及 峰值时间tp、上升时间tr等。 2.频域指标:(以对数频率特性为例) ① 开环:剪切频率ωc、相位裕量r及增益裕量 Kg等。 ②闭环:谐振峰值Mr、谐振频率ωr及带宽ωb等。
第六章_频率法校正

R1
R2
s 1 Ts 1 s 1
s 1
其中 R1C
R2 R1 R2
R1Cs 1 R2 R1Cs 1 R1 R2
①调整α 可以调节超前网络在中频段的影响程度
T
②由于α<1→使整个幅频下降→稳态精度下降 必须将 K 增加 1/α 倍予以补偿。
T2 T2
1
1 sin max 1 sin max
PID控制器
工业控制中常采用由比例(P)、微分(D)、 积分(I)单元组合的校正器。
①PI校正器
Ki is 1 G( s) K p Kp s is
其中
i
Kp Ki
②PD校正器
G(s) K p Kd s K p ( d s 1)
A(c )
n 2 c (
1 2 n
1
c ) 2 1
解出
c n
3
4 4 1 2 2
c 3 4 4 1 2 2
ts
n
t s
②γ 与 σ%、ζ 之间的关系
( ) 180 (c ) 可得 将ωc 代入 c
[解 ]
1)验算原系统性能指标
n 2 0.5
1 2
2 n 4 0 ( s) 2 2 2 s 2s 4 s 2 n n
kv K 2s
1
ts
3
n
3s
% e
100% 15%
2)作原系统开环对数渐近幅频曲线
G0 ( s )
0
180
L( )
20
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 bTs 1 Ts
3.频率特性
二、基于频率响应法串联滞后校正原理、方法 由于滞后校正网络具有低通滤波器的特性,因而当它与系统的不可变 部分串联相连时,会使系统开环频率特性的中频和高频段增益降低和截止 频率 c 减小,从而有可能使系统获得足够大的相位裕度,它不影响频率特 性的低频段。由此可见,滞后校正在一定的条件下,也能使系统同时满足 动态和静态的要求。 不难看出,滞后校正的不足之处是:校正后系统的截止频率会减小, 瞬态响应的速度要变慢;在截止频率处,滞后校正网络会产生一定的相角 滞后量。为了使这个滞后角尽可能地小,理论上总希望 Gc (s) 两个转折频率 1 , 2比c 越小越好,但考虑物理实现上的可行性,一般取 1 2 0.25 ~ 0.1 c 为宜。
Gc ( s )
,
m
1
2 m a 9 4.2 18.4
s 4.4 1 0.227 s 0.238 s 18 .2 1 0.054 s
为了补偿因超前校正网络的引入而造成系统开环增益的衰减,必须使附加 放大器的放大倍数为4.2。 校正后,系统开环传递函数为
60 50 40 30 20 10 0 -2 10
-1 0 1
10
10
10
二、校正原理 用频率法对系统进行超前校正的基本原理,是利用超前校正网络的 相位超前特性来增大系统的相位裕量,以达到改善系统瞬态响应的目的。 为此,要求校正网络最大的相位超前角出现在系统的截止频率(剪切频 率)处。由于RC组成的超前网络具有衰减特性,因此,应采用带放大器 的无源网络电路,或采用运算放大器组成的有源网络。 一般要求校正后系统的开环频率特性具有如下特点: ①低频段的增益充分大,满足稳态精度的要求; ②中频段的幅频特性的斜率为-20dB/dec,并具有较宽的频带,这一要 求是为了系统具有满意的动态性能; ③高频段要求幅值迅速衰减,以较少噪声的影响。
c
c
s 1)(
cc
其截止频率和中频宽度可用以下公式确定
c (6 ~ 8)
h 1 ts
64 16
二、期望串联校正方法
确定期望串联校正装置的一般步骤是: ①绘制满足系统稳态性能要求的未校正系统的对数频率特性。
②确定开环系统的期望对数频率特性。
③从期望对数频率特性减去未校正系统的频率特性,从而得到校正装置特 性。
T
在系统响应速度要求不高而抑制噪声电平性能要求较高的情况下,可考 虑采用串联滞后校正。 保持原有的已满足要求的动态性能不变,而用以提高系统的开环增益, 减小系统的稳态误差。
如果所研究的系统为单位反馈最小相位系统,则应用频率法设计串联 滞后校正网络的步骤如下: 根据稳态性能要求,确定开环增益K; 利用已确定的开环增益,画出未校正系统对数频率特性曲线,确定未校 正系统的截止频率 c 、相位裕度 和幅值裕度 h(dB); 选择不同的 c ,计算或查出不同的 值,在伯特图上绘制 (c ) 曲线; 根据相位裕度 要求,选择已校正系统的截止频率 c ;考虑到滞后网 络在新的截止频率 c 处,会产生一定的相角滞后 c (c ) ,因此,下列等 式成立: (c ) c (c )
6.5 期望串联校正
一、期望对数频率特性 1.二阶期望特性
n 2 n / 2 G( s) 2 s 2 n s s( 1 s 1) 2 n
根据系统性能要求可确定二阶系统的特征参数和n 2. 三阶期望特性
G( s) K (T1s 1) s 2 (T2 s 1)
G(s) K T 2s 2 (2T KK t )s 1
可见,结果仍为振荡环节,但是阻尼比增大,可减弱阻尼环节的不利影响。 ⑤利用反馈校正取代局部结构
G 2 ( j)
'
G 2 ( j) 1 G 2 ( j)H( j)
在一定频率范围内 , 当 满 足 G 2 ( j)H( j) 1时, 则 有 G 2 ( j) G 2 ( j)
