第2章 电子噪声及其特性

不同信道及噪声特性对通信性能的影响分析及验证

实验四、不同信道及噪声特性对通信性能的影响分析及验证实验目的: 熟悉Matlab编程环境、编程流程以及基本Matlab函数的编写与调用;掌握瑞利、莱斯信道模型的Matlab实现;掌握莱斯信道的相位补偿。 预备知识: 1.Matlab编程基础; 2.数字基带通信系统的基础知识; 3.衰落信道的基础知识。 4.信道相位补偿; 实验环境: 1.实验人数 50 人,每 2 人一组,每组两台电脑 % 2.电脑 50 台 实验内容: 1.用Matlab生成长度为200的随机二进制数序列并采用格雷码对其进行编码;2.搭建数字基带通信系统; 3.生成瑞利信道、莱斯信道以及高斯白噪声信道; 4.对接收信号进行相位补偿; 5.画出瑞利信道、莱斯信道的相位补偿曲线并与信道相位比较并分析其结果。6.画出莱斯信道的信噪比与误比特率曲线,并与理论曲线比较,分析其结果。 实验原理: 1.衰落信道 在无线通信领域,衰落是指由于信道的变化导致接收信号的幅度发生随机变化的现象,即信号衰落。导致信号衰落的信道被称作衰落信道。 ( 衰落可按时间、空间、频率三个角度来分类。

(1)在时间上,分为慢衰落和快衰落。慢衰落描述的是信号幅度的长期变化,是传播环境在较长时间、较大范围内发生变化的结果,因此又被称为长期衰落、大尺度衰落。快衰落则描述了信号幅度的瞬时变化,与多径传播有关,又被称为短期衰落、小尺度衰落。慢衰落是快衰落的中值。 (2)在频率上,分为平坦性衰落和选择性衰落。 多径衰落可分为平坦衰落和频率选择性衰落。如果无线传播信道的频带比传送信号还宽,则接收到的信号会受到平坦衰落。当传送信号的带宽大于信道的同调带宽时,接收信号的增益和相位将会随着信号频谱的改变而变化,因而在接收端产生了信号失真,这就是选择性衰落。 (3)在空间上,分为瑞利衰落和莱斯衰落。瑞利衰落适用于从发射机到接收机不存在直射信号的情况;相反,莱斯衰落适用于发射机到接收机存在直射路径的情况。 在无线通信信道环境中,电磁波经过反射折射散射等多条路径传播到达接收机后,总信号的强度服从瑞利分布。 同时由于接收机的移动及其他原因,信号强度和相位等特性又在起伏变化, 故称为瑞利衰落。在无线通信信道中,由于信号进行多径传播达到接收点处的场强来自不同传播的路径,各条路径延时时间是不同的,而各个方向分量波的叠加,又产生了驻波场强,从而形成信号快衰落称为瑞利衰落。瑞利衰落属于小尺度的衰落效应,它总是叠加于如阴影、衰减等大尺度衰落效应上。 如果收到的信号中除了经反射折射散射等来的信号外,还有从发射机直接到达接收机(如从卫星直接到达地面接收机)的信号,那么总信号的强度服从莱斯分布, 故称为莱斯衰落。 2.瑞利衰落与莱斯衰落 瑞利分布是一个均值为0,方差为2σ的平稳窄带高斯过程,其包络的一维分布是瑞利分布。 2 22()exp() 02z z f z z σσ=-≥ (4-1) 瑞利分布是最常见的用于描述平坦衰落信道接收包络或独立多径分量接受包络 统计时变特性的一种分布类型。两个正交高斯噪声信号之和的包络服从瑞利分布。 " 莱斯分布的概率密度函数称为莱斯密度函数: 220222()exp()()2R R A RA p R I σσσ +=- (4-2)

电子电路噪声分析

电子电路噪声分析 摘要 对于电子线路中所标称的噪声,可以概括地认为,它是对目的信号以外的所有信号的一个总称。最初人们把造成收音机这类音响设备所发出噪声的那些电子信号,称为噪声。但是,一些非目的的电子信号对电子线路造成的后果并非都和声音有关,因而,后来人们逐步扩大了噪声概念。例如,把造成视屏幕有白班呀条纹的那些电子信号也称为噪声。可能以说,电路中除目的的信号以外的一切信号,不管它对电路是否造成影响,都可称为噪声。例如,电源电压中的纹波或自激振荡,可对电路造成不良影响,使音响装置发出交流声或导致电路误动作,但有时也许并不导致上述后果。对于这种纹波或振荡,都应称为电路的一种噪声。又有某一频率的无线电波信号,对需要接收这种信号的接收机来讲,它是正常的目的信号,而对另一接收机它就是一种非目的信号,即是噪声。在电子学中常使用干扰这个术语,有时会与噪声的概念相混淆,其实,是有区别的。噪声是一种电子信号,而干扰是指的某种效应,是由于噪声原因对电路造成的一种不良反应。而电路中存在着噪声,却不一定就有干扰。在数字电路中。往往可以用示波器观察到在正常的脉冲信号上混有一些小的尖峰脉冲是所不期望的,而是一种噪声。但由于电路特性关系,这些小尖峰脉冲还不致于使数字电路的逻辑受到影响而发生混乱,所以可以认为是没有干扰。 当一个噪声电压大到足以使电路受到干扰时,该噪声电压就称为干扰电压。而一个电路或一个器件,当它还能保持正常工作时所加的最大噪声电压,称为该电路或器件的抗干扰容限或抗扰度。一般说来,噪声很难消除,但可以设法降低噪声的强度或提高电路的抗扰度,以使噪声不致于形成干扰。 关键词:电路噪声电路干扰电路信号尖峰脉冲 ABSTRACT In common use, the word noise means unwanted sound or noise pollution. In electronics noise can refer to the electronic signal corresponding to acoustic noise (in an audio system) or the electronic signal corresponding to the (visual)

