中考代数式要点解读
代数式知识点

中考复习二 代数式考点一、整式的有关概念1、代数式:用________________把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2、单项式:只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如c b a 235-是6次单项式。
考点二、多项式 1、多项式几个单项式的____________叫做多项式。
其中每个单项式叫做这个多项式的____________。
多项式中不含字母的项叫做常数项。
多项式中____________,叫做这个多项式的次数。
单项式和多项式统称____________。
用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。
2、同类项所有____________相同,并且相同字母的____________也分别相同的项叫做同类项。
几个常数项也是同类项。
3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都____________。
(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都____________。
4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。
整式的乘法: ),(都是正整数n m a a a n m n m +=∙),(都是正整数)(n m a a m n n m =)()(都是正整数n b a ab n n n =22))((b a b a b a -=-+ 2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-整式的除法: )0,,(≠=÷-a n m a a a n m n m 都是正整数 注意:(1)单项式乘单项式的结果仍然是单项式。
中考复习之——代数式

中考复习之——代数式一、主要知识点: 1.幂的运算公式:幂的运算同底数幂的乘法:a m a n =a m+n ,a m+n =a m a n同底数幂的除法:a m ÷a n =a m −n ,a m −n =a m ÷a n 幂的乘方: a m n =a mn ,a mn = a m n积的乘方: ab n =a n b n ,a n b n = ab n零次幂:a 0=1 a ≠0 →如20=1,(−3)0=1,(3−π)0=1等 负指数次幂:a −n =1a n a ≠0→如3−1=13 ,(−5)−2 =125 ,(−12)−1=−2,(−13)−2=9等2.乘法公式以及逆向使用: ①平方差公式:(a+b )(a-b )=a ²-b ²②完全平方公式:(a +b )2=a 2+2ab +b 2,(a −b )2=a 2−2ab +b 2 3.因式分解:①提公因式法:如(x+1)(x-2)-(x+1)=(x+1)(x-2-1)=(x+1)(x-3) ②运用平方差公式:))((22b a b a b a -+=-如(2x −1)2−x 2= 2x −1+x 2x −1−x = 3x −1 (x −1)③运用完全平方公式:222)(2b a b ab a +=++, 222)(2b a b ab a -=+- 如:a 2−6ab +9b 2=(a −3b )2④十字相乘法:如:x 2+5x +6= x +2 (x +3)x 3x 2x x x 523=+又如:8x 2+6x −35= 2x +5 (4x −7)x 2 5 x 4 7-x x x 62014=+-4.分式的运算:①通分:②约分:③分式的加减乘除混合运算:5.二次根式的运算:运算结果必须化成最简二次根式。
6.整体代入思想:7.找规律列代数式: 二、中考专项训练: 1.(2010徐州)下列计算正确的是----------------------------------------------------------( )A .624a a a =+B .2a ·4a =8aC .325a a a =÷D .532)(a a =2.(2011徐州)下列计算正确的是----------------------------------------------------------( )A .B .C .D .22x x x ⋅=22()xy xy =236()x x =224x x x +=3.(2012徐州)计算23x x ⋅的结果是-------------------------------------------------------( ) A.x 5 B.x 8 C.x 6 D.x 74.(2013徐州)下列各式的运算结果为x 6的是----------------------------------------------( ) A. x 9÷ x 3B. (x 3)³C. x 2 ·x 3D. x 3+x 35.(2014徐州)下列运算中错误的是-----------------------------------------------------( ) A .+=B .×=C .÷=2D .=36.(2015徐州)下列运算正确的是------------------------------------------------------( )A .3a ²-2a ²=1 B.(a ²)³=a 5 C.a ² · a 4=a 6D.(3a )²=6a ² 7.(2016徐州)下列运算中,正确的是---------------------------------------------------( ) A.633x x x =+ B.2763x x x =⋅ C.()532x x = D.12-=÷x x x8.(2017徐州)下列运算正确的是-------------------------------------------------------( ) A .()a b c a b c -+=-+ B .235236a a a ⋅= C. 5302a a a += D .()2211x x +=+ 9.(2010徐州)函数y=11-x 中自变量x 的取值范围是________. 10.(2011徐州)若式子 x −1在实数范围内有意义,则x 的取值范围是--------------------------( ) A . B . C . D . 11(2013徐州).若式子x -2在实数范围内有意义,则x 的取值范围是 . 12.(2014徐州)函数y=中,自变量x 的取值范围为 .13.(2015徐州)使x - 1 有意义的x 的取值范围是-----------------------------------------( ) A . x ≠ 1 B. x ≥ 1 C. x > 1 D. x ≥ 0 14.(2016徐州) 函数x y -=2中自变量x 的取值范围是-----------------------------------( ) A.2≤x B.2≥x C.2<x D.2≠x 15.(2017x 的取值范围 . 16.(2010徐州)计算(a-3)2的结果为_______. 17.(2012徐州)分解因式:2a 4=- 。