三、校正方式 两种常用的校正方式: 1、串联校正
2、并联校正
6.2 串联超前校正
一、相位超前校正装置 1.电路 R1
ur
C
R2
uc
2.传递函数
G ( s) Ts 1 Ts 1
20
R2 R R 1 2
T R1C
3.频率特性
15
10
50 -2 10ຫໍສະໝຸດ 10-110
0
10
1
Gc ( s)Go ( s) 4.2 40( s 4.4) 20(1 0.227s) ( s 18.2) s( s 2) s(1 0.5s)(1 0.0542s)
未校正系统、校正装置、校正后系统的开环频率特性:
40 20 0 -20 -40 -60 0 10
10
指标要求值 可取6
根据上式的计算结果,在曲线上可查出相应的值。 根据下述关系确定滞后网络参数b和T如下: 20lg b L(c ) 0
1 0.1 c bT
验算已校正系统的相位裕度和幅值裕度。
6.4串联滞后-超前校正
一、滞后-超前校正网络 1.电路
2.传递函数
例 某单位反馈系统的开环传递函数如下,
G (s)
设计一个超前校正装置 ,使校正后系统的静态速度误差系数 Kv 20s 1 相位裕度为 50 。 解:根据对静态速度误差系数的要求,确定系统的开环增益K。
K v lim s
s 0
4K s( s 2)
4K 2 K 20 s( s 2)
。
三阶系统的瞬态性能与截止频率和 中频宽度有关。一般h可按要求的性 能指标来选择h。在h一定的情况下, 可按以下公式来确定转折频率。
2 1 c h 1
2h 2 c h 1
a s 1) s 1)( 1 s 1) cdc
3. 四阶期望特性
k( G( s) s( ab 1
超前校正装置在 m 处的幅值为
10lg a 10lg 4.2 6.2dB
在为校正系统的开环对数幅值为 6.2dB 对应的频率, m 9s 1 这一频率就作为是校正后系统的截止频率。 计算超前校正网络的转折频率,由P133,式(6-4)
T a 9 1 m 4.4 a 4.2
1
10
2
50 0 -50 -100 -150 -200 0 10
10
1
10
2
对应的博特图中红线(校正后系统的开环频率特性)所示。 由该图可见,校正后系统的误差系数(20),相位裕度( 50 ) 已满足系统设计要求。
6.3串联滞后校正
一、滞后校正网络 1.电路
2.传递函数
Gc ( s )
二、对数幅频特性与系统性能关系
①如图所示的系统,无差度除数ν=1,开环放大倍数K=10,其稳态误 差Kp=∞,Kv=10。
②为了使系统稳定并有足够的稳定裕度,截止频率ωc处的斜率应为 -20dB/dec并有一定的宽度。ω c的数值与时域指标中的ts和tr有关。 ③高频段特性反映了系统的抗高频干扰能力,这部分特性衰减越快,系统 的抗干扰能力越强。 上述的结论表明,频率校正的实质就是引入校正装置的特性去改变原系统 开环对数幅频特性的形状,使其满足给出的性能指标。
上式中的各项分别为滞后超前网络贡献的幅值衰减的最大值,未校正系 ' 统的幅值量,滞后超前网络超前部分在 c' 处的幅值。 ' ' ' L(c' ) 20lg Tbc' ,可由未校正系统对数幅频特性的-20dB/dec延长线在 c' 处的数值确定。因此,由上式求出a值。 根据相角裕度要求,估算校正网络滞后部分的转折频率 a ; 校验已校正系统开环系统的各项性能指标。
Gc ( s)
U c ( s) (Ta s 1)(Tb s 1) U r ( s) (T1 s 1)(T2 s 1)
3.频率特性
二、串联滞后-超前校正的基本原理 实质上综合应用了滞后和超前校正各自的特点,即利用校正装置的超 前部分来增大系统的相位裕度,以改善其动态性能;利用它的滞后部分来 改善系统的静态性能,两者分工明确,相辅相成。 串联滞后-超前校正的设计步骤如下: 根据稳态性能要求,确定开环增益K; 绘制未校正系统的对数幅频特性,求出未校正系统的截止频率 c 、相 位裕度 及幅值裕度 h(dB) 等; 在未校正系统对数幅频特性上,选择斜率从-20dB/dec 变为-40dB/dec 的转折频率作为校正网络超前部分的转折频率 b ; 这种选法可以降低已校正系统的阶次,且可保证中频区斜率为-20dB/dec, 并占据较宽的频带。 ' 根据响应速度要求,选择系统的截止频率 c' 和校正网络的衰减因子 ; 1 ' 要保证已校正系统截止频率为所选的 ,下列等式应成立: c' a ' ' 20lg a L(c' ) 20lgTbc' 0
K 10
绘制未校正系统的伯特图,如图中的蓝线所示。由该图可知未校正系统 的相位裕度为 17 根据相位裕度的要求确定超前校正网络的相位超前角
1 50 17 5 38
由P133页,式(6-5)
1
1 sin m 1 sin 38 4.2 1 sin m 1 sin 38
可见,环节由原来的积分环节变成了惯性环节。降低了系统的无差度,有 利于提高系统的稳定性。 ②比例反馈包围惯性环节
K K 1 KK h G (s) T s 1 KK h T 1 s 1 T s 1 1 KK h
可见,结果仍为惯性环节,但是时间常数和放大系数均减小了。
③微分反馈包围惯性环节 K K T s 1 G(s) K 1 K t s (T KK t )s 1 T s 1 可见,结果仍为惯性环节,但是时间常数增大了。 ④微分反馈包围振荡环节