噪声及其特征

“学程导航”课时教学计划 施教日期年月日 教学内容噪声及其特征共几课时 1 课 型 新授第几课时 1 教学目标1.初步了解乐音和噪声的区别,能分别从物理,环境保护的角度区分乐音和噪声。 2.知道噪声的来源及其对人的危害,能对生活中的噪声的来源进行分类,对噪声的等级进行简单的判断。 3.了解噪声的传播途径及控制噪声的方法。 教 学重难点知道噪声的来源及其对人的危害,能对生活中的噪声的来源进行分类,了解噪声的传播途径及控制噪声的方法。 教学资源 预习设计1.认真阅读教材P16--P19页。 2.完成《学成导航》中的"课前预习"

1.乐音和噪声的区别: 板书:乐音和噪声的区别: (1)环境保护角度: 乐音是指悦耳动听,令人愉快的声音噪声是指刺耳难听,令人厌烦的声音(2)物理学角度: 乐音是指声源做有规则振动产生的声音。 噪声是指声源做无规则的振动产生的声音。 2.噪声的来源: 板书:噪声的来源: (1)工业生产 (2)交通运输 (3)日常生活 3.噪声的危害: 4.噪声的控制: 板书:噪声的控制: (1)在声源处控制噪声 (2)在传播过程中控制噪声 (3)在人耳处减弱噪声 5.新知巩固:(1)请学生阅读教材第一段思考:乐音和噪声有什么区别?(分别从环境保护和物理学的角度来区分) (2)请学生列举一些日常生活中你认为是属于噪声的例子。 (1)请学生分组讨论把书本第16页中的各种噪声,根据噪声的来源进行分类(注意:可以分成三类) (2)请学生代表回答,师生集体进行纠错。 1.请学生阅读教材第17页思考一下问题: (1)噪声的危害对人有哪些危害? (2)噪声的大小有什么物理量来进行量度的?单位是什么? (3)从表中找出使人感觉比较安逸的声音是多大? 请学生阅读教材P18-19页思考一下问题: (1)在我们的日常生活在有哪些方法可以控制噪声? (2)书本中四幅图中分别使用什么方法来控制噪声的? (3)以声消声的工作原理是什么? 1.请学生完成课内思考第1,2,3,4.题。 2.请学生代表回答,及时纠错

谈电子电路噪声干扰及其抑制

谈电子电路噪声干扰及其抑制 [摘要]从广义上讲,噪声与干扰是同义词,是指有用信号以外的无用信号。在测量中它严重影响有用信号的测量精度,特别是妨碍对微弱信号的检测。一般来说,噪声是很难消除的,但可以降低噪声的强度,消除或减小其对测量的影响。 【关键词】电子;电路;噪声干扰;抑制 在测量中电子电路噪声干扰严重影响有用信号的测量精度,特别是妨碍对微弱信号的检测。一般来说,噪声是很难消除的,但可以降低噪声的强度,消除或减小其对测量的影响。 1.噪声干扰的来源与耦合方式 1.1形成噪声的三要素 要想设法抑制噪声和干扰,必须首先确定产生噪声的噪声源是什么,接收电路是什么,噪声源和接收电路之间是怎样耦合的,这就是平常所说的形成噪声的三要素,即:噪声源,对噪声敏感的接收电路及耦合通道。然后才能分别采用相应的方法。通常从三个方面加以解决:对于噪声源,应抑制噪声源产生的噪声;对于噪声敏感的接收电路,应使接收电路对噪声不敏感;对于耦合通道,可隔离耦合通道的传输。 1.2噪声的来源 噪声的来源多种多样,归纳起来可分为系统内部元件产生的随机噪声(也称为固有噪声)和系统外部引入的干扰。 固有噪声:电路中各种元器件本身就是噪声源,如电阻的固有噪声主要是由电阻内部的自由电子无规则的热运动造成的。晶体管的散粒噪声、低频噪声等都是固有噪声。 系统外部引入的干扰:其因素较多也较复杂,如50Hz电源谐波所产生的干扰、生产设备所产生的工业干扰等。 1.3噪声的耦合方式 噪声的耦合方式通常有:传导耦合、经公共阻抗耦合和电磁场耦合3种。 1.3.1传导耦合导线经过具有噪声的环境时,拾取到噪声并传送到电路造成干扰。噪声经电路输入引线或电源引线传至电路最为常见。 1.3.2经公共阻抗的耦合通过地线和电源内阻产生的寄生反馈部分。 1.3.3电磁场耦合由感应噪声产生的干扰,包括电场、磁场和电磁感应。电磁场耦合根据辐射源的远近可分为近场感应与远场的辐射。在近场感应中电容性耦合和电感性耦合往往是同时存在。此外,一般高电压回路易产生电容性耦合源;大电流回路易产生电感性耦合源。 2.抑制噪声干扰的方法 抑制噪声干扰必须从产生噪声干扰的三要素出发,找出解决办法。 2.1在噪声发源处抑制噪声 不难理解,在噪声发源处采取措施不让噪声传播出来,问题会迎刃而解。因此在遇到干扰时,无论情况怎样复杂,首先要查找噪声源,然后研究如何将噪声源的噪声抑制下去。工作现场常见的噪声源有电源变压器、继电器、白炽灯、电机运转、集成电路处于开关工作状态等,应根据不同情况采取适当措施,如电源变压器采取屏蔽措施,继电器线圈并接二极管等。 2.2使接收电路对噪声不敏感