中考数学专题:实数与代数式

专题一 数与式中考要求:实数:借助数轴理解相反数、倒数、绝对值的意义及性质;掌握实数的分类、大小比较及混合运算;会用科学记数法、有效数字、精确度确定一个数的近似值;能用有理数估计一个无理数的大致范围.代数式:了解整式、分式、二次根式、最简二次根式的概念及意义; 会用提公因式法、公式法对整式进行因式分解; 理解平方根、算术平方根、立方根的意义及其性质; 根据整式、分式、二次根式的运算法则进行化简、求值.考查方式:本专题内容在中考中涉及数轴、相反数、绝对值等概念,多以填空题、选择题的形式出现. 科学记数法、近似数和有效数字往往与生产生活及科技领域中的实际问题相联系,具有较强的应用性,是中考的热点. 关于代数式的概念与运算,往往是单独命题,试题以填空题、选择题及计算题的形式出现,试题难度为中、低档. 试题设计有的带有开放探索性,覆盖面广,常常以大容量、小综合的形式考查灵活运用知识的能力.备考策略:1. 夯实基础,理清考点.2. 对课本中的典型和重点题目做变式、延伸.3. 注意一些跨学科的常识,加强学科整合.4. 关注中考的新题型.5. 关注课程标准中新增的目标.6. 探究性试题的复习步骤:(1)纯数字的规律探索.(2)结合平面图形探索规律.(3)结合空间图形探索规律,(4)探索规律方法的总结.第1课时 实数的概念课时核心问题:数系的扩张及实数相关概念的理解应用. 聚焦考点☆温习理解一、实数1. 有理数: ,它包括 、 .2. 无理数: .3. 实数及分类:注意:在理解无理数时,要注意“无限不循环”,归纳起来有四类:(1)开方开不尽的数,如(2)有特定意义的数,如圆周率π,或化简后含有π 的数,如π23+等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等. 二、绝对值一个数的绝对值指的是表示.几何意义:一般地,数轴上表示叫做数a 的绝对值,记作|a |.代数意义:(1)正数的绝对值是 ;(2)负数的绝对值是 ;(3)零的绝对值是 .也可以写成:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩.说明:(1)|a |≥0,即|a |是一个非负数;(2)|a |概念中蕴含分类讨论思想;(3)“| |”有括号的作用.三、相反数叫做互为相反数. 零的相反数是零.从数轴上看, 互为相反数的两个数所对应的点关于原点对称. 若a 与b 互为相反数,则a +b =0, 反之也成立.四、倒数如果a 与b 互为倒数,则有ab =1,反之亦成立. 倒数等于本身的数是1和1-. 零没有倒数.五、平方根如果一个数的平方等于a(a≥0),那么这个数就叫做a的平方根(或二次方根). 一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根. 正数a的平方根记作“”.正数a的正的平方根叫做a的算术平方根,记作“”.正数和零的算术平方根都只有一个,零的算术平方根是零.1.(0) ||(0)a aaa a⎧==⎨-<⎩≥.2.与2的联系:3.0)<0)aa>=⎩.六、立方根如果一个数的立方等于a, 那么这个数就叫做a的立方根(或a的三次方根). 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.注意:(1)=,说明三次根号内的负号可以移到根号外面;(2)=3.典例解析考点一、实数的分类【例1】下列实数是无理数的是().B. 1C. 0D.1-听课记录:【举一反三】1.下列四个实数中,是无理数的是().A. 0B. 3-D.3112. 下列选项中,属于无理数的是().A. 2B. πC. 32D. 2-3. 下列各数:227,π,cos60︒,0,,其中无理数的个数是().A. 1B. 2C. 3D. 4考点二、绝对值【例2】|2|-等于().A. 2B. 2-C.12D.12-听课记录:【举一反三】2的绝对值是().A. ±2B. 2C. 12D. 2-考点三、相反数【例3】5的相反数是().A. 5B. 5-C. 15D.15-听课记录:【举一反三】1. 2014的相反数是().A. 2014B. 2014-C.12014D.12014-2.15-的相反数是().A. 15B.15-C. 5D. 5-考点四、倒数【例4】12-的倒数是().A. B.C. D. 听课记录:【举一反三】1. 12的倒数是().A. 2B. 2-C. 12D. 12- 2. 14-的倒数是( ). A. -4B. 4C. 14D. 14- 考点五、平方根【例5】得( ).A. 100B. 10C.D. 10± 听课记录:【举一反三】1. 一个数的算术平方根是2,则这个数是 .2. 的平方根是 .3. 若2y =,则()y x y += .4. 若实数x , y 满足|4|0x -=,则以x , y 的值为等腰三角形的周长为 .5. 若1a <1-= .6. 2210b b ++=,则221||a b a +-= .7. 设1a =,a 在两个相邻整数之间,则这两个整数是 .第2课时 实数的计算课时核心问题:实数的灵活运算.聚焦考点☆温习理解一、实数大小的比较1. 数轴:规定了、、的直线叫做数轴. (画数轴时要注意上述三要素缺一不可)解题时要真正掌握数形结合思想,理解实数与数轴上的点是一一对应的,并且能灵活运用.2. 实数大小比较的几种常见方法.(1)数轴比较:数轴上的点所表示的数在右边的总比左边的大;(2)求差比较:设a, b为实数,有a-b>0⇔a>b;a-b<0⇔a<b;a-b=0⇔a=b.(3)求商比较:设a, b为两正实数,有a>1⇔a>b;ba<1⇔a<b;ba=1⇔a=b.b(4)绝对值比较法:设a, b为两负实数,则a a b>⇔<.b(5)平方比较法:设a,b为两负实数,则22a b a b >⇔<.二、科学计数法和近似数1. 有效数字:一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字.2. 科学计数法:把一个数写成10n a ±⨯的形式,其中110a <≤,n 是整数,这种计数法叫做科学计数法.三、实数的运算1. 加法交换律:a b b a +=+.2. 加法结合律:()()a b c a b c ++=++.3. 乘法交换律:ab ba =.4. 乘法结合律:()()ab c a bc =.5. 乘法对加法的分配律:()a b c ab ac +=+.6. 实数的运算顺序:先算乘(开)方,再算乘除,最后算加减,如果有括号,就先算括号里面的. 典例解析考点一、实数的大小比较【例1】下列各数中,最大的数是( ).A. 0B. 2C.2-D.12- 听课记录:【举一反三】1. 下列各数中,最小的数是().A. 0B. 1 3C.13- D.3-2. 在数1,0,1,2--中,最小的数是().A. 1B. 0C. 1-D. 2-考点二、科学计数法与近似值【例2】“着力扩大投资,突破重点项目建设”是遵义经济社会发展的主要任务之一.据统计,遵义市2014年全社会固定资产投资达1762亿元,“1762亿”这个数用科学计数法表示为().A. 1762×108B. 1.762×1010C. 1.762×1011D. 1.762×1012听课记录:【举一反三】1. 据统计,2015年河南省旅游业总收入达到3875.5亿元. 若将“3875.5亿”用科学计数法表示为3.8755×10n,则n等于().A. 10B. 11C. 12D. 132. 将6.18×10-3化为小数是( ).A. 0.000618B. 0.00618C. 0.0618D. 0.6183. 20140000用科学计数法表示(保留3位有效数字)为 .考点三、实数的运算【例3】计算:201(π2014)sin 6023-⎛⎫+-+︒ ⎪⎝⎭.听课记录:【举一反三】1. 计算:2(2)(3)2-+-⨯.2. 2014(1)2sin 45--︒+-3. 计算:1011)23-⎛⎫-+-- ⎪⎝⎭.第3课时整 式 课时核心问题:整式的相关概念及运算.聚焦考点☆温习理解一、单项式1. 代数式.用运算符号把数或表示数的字母连接而成的式子叫做代数式. 单独的一个数或一个字母也是代数式.2. 单项式.只含有数字与字母的积的代数式叫做单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示. 例如,2143a b -就是错误的,应写成2133a b -. 一个单项式中,所有字母的指数的和叫做这个单项式的次数,如325a b c -是6次单项式.二、多项式1. 多项式.几个单项式的和叫做多项式,其中每个单项式叫做这个多项式的项,多项式中不含字母的项叫做常数项,多项式中次数最高项的次数为多项式的次数.统称为整式.用数值代替代数式中的字母,按照代数式指出的运算计算出的代数式的结果,叫做求代数式的值.注意:(1)求代数式的值,一般先化简再代入.(2)求代数式的值,有时求不出具体字母的值,此时需要利用技巧“整体”代入求值.2. 同类项.所含 ,并且 的项叫做同类项. 几个常数项也是同类项.3. 去括号法则:(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都.(2)括号前是“-”,把括号和它前面的“-”号一起去掉,括号里各项都.三、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项.1. 幂的运算法则:(1)同底数幂相乘:m n m n⋅=(m, n都是整数,a≠0).a a a+(2)幂的乘方:()m n mn=(m, n都是整数,a≠0).a a(3)积的乘方:=⋅(n是整数,a≠0, b≠0).()n n nab a b(4)同底数幂相除:m n m n÷=(m, n都是整数,a≠0).a a a-2. 整式乘法.(1)单项式与单项式相乘,把作为积的因式,只在一个单项式里含有的字母,连同它的指数一起作为积的一个因式. (2)单项式乘多项式:m(a+b)=ma+mb.(3)多项式乘多项式:(a+b)(c+d)=ac+ad+bc+bd.3. 乘法公式.(1)平方差公式:(a+b)(a-b)=a2-b2.(2)完全平方公式:(a±b)2=a2±2ab+b2.4. 整式的除法:(1)单项式除以单项式:法则:(2)多项式除以单项式:法则:注意:(1)单项式乘单项式的结果仍然是单项式.(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同.(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项.(5)公式中的字母可以表示数,也可以表示单项式或多项式.(6)011(0),(0,)p pa a a a p a -=≠=≠为正数. (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加. 单项式除以多项式是不能这么计算的. 典例解析考点一、整式的加减运算【例1】下列计算正确的是( ).A. 2x -x =xB. 326a a a ⋅=C. (a -b )2=a 2-b 2D. (a +b )(a -b )=a 2+b 2听课记录:【举一反三】已知x 2-2=y ,则x (x -3y )+y (3x -1)-2的值是(). A.2- B. 0C. 2D. 4考点二、同类项的概念及合并同类项【例2】下列各式中,与2a 是同类项的是( ).A. 3aB. 2abC. 23a -D. a 2b听课记录:【举一反三】下列运算正确的是( ).A. 2323a a a +=B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a =考点三、幂的运算【例3】下列运算正确的是( ).A. 33a a a ⋅=B. 33()ab a b =C. 326()a a =D. 842a a a ÷=听课记录:【举一反三】1. 计算:2()ab 的结果是( ).A. 2abB. a 2bC. a 2b 2D. ab 22. 计算:63m m ⋅的结果是( ).A. m 18B. m 9C. m 3D. m 2考点四、整式的乘除法.