基于信噪比的分析

基于信噪比理论的光电成像系统性能分析与评价 摘要 本文主要讨论了典型的固体光学成像系统的信噪比。通过对光学成像系统成像的各个过程的噪声来源,种类,性质进行了归纳总结,最后得出整个光电成像系统的信噪比。并简要的指明了信噪比在光电成像系统评价中的特点及优势。最后,从提高系统信噪比的角度,提出了几点改进系统成像质量的建议。 关键词:信噪比,光电成像 1.前言: 由于在目前的应用中,人们使用最多的都是固体成像器件,因此,以下的讨论中将主要考虑固体成像器件。在固体成像器件中,光电转换部分使用最为广泛的还应该属于光电二极管。即使是对于常见到的CCD以及CMOS固体成像器件,其像元中的光电转换部分多数还是与光电二极管的转换原理是一致的。所以,在接下来的讨论中,将以光电二极管作为光电转换器件的代表进行分析讨论。 2.光电成像器件的噪声来源: 通常,光电成像系统对某一目标物体的成像过程主要分为以下一个步骤:目标物体发出的辐射光线经过在大气中传播后,进入到光电成像系统的入瞳,入瞳处的辐射经过光学系统作用后到达光电转换器件的像面上进行曝光;然后,光电探测器将收集到的光信号转化为相应的电信号,而后输出到后续的电路中进行相应的信号处理;最终,最终输出可供目视判读的目标景物图像。 由于在整个光学成像系统工作的过程中,每一个过程都会伴随着噪声的干扰。因此,要分析整个系统的信噪比,就必须要对探测及成像过程中的每一个环节进行噪声的分析。其中,对于一个完整的系统来说,其误差来源可以分为外部误差来源和内部误差来源。 当光电成像系统进行工作时,所观察目标的辐射光线在到达光电系统的入瞳之前,由于大气层中的分子散射和气溶胶散射等原因的存在,造成了传播中的能 量衰减,此时,系统探测器像面上的曝光量由入瞳辐亮度、光学系统的相对孔径和透过率、探测器像元光敏面面积以及积分时间等参数共同决定。其中散射是造成辐射能量衰减的主要原因,最直接的结果将会是对光谱辐射透过率产生较大的 影响。当大气的散射作用对目标物发出的辐射作用很大时,就会使目标信号完全

地铁站台噪声特性分析

专业知识分享版 使命:加速中国职业化进程 摘 要:采用噪声与振动测试分析系统,对地铁车辆进入站台和驶出站台及站台广播噪声进行测试与分析。通过对数据分析得出:站台主要噪声源为车辆通过站台时的轮轨噪声与车辆制动啸叫声的叠加,等效声级81.5 dB(A),频率范围200~4 000 Hz 。无车辆通过时广播噪声为主要噪声源,等效声级为79.1 dB(A),频率范围为500~1 000 Hz 。该研究结果对地铁车站的减振降噪设计具有较高的现实意义和应用价值。 关键词:声学;地铁车站;站台;噪声;频谱;测试 随着城市建设速度的加快、人口数量的增加及汽车工业的迅速发展,城市道路交通拥挤现象愈发严重,已成为城市建设发展中必须解决的主要问题之一。城市地铁交通具有方便快捷、安全准时等特点,在改善城市道路交通现状方面发挥了重要的作用,已成为各大城市选择的主要方法之一。 但是,地铁在带给人们便利的同时,也带来地铁噪声。地铁车站是人们乘坐地铁必须经过和驻足的场所,随着人们生活水平的提高和对环境保护意识的增强,地铁站内噪声情况越来越被更多的人所关注。掌握地铁车辆进出站台的噪声与振动分布现状[1―5],为地铁站台减振降噪设计[6,7]、人们工作环境的改善提供依据,具有较高的现实意义和应用前景。 1 测试环境、仪器及布点 1..1 测试环境 本次测试地点为国内某城市的普通地铁车站,其站台长120 m ,宽度为6 m ,表面为大理石结构。轨道布置在站台的两侧,两侧墙体为水泥表面,并未做吸声处理。站台与轨道间采用半封闭安全门阻隔,安全门高度为1.4 m 。 测试时,本线路的车隔为8 min 。车辆为每编组6 辆车,总长度为 118 m ,分为 3 个单元,每单元为一动一拖形式。其中每辆动车重约35 t ,每辆拖车重约32 t ,最大轴重为14 t 。车辆高度为3.5 m ,车体结构为鼓型设计,最大宽度为2.75 m 。车门为双开电动塞拉门,每辆车设有8套,对称布置。转向架为无摇枕焊接结构,设有一系橡胶弹簧和二系空气弹簧,可有效的降低振动噪声。 1..2测试仪器 本次测试采用HEAD acoustics 噪声与振动分析系统,此系统由HPS Ⅳ数字式回放系