【例4】计算:23(2)()a a ⋅-=.A. 312a -B. 36a -C. 12a 3D. 6a 2【例5】计算:2x (3x 2+1),正确的结果是(). A. 5x 3+2x B. 6x 3+1C. 6x 3+2xD. 6x 2+2x听课记录:【举一反三】1. 下列计算正确的是( ).A. 4416x x x ⋅=B. 325()a a =C. 236()ab ab =D. 23a a a +=2. 下列运算正确的是( ). A. 2323a a a += B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a = 考点五、整式的混合运算及求值【例6】先化简,再求值:2(3)()()a a b a b a a b -++--,其中11,2a b ==-. 听课记录:【举一反三】1. 下列计算中,正确的是( ).A. 235a b ab +=B. 326(3)6a a =C. 623a a a ÷=D. 32a a a -+=-2. 下列运算正确的是( ). A. (m +n )2=m 2+n 2B. (x 3)2=x 5C. 5x -2x =3D. (a +b )(a -b )=a 2-b 23. 下列计算正确的是( ).A. (2a 2)4=8a 6B. a 3+a =a 4C. a 2÷a =aD. (a -b )2=a 2-b 24. 化简:2()()()2a b a b a b ab ++-+-.5. 化简:2(1)2(1)a a ++-.6. 已知x (x +3)=1,求代数式2x 2+6x -5的值为 .7. 先化简,再求值:(x +1)(2x -1)-(x -3)2,其中2x =-.。
中考数学中的代数式与方程运算方法实例总结

中考数学中的代数式与方程运算方法实例总结代数式和方程是中考数学中的重要内容,对于学生来说,掌握代数式与方程的运算方法是解决数学问题的基础。
本文将通过具体实例总结中考数学中的代数式与方程的运算方法。
一、代数式的运算方法1. 同类项的合并代数式中,如果有多个含有相同变量的项,则可以将它们合并为一个项。
例如,对于代数式3x + 2x - x,将其中的同类项合并可得4x。
2. 去括号当代数式中有括号时,可以通过去括号的方法简化运算。
例如,对于代数式2(3x + 4),可以先将括号中的项扩展得到6x + 8,然后再进行运算。
3. 同底数幂的运算对于含有指数的代数式,如果底数相同,则可以将指数进行运算。
例如,对于代数式2^3 + 2^2,可以先计算出2^3等于8,2^2等于4,然后将它们相加得到12。
4. 因式分解当代数式中含有因式时,可以将其进行因式分解,以便后续运算。
例如,对于代数式x^2 + 2x,可以因式分解为x(x + 2),从而使计算变得更简单。
二、方程的运算方法实例1. 一次方程的解法对于一次方程ax + b = 0,可以通过求解变量x的值来求得方程的解。
例如,对于方程2x + 3 = 0,可以将3移到等号右边得到2x = -3,然后再将x求解得到x = -3/2。
2. 二次方程的解法对于二次方程ax^2 + bx + c = 0,可以通过求解变量x的值来求得方程的解。
例如,对于方程x^2 - 4x + 4 = 0,可以将其因式分解为(x -2)^2 = 0,然后解得x = 2。
3. 绝对值方程的解法当方程中含有绝对值时,可以通过拆分绝对值的方式来求解方程的解。
例如,对于方程|2x - 1| = 3,可以将其拆分为两个方程2x - 1 = 3和2x - 1 = -3,然后分别解得x = 2和x = -1。
4. 分式方程的解法对于含有分式的方程,可以通过通分和化简的方法来求解方程的解。
例如,对于方程(2x + 1)/(x - 3) = 3,可以先将方程的分母通分得到2x + 1 = 3(x - 3),然后化简得到2x + 1 = 3x - 9,最后解得x = 10。
2023中考九年级数学分类讲解 - 第二讲 代数式(含答案)(全国通用版)

第二讲代数式专项一列代数式知识清单1.代数式:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或__________连接起来的式子叫做代数式.单独一个数或一个字母也是代数式.2.列代数式:(1)关键是理解并找出问题中的数量关系及公式;(2)要掌握一些常见的数量关系,如:路程=速度×时间,工作总量=工作效率×工作时间,售价=标价×折扣等;(3)要善于抓住一些关键词语,如:多、少、大、小、增长、下降等.特别地,探索规律列代数式这类考题是近几年中考的热点,这类题通常是通过对数字及图形关系分析,探索规律,并能用代数式反映这个规律.3. 代数式的值:用具体数值代替代数式中的字母,按照代数式给出的运算计算出的结果,叫做代数式的值.这个过程叫做求代数式的值.考点例析例1 将x克含糖10%的糖水与y克含糖30%的糖水混合,混合后的糖水含糖()A.20%B.+100%2x y⨯C.+3100%20x y⨯D.+3100%10+10x yx y⨯分析:根据题意,可知混合后糖水中糖的质量为(10%x+30%y)克,糖水的质量为(x+y)克,则混合后的糖水含糖为混合后的糖的质量除以糖水的质量再乘100%.例2将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为.分析:先根据已知图形中黑色圆点的个数得到第n个图形中黑色圆点的个数为()12n n+;然后判断其中能被3整除的数,得到每3个数中,都有2个能被3整除;再计算出第33个能被3整除的数在原数列中的序数,代入计算即可.归纳:解决数、式或图形规律探索题,通常从给出的一列数、一列式子或一组图形入手去探索研究,通过观察、分析、类比、归纳、猜想,找出其中的变化规律,从而猜想出一般性的结论,并用含字母的代数式进行表示.跟踪训练1.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%2.(2021·达州)如图是一个运算程序示意图,若开始输入x的值为3,则输出的y值为___________.第2题图3.一组按规律排列的式子:a+2b,a2-2b3,a3+2b5,a4-2b7,…,则第n个式子是___________.4.下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形……依此规律,则第n个图形中三角形的个数是_______.第4题图专项二整式知识清单一、整式的加减1.相关概念:表示数或字母的_________的式子叫做单项式;几个单项式的和叫做多项式;________与______统称为整式.所含字母_________,并且相同字母的_________也相同的项叫做同类项.2. 合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的________,且字母连同它的指数________.3. 去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号_______;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号_______.4. 整式的加减:几个整式相加减,如果有括号就_______,然后再____________.二、幂的运算1. 同底数幂的乘法:a m·a n=________(m,n是整数).2. 同底数幂的除法:a m÷a n=________ (a≠0,m,n是整数).3. 幂的乘方:(a m)n=_______ (m,n是整数).4. 积的乘方:(ab)n=_______(n是整数).三、整式的乘法1. 单项式乘单项式:把它们的__________、__________分别相乘,对于只在一个单项式里含有的字母,则连同它的___________作为积的一个因式.2. 单项式乘多项式:p(a+b+c)=pa+pb+pc.3. 多项式乘多项式:(a+b)(p+q)=ap+aq+bp+bq.4. 乘法公式:①平方差公式:(a+b)(a-b)=_________ ;②完全平方公式:(a±b)2 =a2±2ab+b2.四、整式的除法1. 单项式相除,把__________与__________分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的__________作为商的一个因式.2. 多项式除以单项式,先把这个多项式的每一项除以___________,再把所得的商相加. 考点例析例1 下列运算正确的是()A.2x2 +3x3=5x5B.(-2x)3=-6x3C.(x+y)2=x2+y2D.(3x+2)(2-3x)=4-9x2分析:依次根据合并同类项法则、积的乘方运算法则、完全平方公式、平方差公式进行判断.例2已知10a=20,100b=50,则1322a b++的值是()A.2B.52C.3D.92分析:将100b变形为102b,根据同底数幂的乘法,将已知的两个式子相乘可得a+2b=3,整体代入求值.例3已知单项式2a4b-2m+7与3a2m b n+2是同类项,则m+n=__________.分析:根据同类项的定义,分别列出关于m,n的方程,求出m,n的值,再代入代数式计算.例4(2021·金华)已知x=16,求(3x-1)2+(1+3x)(1-3x)的值.分析:直接运用完全平方公式、平方差公式将式子展开,然后合并同类项化简,再将x=16代入求值.解:归纳:整式化简求值的关键是把原式化简,然后代入题目中的已知条件求值,其大致步骤可以简记为:一化,二代,三计算.需注意:①无论题目是否指定解题步骤,都应先化简后代入求值;①代入求值时,若代入的是负数或求分数的乘方时要注意添加括号;①当条件给定字母之间的关系时,代入则需要运用整体代入法.跟踪训练1.下列单项式中,a2b3的同类项是()A.a3b2B.2a2b3C.a2b D.ab32.下列计算中,正确的是( ) A .a 5·a 3=a 15 B .a 5÷a 3=a C .()423812a b a b -=D .()222a b a b +=+3.计算:()23a b -=( )A .621a b B .62a bC .521a b D .32a b -4.下列运算正确的是( )A .3a+2b=5abB .5a 2-2b 2=3C .7a+a=7a 2D .(x -1)2=x 2+1-2x 5.计算:(x+2y )2+(x -2y)(x+2y)+x(x -4y).6.先化简,再求值:(x ﹣3)2+(x +3)(x ﹣3)+2x (2﹣x ),其中x =﹣12.专项三 因式分解知识清单1. 定义:把一个多项式化成几个整式的 的形式,像这样的式子变形叫做这个多项式的因式分解.2. 因式分解的基本方法:(1)提公因式法:ma+mb+mc = _____________.:::⎧⎪⎨⎪⎩系数取各项系数的最大公约数公因式的确定字母取各项相同的字母指数取各项相同字母的最低次数 (2)公式法:①平方差公式:a 2-b 2=_____________; ②完全平方公式:a 2±2ab+b 2 =___________.3. 因式分解的一般步骤:一提(公因式);二套(公式);三检验(是否彻底分解). 考点例析例1 因式分解:1-4y 2=( )A .(1-2y )(1+2y)B . (2-y)(2+y)C . (1-2y)(2+y)D . (2-y)(1+2y) 分析:先将4y 2化为(2y)2,然后用平方差公式分解因式. 例2 已知xy =2,x -3y =3,则2x 3y -12x 2y 2+18xy 3= ______.分析:先提取多项式中的公因式2xy ,再对余下的多项式利用完全平方公式继续分解,最后将xy =2,x -3y =3代入其中求值.归纳:若一个多项式有公因式,应先提取公因式,多项式是二项式优先考虑用平方差公式继续分解,多项式是三项式优先考虑用完全平方公式继续分解,直到不能分解为止.跟踪训练1.因式分解:x3﹣4x=()A.x(x2﹣4x)B.x(x+4)(x﹣4)C.x(x+2)(x﹣2)D.x(x2﹣4)2.多项式2x3-4x2+2x因式分解为()A.2x(x-1)2 B.2x(x+1) 2 C.x(2x-1) 2 D.x(2x+1) 23.因式分解:m2﹣2m=________.4.计算:20212-20202=________.5.因式分解:24ax+ax+a= ___________.6.若m+2n=1,则3m2+6mn+6n的值为___________.7.先因式分解,再计算求值:2x3-8x,其中x=3.专项四分式知识清单一、分式的相关概念1. 定义:如果A,B表示两个整式,并且B中含有_________,那么式子AB叫做分式.分式AB中,A叫做分子,B叫做分母.2. 分式有意义和值为0的条件(1)分式AB有意义⇔_________;(2)分式AB的值为0⇔_________.