噪声干扰PCB布线与微小信号的放大

电路中干扰、噪声的应对与微弱信号的测量 摘要:微弱信号常常被混杂在大量的噪音中。噪声的来源多种多样,有来自电路之间的,有电子元器件本身所具有的,也有来自外部环境的。这其中,又分为了好多不同种类,比如电子元器件的噪声,有低频时的1/f噪声,有高频的热噪声等等。本文中分别对其进行介绍。为了消除这些噪声,从而获得正确的信号,就需要对电路采取一些措施。在PCB布局布线时,就有好多细节非常值得我们注意。当然,元器件的选择也是很有讲究的。当然,仅仅对噪声干扰进行抑制并不足以达到检测微弱信号的目的,为此,在设计检测微弱信号的电路时,又有很多重要的方法和注意点值得参考。只有做好这些,才能从噪声中得到可靠、稳定的信号。关键词:噪声;PCB布线;微弱信号检测 一、电路中的干扰与噪声 噪声是电路中相对于信号而言的一些干扰、无用的信号噪声干扰的产生原因有许多,如雷击、周边负载设备的开关机、发电机、无线电通讯等。在对微弱信号处理时,噪声的影响非常重要,必须对其采取措施,否则有用信号将淹没其中,而无法被检测到。具体到噪声来源、噪声特点等方面,噪声有许许多多的类别,下面分别简要对其进行介绍。 1.1低频噪声 低频噪声主要是由于内部的导电微粒不连续造成的。特别是碳膜电阻,其碳质材料内部存在许多微小颗粒,颗粒之间是不连续的,在电流流过时,会使电阻的导电率发生变化引起电流的变化,产生类似接触不良的闪爆电弧。另外,晶体管也可能产生相似的爆裂噪声和闪烁噪声,其产生机理与电阻中微粒的不连续性相近,也与晶体管的掺杂程度有关。 1.2半导体器件产生的散粒噪声 由于半导体PN结两端势垒区电压的变化引起累积在此区域的电荷数量改变,从而显现出电容效应。当外加正向电压升高时,N区的和P区的空穴向耗尽区运动,相当于对电容充电。当正向电压减小时,它又使电子和空穴远离耗尽区,相当于电容放电。当外加反向电压时,耗尽区的变化相反。当电流流经势垒区时,这种变化会引起流过势垒区的电流产生微小波动,从而产生电流噪声。其产生噪声的大小与温度、频带宽度△f成正比。 1.3高频热噪声 高频热噪声是由于导电体内部电子的无规则运动产生的。温度越高,电子运动就越激烈。导体内部电子的无规则运动会在其内部形成很多微小的电流波动,因其是无序运动,故它的

2×8低噪声InGaAs/InP APD读出电路设计

2×8低噪声InGaAs/InP APD 读出电路设计 0 引言在红外通信的1 310~1 550 nm 波段,高灵敏度探测材料主要有Ge―APD和InGaAs/InP APD,两者相比较,InGaAs/InP APD 具有更高的量子效率和更低的暗电流噪声。In0.53Ga0.47As/InP APD 采用在n+-InP 衬底上依次匹配外延InP 缓冲层、InGaAs 吸收层、InGaAsP 能隙渐变层、InP 电荷层与InP 顶层的结构。APD 探测器的最大缺点是暗电流相对于信号增益较大,所以设计APD 读出电路的关键是放大输出弱电流信号,限制噪声信号,提高 信噪比。选择CTIA 作为读出单元,CTIA 是采用运算放大器作为积分器的运放积分模式,比较其他的读出电路,优点是噪声低、线性好、动态范围大。1 工作时序和读出电路结构作为大阵列面阵的基础,首先研制了一个2×8读出电路,图1 给出了该电路的工作时序,其中Rl、R2 为行选通信号;Vr 为复位信号;SHl、SH2 是双采样信号;C1、C2、…、C8 为列读出信号。电路采用行共用的工作方式,R1 选通(高电平)时,第一行进行积分,SH1 为高电平时,电路进行积分前采样,SH2 为高电平时,进行积分结束前的采样, C1、C2、…、C8 依次为高电平,将行上的每个像元上信号输出;然后R2 为高电平,重复上面的步骤,进行第二行的积分和读出。 图2 是2×8读出电路的结构框图,芯片主要由行列移位寄存器、CTIA 和CDS 单元组成,图中用虚线框表示:移位寄存器单元完成行列的选通,CTIA 功能块将探测器电流信号按行进行积分,CDS 功能块能抑制电路的噪声,如KTC(复位噪声)、FPN(固定图形噪声)等;FPGA 主要产生复位信号(Vr)和采样 信号(SH1、SH2),触发电路的复位和采样动作,C8 为该组信号的触发信号, 解决和芯片内行列选通信号同步问题。