二、分式的基本性质1. 基本性质:分式的分子与分母乘(或除以)同一个_____________,分式的值不变.2. 约分:把一个分式的分子与分母的____________约去,叫做分式的约分. 约分的结果必须是最简分式或整式,最简分式是分子、分母没有公因式的分式.3. 通分:把几个异分母的分式分别化成与原来的分式相等的____________的分式,叫做分式的通分.通分的关键是确定各分式的____________.三、分式的运算1. 分式的加减同分母分式相加减:a bc c±=____________;异分母分式相加减:a c ad bcb d bd bd±=±=____________.2. 分式的乘除乘法法则:a c b d ⋅=___________;除法法则:a c a d b d b c÷=⋅=___________.3. 分式的乘方法则:把分子、分母分别乘方,如na b ⎛⎫ ⎪⎝⎭=___________. 4. 分式的混合运算:先算___________,再算___________,最后算加减,有括号的先算括号里面的. 考点例析例1 不论x 取何值,下列代数式的值不可能为0的是( ) A .x+1 B .x 2-1C .11x + D .(x+1)2分析:选项A ,B ,D 中都能得到代数式的值为0时x 的值,而选项C 中,分式的分子是1,所以11x +不可能为0.归纳:分式值为0要关注两个条件:(1)分子为0;(2)分母不为0.例2 化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .a +1 B .1a a+ C .-1a aD .21a a +分析:根据分式的混合运算法则,先将括号内的两项通分合并,同时将除式中多项式因式分解,再将除法转化为乘法约分化简即可.归纳:分式的化简中,应注意以下几点:(1)若分子、分母为多项式,则应先分解因式,能约分的先约分,再计算;(2)化简过程中要特别注意常见的符号变化,如x-y=-(y-x),-x-y=-(x+y)等;ꎻ (3)在分式和整式加减运算中,通常把整式看成分母为“1”的“分式”,再进行计算; (4)分式运算的最终结果应是最简分式或整式.例3 先化简,再求值:22121121x x x x x x ++⎛⎫+-÷ ⎪+++⎝⎭,其中x 满足x 2-x-2=0.分析:先把原式化简,然后求出方程x 2-x-2=0的解,根据分式有意义的条件确定x 的值,代入计算即可. 解:跟踪训练 1.要使分式12x +有意义,则x 的取值应满足( ) A .x≠0B .x≠-2C .x ≥-2D .x >-22.计算24541a a a a a --⎛⎫÷+- ⎪⎝⎭的结果是( ) A .22a a +-B .22a a -+C .()()222a a a-+ D .2a a+3.已知非零实数x ,y 满足1xy x =+,则3x y xy xy -+的值等于_________.4.已知()()261212ABx x x x x --=----,求A ,B 的值.5.先化简22111369a a a a a a ⎛⎫-+--÷ ⎪--+⎝⎭,然后从-1,0,1,3中选一个合适的数作为a 的值代入求值.专项五 二次根式知识清单一、二次根式的有关概念1. 二次根式:一般地,形如 (a≥0)的式子叫做二次根式.2. 最简二次根式:(1)被开方数不含 ;(2)被开方数中不含 的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式. 二、二次根式的性质 (1)2= (a ≥0) ;(2a=(3= (a ≥0,b ≥0); (4= (a ≥0,b >0).三、二次根式的运算1. 二次根式的加减:先将二次根式化成 ,再将被开方数相同的二次根式进行合并.2. 二次根式的乘除:(1= (a≥0,b≥0). (2= (a≥0,b >0). 考点例析 例1 函数()02y x =-的自变量x 的取值范围是( ) A .x ≥-1 B .x >2 C .x >-1且x ≠2 D .x ≠-1且x ≠2分析:根据二次根式有意义的条件、分式有意义的条件以及零指数幂的概念列不等式组求解.(a ≥0), (a <0);归纳:(1)被开方数a≥0;ꎻ(2)观察参数是否在分母位置,分母不能为0;ꎻ (3)观察参数是否有在0次幂的底数位置,底数不能为0. 例2 下列运算正确的是( )A 3B .4=C =D 4=分析:根据二次根式的加、减、乘、除运算法则逐个计算后判断.例3 计算:222122122⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+---.分析:先利用绝对值的性质去掉绝对值符号,同时将后面两个完全平方式展开或利用平方差公式计算,最后再进行加减运算. 解:归纳:进行二次根式的混合运算时,一般先将二次根式转化为最简二次根式,再根据题目的特点确定合适的运算方法,同时要灵活运用乘法公式、因式分解等来简化运算. 跟踪训练1.0x 的取值范围是( )A .x >-1B .x ≥-1且x ≠0C .x >-1且x ≠0D .x ≠02.2,5,m )A .2m-10B .10-2mC .10D .43.设6a ,小数部分为b ,则(2a b +的值是( )A .6B .C .12D .4.计算=____________.5.的结果是 _____.6.这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a b =则ab=1,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b =+++,则1210S S S +++=__________.专项六 代数式中的数学思想1.整体思想整体思想是指用“集成”的眼光,把某些式子或图形看成一个整体,把握已知和所求之间的关联,进行有目的、有意识的整体处理来解决问题的方法.本讲中求代数式的值时,将某一已知代数式的值作为整体代入计算,就运用了整体思想.例1 已知x-y=2,111x y-=,求x2y-xy2的值.11y=变形后得到y-x=xy,再将x2y-xy2因式分解后,整体代入计算.解:2.从特殊到一般的思想从特殊到一般的思想是指在解决问题时,以特殊问题为起点,抓住数学问题的特点,逐步分析、比较、讨论,层层深入,从解决特殊问题的规律中,寻找解决一般问题的方法和规律,又用以指导特殊问题的解决. 