电路噪声的产生及抑制

电路噪声的产生及抑制 电路噪声 对于电子线路中所标称的噪声,可以概括地认为,它是对目的信号以外的所有信号的一个总称。最初人们把造成收音机这类音响设备所发出噪声的那些电子信号,称为噪声。但是,一些非目的的电子信号对电子线路造成的后果并非都和声音有关,因而,后来人们逐步扩大了噪声概念。例如,把造成视屏幕有白班呀条纹的那些电子信号也称为噪声。可能以说,电路中除目的的信号以外的一切信号,不管它对电路是否造成影响,都可称为噪声。例如,电源电压中的纹波或自激振荡,可对电路造成不良影响,使音响装置发出交流声或导致电路误动作,但有时也许并不导致上述后果。对于这种纹波或振荡,都应称为电路的一种噪声。又有某一频率的无线电波信号,对需要接收这种信号的接收机来讲,它是正常的目的信号,而对另一接收机它就是一种非目的信号,即是噪声。在电子学中常使用干扰这个术语,有时会与噪声的概念相混淆,其实,是有区别的。噪声是一种电子信号,而干扰是指的某种效应,是由于噪声原因对电路造成的一种不良反应。而电路中存在着噪声,却不一定就有干扰。在数字电路中。往往可以用示波器观察到在正常的脉冲信号上混有一些小的尖峰脉冲是所不期望的,而是一种噪声。但由于电路特性关系,这些小尖峰脉冲还不致于使数字电路的逻辑受到影响而发生混乱,所以可以认为是没有干扰。 当一个噪声电压大到足以使电路受到干扰时,该噪声电压就称为干扰电压。而一个电路或一个器件,当它还能保持正常工作时所加的最大噪声电压,称为该电路或器件的抗干扰容限或抗扰度。一般说来,噪声很难消除,但可以设法降低噪声的强度或提高电路的抗扰度,以使噪声不致于形成干扰。 电子电路中噪声的产生?如何抑制 这个东西主要是由于电路中的数字电路和电源部分产生的。在数字电路中,普遍存在高频的数字电平,这些电平可以产生两种噪声:1、电磁辐射,就像电视的天线一样,通过发射电磁波来干扰旁边的电路,也就是你说的噪声。2、耦合噪声,指数字电路和旁边的电路存在

常用图像去噪方法比较及其性能分析

龙源期刊网 https://www.360docs.net/doc/9d7188819.html, 常用图像去噪方法比较及其性能分析 作者:孟靖童王靖元 来源:《信息技术时代·下旬刊》2018年第02期 摘要:本文介绍了噪声的分类模型,之后又分别介绍了空间域去噪、傅里叶去噪算法以及小波去噪中的部分算法,并分别对相似算法进行了分析比较。同时为了更好的比较出各算法之间的去噪差别针对其中部分去噪算法进行了用matlab的实现,比较了去噪的效果。 关键词:数字图像;噪声;滤波 一、引言 随着当今社会数字化的普及,人们传递图像信息的方式已经从之前单纯的实物传递变为当今的数字图像的传递。然而由于各种原因会导致数字图像真实性减弱。针对这种问题,数字图像处理技术应运而生。数字图像处理技术的产生,不仅满足了人们的视觉,同时经过处理的图像还可以更好的应用于图像加密,图像识别等领域。 二、空间域去噪算法 (一)均值滤波去噪 通过计算某一滤波目标区域内的算数平均值来替代目标区域中心所对应的像素值的方法来达到去除噪声的目的。而加权均值滤波则是在原有均值滤波的基础上,通过对某些更趋进于真实像素的点进行加权的方法来达到更好的去噪效果,使最终区域中心像素更加趋近于真实像素。 利用均值滤波可以很好的去除由高斯噪声带来的对于图像的影响,然而对于由于椒盐噪声带来的对于图像的影响,均值滤波去除的效果并不很好。同时,由于均值滤波的算法是通过取目标范围内一小区域中点灰度值的平均值,来决定区域中心点灰度值的,所以不可避免的造成图像经过均值滤波后会导致图像部分原始真实细节被滤掉,造成视觉上细节不清楚的情况。并且所取范围越大,图像中细节部分越不清晰,图像越平滑。 (二)中值滤波去噪 通过求区域中心点及其周围点灰度值的中值,来代替该中心点的灰度值。因此利用中值去噪的方法可以较好的弥补均值滤波对于图像边缘不清晰处理的缺点。然而由于中值滤波对于所选滤波区域的选择要求较高,因此对于滤波区域大小形状的选择需要根据具体图像来确定。此外,与均值滤波相比,中值滤波对于椒盐噪声的处理比对于高斯噪声的处理更好。 (三)维纳滤波去噪

红外焦平面读出电路噪声分析

Design of 800×2 Low-Noise Readout Circuit for Near-Infrared InGaAs Focal Plane Array Huang Zhangcheng*a, Huang Songlei a, Fang Jiaxiong a a State Key Laboratory of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China ABSTRACT InGaAs near-infrared (NIR) focal plane arrays (FPA) have important applications in space remote sensing. A design of 800×2 low-noise readout integrated circuit (T800 ROIC) with a pitch of 25 μm is presented for a dual-band monolithic InGaAs FPA. Mathematical analysis and transient noise simulations have been presented for predicting and lowering the noise in T800 ROIC. Thermal noise from input-stage amplifier which plays a dominant role in ROIC is reduced by increasing load capacitor under tradeoff and a low input offset voltage in the range of ±5 mV is obtained by optimizing transistors in the input-stage amplifier. T800 ROIC has been fabricated with 0.5-μm 5V mixed signal CMOS process and interfaced with InGaAs detector arrays. Test results show that ROIC noise is around 90 μV and input offset voltage shows a good correspondence with simulation results. 800×2 InGaAs FPA has a peak detectivity (D*)of about 1.1×1012 cmHz1/2/ W, with dynamic range of above 80dB. Keywords: infrared FPA, ROIC, low noise, input offset voltage INTRODUCTION InGaAs near-infrared focal plane array has wide applications in space remote sensing, NIR spectroscopy and night vision [1][2]. As InGaAs detector has a high detectivity from 0.9 μm to 1.7 μm at room temperature with its lattice matched to InP substrate, there has been strong interest in developing InGaAs FPA as optoelectronic sensor for remote sensing [3]. In general, InGaAs FPA consists of two major parts, namely InGaAs detector arrays and the readout integrated circuit. In the past years, the advances of detector fabrication technology have led to the rapid development of InGaAs detector array [4]. At present, for many mature InGaAs FPA detector technologies, it is the readout electronics that limit performance rather than the detector itself. In this paper, a design of low-noise 800×2 CMOS ROIC for near-infrared InGaAs focal plane array is presented. The first section describes basic architecture of ROIC. The second section presents a mathematical analysis of total noise and the design method of low-noise ROIC circuit. To obtain low dark current in FPA, the next section discusses the input offset voltage of input amplifier. The last section will present performance measurements and comparison with calculation results. 800×2 ROIC ARCHITECTURE InGaAs near-infrared focal plane array has been studied in Shanghai Institute of Technical Physics (SITP) for several years [5][6]. Now there is a great interest in developing an 800×2 InGaAs NIR focal plane array for dual-band detection. This paper reports the development of 800×2 low-noise ROIC (T800) suitable for dual-band monolithic InGaAs detector arrays. T800 ROIC consists of two parallel 800×1 linear arrays with 25μm pixel pitch. Figure 1 shows the architecture of unit circuit in T800 ROIC. Infrared, Millimeter-Wave, and Terahertz Technologies II, edited by Cunlin Zhang, Xi-Cheng Zhang, He Li, Sheng-Cai Shi, Proc. of SPIE Vol. 8562, 856205 · ? 2012 SPIE · CCC code: 0277-786/12/$18 · doi: 10.1117/12.999646

电工学 章 题库电子电路中的反馈 答案

第17章电子电路中的反馈 一、填空题 1、反馈放大电路由_____________和_____________两部分组成。 2、已知某放大电路的输入信号为1mV, 输出电压为1V;当加上负反馈后达到同样的输出电压时,需加入输入电压为10mV。则该电路的反馈深度为______,反馈系数为______。 3、已知一负反馈放大电路的开环放大倍数A=200, 反馈系数F=0.05。当温度变化使开环放大倍数变化±5%时,闭环放大倍数的相对变化量为___________。 4、某放大器开环放大倍数A变化±25%时,若要求闭环放大倍数A f的变化不超过±1%。若闭环放大倍数A f=100,则A=________,F=_________。 5、若希望放大器从信号源索取的电流要小,可引入______反馈。若希望电路在负载变化时,输出电流稳定,则可引入_______反馈。若希望电路在负载变化时,输出电压稳定,则可引入______反馈。 6、为组成满足下列要求的电路,应分别引入何种组态的负反馈: 组成一个电压控制的电压源,应引入_____________;组成一个电流控制的电压源,应引入_____________;组成一个电压控制的电流源,应引入_____________;组成一个电流控制的电流源,应引入_____________。 7、放大电路的负反馈是使净输入量。(填“增大”或“减小”) 8、在放大电路中引入反馈后.使净输入信号减小的反馈是___________反馈,若使净输入信号增大的反馈是__________反馈。 9、在放大电路中,为了稳定静态工作点,可以引入________负反馈(填“交流”或“直流”);若要稳定放大倍数,应引入________负反馈。(填“交流”或“直流”) 10、交流放大电路中,要求降低输出电阻,提高输入电阻,需引入_____________负反馈。

运算放大器电路中固有噪声的分析与测量一

运算放大器电路中固有噪声的分析与测量(一) 第一部分:引言与统计数据评论 我们可将噪声定义为电子系统中任何不需要的信号。噪声会导致音频信号质量下降以及精确测量方面的错误。板级与系统级电子设计工程师希望能确定其设计方案在最差条件下的噪声到底有多大,并找到降低噪声的方法以及准确确认其设计方案可行性的测量技术。 噪声包括固有噪声及外部噪声,这两种基本类型的噪声均会影响电子电路的性能。外部噪声来自外部噪声源,典型例子包括数字开关、60Hz 噪声以及电源开关等。固有噪声由电路元件本身生成,最常见的例子包括宽带噪声、热噪声以及闪烁噪声等。本系列文章将介绍如何通过计算来预测电路的固有噪声大小,如何采用 SPICE模拟技术,以及噪声测量技术等。 热噪声 热噪声由导体中电子的不规则运动而产生。由于运动会随温度的升高而加剧,因此热噪声的幅度会随温度的上升而提高。我们可将热噪声视为组件(如电阻器)电压的不规则变化。图 1.1 显示了标准示波器测得的一定时域中热噪声波形,我们从图中还可看到,如果从统计学的角度来分析随机信号的话,那么它可表现为高斯分布曲线。我们给出分布曲线的侧面图,从中可以看出它与时域信号之间的关系。 图 1.1: 在时间域中显示白噪声以及统计学分析结果