例2 观察下列树枝分杈的规律图,若第n个图树枝数用Y n表示,则Y9-Y4=()A.15×24 B.31×24 C.33×24 D.63×24分析:根据前几个图中的树枝数,可发现树枝分杈的规律为Y n=2n-1①从而可求出Y9-Y4.跟踪训练1.已知x2-3x-12=0,则代数式-3x2+9x+5的值是()A.31 B.-31 C.41 D.-412.按一定规律排列的单项式:a2①4a3①9a4①16a5①25a6①…,第n个单项式是()A.n2a n+1B.n2a n-1C.n n a n+1D.(n+1)2a n3.若1136xx+=,且0<x<1,则221xx-=_______.4.如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有________个交点.第4题图参考答案专项一 列代数式例1 D 例2 1275 1.B 2.2 3.()12112n nn a b +-+-⋅ 4.n 2+n -1专项二 整 式例1 D 例2 C 例3 3例4 解:原式=9x 2-6x+1+1-9x 2=-6x+2.当x=16时,原式=-6×16+2=1.1.B 2.C 3.A 4.D5.解:原式=x 2+4xy+4y 2+x 2-4y 2+x 2-4xy=3x 2.6.解:原式=x 2﹣6x +9+x 2﹣9+4x ﹣2x 2=﹣2x .当x =﹣12时,原式=﹣2×12⎛⎫- ⎪⎝⎭=1. 专项三 因式分解例1 A 例2 361.C 2.A 3.m (m-2) 4.4041 5.()224a x + 6.37. 解:原式=2x(x 2-4)=2x(x+2)(x-2). 当x=3时,原式=2×3×(3+2)(3-2)=30.专项四 分 式例1 C 例2 B例3 解:原式=2221+12121x x x x x x +-+÷+++=()()2+2+112x x x x x ⋅++=x (x +1)=x 2+x . 解方程x 2-x-2=0,得x 1=2,x 2=-1. 因为x+1≠0①所以x≠-1. 当x=2时,原式=22+2=6. 1.B 2.A 3.44.解:因为12A B x x ---=()()()()2112A x B x x x -+---=()()()212A+B x A B x x ----=()()2612x x x ---,所以22 6.A B A B +=⎧⎨--=-⎩,解得42.A B =⎧⎨=-⎩,5.原式=()()()22113331a a a a a a --+--⋅-+=()()()2113331a a a a a a +--+-⋅-+=()()221331a a a a +-⋅-+=2a ﹣6. 因为a =-1或a =3时,原式无意义,所以a 只能取1或0. 当a =1时,原式=2﹣6=﹣4.(当a =0时,原式=﹣6)专项五 二次根式例1 C 例2 C例3 解:原式112-=441.C 2.D 3.A 4.3 5.6.10专项六代数式中的数学思想例11-=,所以y-x=xy.因为x-y=2,所以y-x=xy=-2.y所以原式=xy(x-y)=-2×2=-4.例2 B1.B 2.A 3.-654.19036。
中考常见代数式求值试题归纳及易错分析

中考常见代数式求值试题归纳及易错分析中考数学中,代数式求值是一个重要的考点。
在解答代数式求值试题时,需要注意一些常见的易错点,避免犯错误。
我们来看一些常见的代数式求值试题。
1. 把 a=3, b=4, c=5 代入表达式 2a + 3bc - c²,并求出结果。
2. 当 x = -1 时,求2(x+1)²-4(x+1)的值。
解析:把 x = -1 代入表达式中,得:2((-1)+1)²-4((-1)+1) = 2×0-4×0 = 0。
3. 若 x+3=6,在等式两边同时减去 3,求 2x 的值。
解析:把 x+3=6 两边同时减去 3,得:x=6-3=3。
把 x=3 代入表达式 2x 中,得:2×3=6。
在解答这些代数式求值试题时,我们应该注意以下几个易错点。
1. 计算顺序混淆在求解代数式的时候,需要注意运算符的优先级和计算的顺序。
一般来说,先进行括号内的运算,然后进行乘除法,最后进行加减法。
在解答代数式求值试题时,要特别注意运算符的优先级,以免计算顺序混淆导致结果错误。
2. 符号错误在代数式求值中,一些试题会给出变量的取值范围,需要根据变量的正负情况来计算结果。
如果对变量的正负情况理解错误,可能会导致计算结果出错。
3. 将代数式当作方程处理有些试题给出了等式,要求计算等式两边的值,很容易让人误以为需要解方程。
在解答这类试题时,一定要注意区分代数式和方程的不同,不要陷入解方程的思维陷阱。
4. 疏忽大意有些试题的计算过程比较复杂,可能需要多个步骤。
在解答这类试题时,要仔细检查每一步的计算结果,避免因疏忽大意而导致最后的结果错误。
在解答代数式求值试题时,对于每一道试题,我们可以采取以下步骤:1. 理清题意,弄清需要计算的代数式。
2. 根据题意,把给定的数值代入代数式中,注意各个变量的取值范围和正负情况。
3. 根据计算顺序,依次进行运算。
4. 检查计算结果,注意可能存在的易错点。
代数推理中考知识点总结
代数推理中考知识点总结一、基本概念代数推理是指通过数学符号和运算来研究数学问题的一种方法。
在代数推理中,常用的数学符号包括加减乘除、未知数、代数式、方程等。
代数推理主要涉及到的概念有:1. 代数式:代数式是由数字、字母和运算符号(+、-、×、÷)等组成的用来表达数学关系的式子。
例如,3x+2y-5z=10就是一个代数式。
2. 代数方程:代数方程是一个含有未知数的等式,其中未知数的值是我们要求解的。
例如,2x+3=7就是一个代数方程。
3. 代数不等式:代数不等式是指两个代数式之间的关系,其中包含了大于、小于、大于等于、小于等于等符号。
例如,3x+2y>10就是一个代数不等式。
4. 代数式的计算:在代数推理中,计算代数式是一项基本的工作。
需要掌握各种代数式的计算规则,包括合并同类项、配方法等。
5. 代数方程的解法:求解代数方程是代数推理中的关键步骤。
常见的解法有分式法、加减消元法、配方法等。
6. 代数不等式的求解:求解代数不等式是代数推理中的另一个重要内容。
需要掌握如何将不等式化简、确定符号等方法。
二、常见题型在中考中,代数推理的题型也比较多样化,常见的题型有:1. 代数方程的解题:求解代数方程是代数推理题中的常见题型。
题目中给出一个代数方程,要求学生求出未知数的值。
2. 代数不等式的解题:类似于代数方程的解题,代数不等式的解题也是中考中的常见题型。