热噪声信号所包含的功率与温度及带宽直接成正比。请注意,我们可简单应用功率方程式来表达电压与电阻之间的关系(见方程式1.1),根据该表达式,我们可以估算出电路均方根 (RMS) 噪声的大小。此外,它还说明了在低噪声电路中尽可能采用低电阻元件的重要性。 方程式 1.1:热电压 方程式 1.1 中有一点值得重视的是,根据该表达式我们还可计算出 RMS 噪声电压。在大多数情况下,工程师希望了解“最差条件下噪声会有多严重?”换言之,他们非常关心峰峰值电压的情况。如果我们要将 RMS 热噪声电压转化为峰峰值噪声的话,那么必须记住的一点是:噪声会表现为高斯分布曲线。这里有一些单凭经验的方法即根据统计学上的关系,我们可将 RMS 热噪声电压转化为峰峰值噪声。不过,在介绍有关方法前,我想先谈谈一些数学方面的基本原理。本文的重点在于介绍统计学方面的基本理论,随后几篇文章将讨论实际模拟电路的测量与分析事宜。 概率密度函数: 构成正态分布函数的数学方程式称作“概率密度函数”(见方程式 1.2)。根据一段时间内测得的噪声电压绘制出相应的柱状图,从该柱状图,我们可以大致看出函数所表达的形状。图 1.2 显示了测得的噪声柱状图,并给出了相应的概率密度函数。

噪音的特性

噪声级为30~40分贝是比较安静的正常环境;超过50分贝就会影响睡眠和休息。由于休息不足,疲劳不能消除,正常生理功能会受到一定的影响;70分贝以上干扰谈话,造成心烦意乱,精神不集中,影响工作效率,甚至发生事故;长期工作或生活在90分贝以上的噪声环境,会严重影响听力和导致其他疾病的发生。 音量类比 160分贝瞬间失聪 150分贝煤气罐爆炸 130分贝近处的开炮声 120分贝飞机引擎 100分贝园锯切割机 90分贝载重汽车 70分贝繁忙的主干道 40分贝安静的公园 30分贝无人的空房间 10分贝针掉地 人的耳朵对于60-70分贝的声音是比较适宜的,80-90分贝就会感觉到很吵闹,神经细胞将会受到破坏;而音量超过100分贝的话,则足以使耳内部听力的毛细胞死亡或损伤,造成听力的损失。所以我们在聆听的时候需要注意这些问题,不仅仅需要考虑对环境的影响,对节能的影响,也要考虑到对自身健康的影响,可以说对于个人来说最后这一点是最为重要的。[3] 放音设备的声压级过高会增加现场周围的噪声形成声音污染,并且会严重影响到人们的听力,而人们将超出需要、影响听力的声压级称之为声暴力。扩声系统声压级过高会造成能源浪贵,也会造成扩声设备资源浪费。有人讲增加3分贝没有什么了不起,但却不知道不知道声压级增加3分贝,放大器的功率就要增加一倍,甚至有时器材也会增加一倍。这都要付出很大的代价。[ 3噪声污染按声源的机械特点可分为:气体扰动产生的噪声、固体振动产生的噪声、液体撞击产生的噪声以及电磁作用产生的电磁噪声。噪声按声音的频率可分为:<400Hz的低频噪声、400~1000Hz的中频噪声及>1000Hz的高频噪声。 ] 按普通人的听觉

CCD图像传感器读出电路研究与设计

分类号密级 UDC1注 学位论文 CCD图像传感器读出电路研究与设计 (题名和副题名) 罗 彦 (作者姓名) 指导教师姓名 李竞春 副教授 电子科技大学 成 都 (职务、职称、学位、单位名称及地址) 申请专业学位级别硕士专业名称 微电子学与固体电子学 论文提交日期 2009.4 论文答辩日期2009.5 学位授予单位和日期电子科技大学 答辩委员会主席 评阅人 2009年月日 注1:注明《国际十进分类法UDC》的类号。

独创性声明 本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。据我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得电子科技大学或其它教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。 签名:日期:年月日 关于论文使用授权的说明 本学位论文作者完全了解电子科技大学有关保留、使用学位论文的规定,有权保留并向国家有关部门或机构送交论文的复印件和磁盘,允许论文被查阅和借阅。本人授权电子科技大学可以将学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。 (保密的学位论文在解密后应遵守此规定) 签名:导师签名: 日期:年月日

摘要 CCD图像传感器读出电路是CCD器件与后续数字信号处理电路之间的接口,其作用是放大CCD器件输出的微弱信号,并滤除各种噪声。读出电路的性能决定了整个CCD系统的精度。随着CCD器件速度和象元数的不断提高,要求读出电路具有更高的速度、更低的噪声、更大的动态范围以及更多功能的单片集成。 本文研究了单片集成的CCD读出电路,设计了前置放大器、低通滤波器和相关双采样三个子模块电路。设计过程中主要从精度、速度和噪声三方面探讨了各个子模块的理论模型和相应的电路实现途径,同时基于UMC 0.18μm CMOS工艺设计了读出频率为2MHz,精度在10位以上的CCD图像传感器读出电路。主要内容包括以下几方面: 1)系统阐述和分析了CCD器件结构及其产生的噪声,侧重对于在噪声中占 主要成分的输出复位噪声进行了研究,推导了复位噪声随时间变化的表 达式,分析了复位噪声的相关性并计算了相关系数。基于复位噪声的相 关性,采用相关双采样电路降低复位噪声。 2)基于前置放大器结构,分析了影响前置放大器精度和速度的因素,如运 放有限增益,有限带宽,噪声和失调电压等。通过分析,推导了用于读 出电路的运算放大器的指标。同时基于2MHz读出频率和相关双采样抑 制噪声的要求,确定了低通滤波器的-3dB带宽。 3)设计了用于CCD读出电路各个模块的运算放大器,包括可驱动低阻抗的 带输出级的运放和用于缓冲隔离的普通运放。运放设计过程中还分析和 推导了噪声和失调电压,通过优化参数将噪声和失调电压降至最低。仿 真结果,运放增益78dB,单位增益带宽30MHz,相位裕度58?,满足系 统设计的要求。 4)推导了相关双采样的系统函数。设计了两种相关双采样电路,分析了相 关双采样电路中的电荷注入等误差,通过分析和仿真结果表明,第二种 相关双采样电路能够将误差降至最低,满足系统10位精度要求。 5)基于UMC 0.18μm CMOS工艺,设计仿真了用于CCD图像传感器的读出 电路,电源电压3.3V,读出频率为2MHz,最大输出信号为1V。仿真结 I

[隔声材料隔声性能内容]比较材料的隔声性能

[隔声材料隔声性能内容]比较材料的隔声性能第一部分降噪研究 一、概述 通过前一阶段对南京依维柯A3010车内噪声的研究和分析,对降 低该车车内噪声提出了一些改进建议。根据建议,南京依维柯公司在机舱吸声隔声的基础上,对A3010汽车又进行了局部改进,主要改进措施有:1.在暖风机的外表面粘贴阻尼;2.在原进气口的夹层空腔处增设了隔离结构,将进气通道与夹层空腔隔开;3. 在变速器盖板下面增设一层吸声垫层; 4.设计了新的排气消声器。下面就将采取上述措施之后的汽车噪声情况作一介绍。 二、车内噪声情况 1.暖风机外表面粘贴阻尼 在暖风机的外表面粘贴阻尼材料,在一定程度上增加了暖风机外 壳的隔声性能,减少了通过暖风机传入车厢的发动机噪声。表一列出了发动机以一定的转速运转、汽车停在原地的工况下测得的车内噪声。 2.进气口增设隔离结构

在进气口的夹层空腔内增设隔离结构,破坏了原夹层空腔的声学特性,也减少了经此空腔 传入车内的进气噪声。测试结果列于表2。 在变速器盖下面加吸声垫层的情况下,对车内噪声的测试表明,尽管加垫层使变速器盖附近的近场声有所降低(约0.5dBA),但对驾驶员耳旁和其他座位处的噪声均效果甚微。样车装上新消声器后的噪声测试表明,新削声器使车外噪声有所降低,但对车内噪声几乎没有影响。 3.效果评价 为了考察采取各项降噪措施后的效果,将原样车、机舱吸声隔声、暖风机包阻尼、进气口装隔离结构等状态下,发动机以不同转速运转时测得的噪声值列于表3-表6。表中的“原状”指未采取任何措施,隔声指采取机舱吸声隔声措施。“暖风”指暖风机外表面包阻尼材料,“进气”指进气口装隔离机构。必须说明,各项措施是依次采用的,采取后一种措施时,前一种措施并未撤除,也就是说,后一种措施的效果是在以前措施的基础之上取得的,是各项措施的综合效果。

运放电路噪声与偏置

运放电路噪声与偏置 1.噪声的来源 非反转放大电路主要的噪声来源如下(摘自远坂俊昭《从OP放大器实践电路到微弱信号的处理》): 从图中可知,噪声主要与下面几个因素有关。 1.1.等效输入噪声电压(En) 等效输入噪声电压定义为,屏蔽良好、无信号输入的的运放,在其输出端产生的任何交流无规则的干扰电压。这个噪声电压折算到运放输入端时,就称为运放输入噪声电压。 En和频率有关,不同频率段的噪声规律不一样,如图。

在计算时,需要分段计算。一般datasheet会给出某个频率段的噪声密度,也有些会给出低频段的噪声值。根据这些指标与自身系统的带宽即可计算得到噪声电压。 1.2.等效输入噪声电流(In) 等效输入噪声电流(In)与等效输入噪声电压类似。 同样datasheet会给出噪声密度指标,根据实际带宽计算得到噪声幅度,由于是一个电流值,还需要乘上所流经电阻的阻值,得到电压噪声幅度。 1.3.电阻热噪声 高于绝对0°(-273℃或Ok)的任何温度下,物质中的电子都在持续地热运动。由于其运动方向是随机的,任何短时电流都不相关,因此没有可检测到的电流。但是连续的随机运动序列可以导致Johnson噪声或热噪声。电阻热噪声的幅度和其阻值有下列关系; 式中,Vn是噪声电压,以V为单位;Kb是玻尔兹曼常数,1.38×10(-23)J/K;T是温度,以K为单位;R是电阻,以Ω为单位;B是带宽,以Hz为单位 当放大电路中有较大电阻,那么热噪声也是主要的噪声源之一。 1.4.噪声的融合 上面列举的几种噪声互相之间是无关的,他们的自乘之和的平方根就是合成的振幅值。噪声幅值在最大噪声幅值1/3以下的成分,影响小于10%,可以忽略不计。 实际电路中根据实际参数计算主要噪声,忽略次要噪声,即可估算得到噪声值。

相关文档
最新文档