题目中给出一个代数不等式,要求学生确定未知数的取值范围。
3. 代数式的简化:代数式的简化也是代数推理题中的重要内容。
题目中给出一个复杂的代数式,要求学生将其简化或合并同类项。
4. 代数式的计算:代数式的计算也是中考中的常见题型。
题目中给出一些代数式,要求学生进行计算。
5. 代数推理题综合: 通过以上的题型的综合运用,进行考查学生的综合推理能力。
三、解题技巧在中考中,代数推理题往往要求学生对代数式、方程和不等式进行一系列的运算和推导,因此在解题过程中需要掌握一些解题技巧,以提高解题效率和准确度。
中考知识点实数与代数式的转化
中考知识点实数与代数式的转化实数是数学中的一个重要概念,代数式则是运用实数进行数学推理和计算的工具。
实数与代数式之间存在着密切的联系和转化关系。
了解实数与代数式之间的转化方法,能够更好地解决与实数和代数式有关的问题。
一、实数与代数式的基本概念实数是数学中最基本的概念之一,包括有理数和无理数。
有理数是可以表示为两个整数之比的数,包括整数、分数和整数部分为零的小数。
无理数则是不能表示为两个整数之比的数,如π 和√2 等。
代数式是用数和字母按照一定规则组成的式子,可以表示数的关系和运算过程。
二、实数转化为代数式的方法1. 分数的转化当要把一个分数转化为代数式时,可以用字母代替分子和分母,形成含有字母的代数式。
例如,把3/4 转化为代数式,则可以表示为a/b。
2. 平方根的转化当要把一个平方根转化为代数式时,可以用字母代替根号下的数,并平方,得到含有字母的代数式。
例如,把√2 转化为代数式,则可以表示为 a^2。
3. 近似数的转化当要把一个近似数转化为代数式时,可以用字母代替近似数,并保留必要的位数。
例如,把 3.14 转化为代数式,则可以表示为 a。
三、代数式转化为实数的方法1. 代数式的计算对于已知的代数式,可以通过代入数值的方式进行计算,得到实数结果。
例如,对于代数式 2x+3,当 x=2 时,通过计算可得实数结果为7。
2. 几何图形的面积和周长对于求几何图形的面积和周长的问题,往往需要通过代数式转化为实数计算。
例如,求矩形的面积,可以用代数式 l×w 表示,其中 l 代表矩形的长度,w 代表矩形的宽度。
将长度和宽度代入代数式,即可得到矩形的面积。
综上所述,实数与代数式之间存在着紧密的联系和转化关系。
通过实数转化为代数式和代数式转化为实数的方法,可以更好地解决与实数和代数式有关的问题。
在中考中,掌握实数与代数式的转化方法,能够帮助我们更好地理解和应用数学知识,提高解题能力。
中考代数式考点题型归纳
初中代数式务必掌握的20个考点考点1: 代数式的定义及书写(1)代数式的概念:用运算符号把数字与字母连接而成的式子叫做代数式,单独的一个数或一个字母也是代数式.(2)代数式书写规范:①数和字母相乘,可省略乘号,并把数字写在字母的前面;②字母和字母相乘,乘 号可以省略不写或用“ · ” 表示. 一般情况下,按26个字母的顺序从左到右来写;③后面带单位的相加或相减的式子要用括号括起来;④除法运算写成分数形式,即除号改为分数线;⑤带分数与字母相乘时,带分数要写成假分数的形式;⑥当“1”与任何字母相乘时,“1”省略不写;当“-1”乘以字母时,只要在 那个字母前加上“-”号.例题1: (1)在下列各式中(1)3a ,(2)4+8=12,(3)2a ﹣5b >0,(4)0,(5)s =πr 2,(6)a 2﹣b 2,(7)1+2,(8)x +2y ,其中代数式的个数是( )A .3个B .4个C .5个D .6个 (2)下列各式:①114x ;②2•3;③20%x ;④a ﹣b ÷c ;⑤m−n 3;⑥x ﹣5千克:其中符合代数式书写要求的有( )A .5个B .4个C .3个D .2个【分析】(1)根据代数式的概念:用运算符号把数字与字母连接而成的式子叫做代数式,单独的一个数或一个字母也是代数式.依此作答即可.(2)根据书写规则,分数不能为带分数,对各项的代数式进行判定,即可求出答案.【解析】(1)由题,属于代数式有:(1)3a ,(4)0,(6)a 2﹣b 2,(7)1+2,(8)x +2y ,共5个,选C(2)①114x 中分数不能为带分数;②2•3数与数相乘不能用“•”;③20%x ,书写正确; ④a ﹣b ÷c ,除号应用分数线,所以书写错误;⑤m−n 3书写正确;⑥x ﹣5应该加括号,所以书写错误;符合代数式书写要求的有③⑤共2个.选:D . 【小结】(1)代数式是由运算符号把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式.注意代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)带分数要写成假分数的形式.变式1: 在以下各式中属于代数式的是( )①S =12ah ②a +b =b +a ③a ④1a ⑤0 ⑥a +b ⑦a+b ab A .①②③④⑤⑥⑦ B .②③④⑤⑥C .③④⑤⑥⑦D .①② 【解析】③a ,④1a,⑤0,⑥a +b ,⑦a+b ab 是代数式,选:C . 变式2: 在式子0.5xy ﹣2,3÷a ,12(a +b ),a •5,﹣314abc 中,符合代数式书写要求的有( )A .1个B .2个C .3个D .4个 【解析】0.5xy ﹣2,3÷a ,12(a +b ),a •5,﹣314abc 中,符合代数式书写要求的有0.5xy ﹣2,12(a +b )共2个.选:B .【小结】此题主要考查了代数式,正确把握定义是解题关键.变式3: 进入初中后学习数学,对于代数式书写规范,教材中指出:“在含有字母的式子中如果出现乘号“×”,通常将乘号写作“•”或者省略不写”.其实还有一些书写规范,比如,在代数式中如果出现除号“÷”,通常用分数线“﹣”来取代;数字与字母相乘时,一般数字写在前面,根据以上书写要求,将代数式(ac ×4﹣b 2)÷4简写为 .【解析】代数式(ac ×4﹣b 2)÷4简写为:4ac−b 24,故答案为:4ac−b 24.考点2: 列代数式(和差倍问题)解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范.例题2: 学校举行国庆画展,七(1)班交m 件作品,七(2)班交的作品比七(1)班的2倍少6件,则七(2)班交的作品是 件.【解析】根据题意知七(2)班交的作品数量为(2m ﹣6)件,故答案为:2m ﹣6.变式4: 某校报数学兴趣小组的有m 人,报书法兴趣小组的人数比数学兴趣小组的人数的一半多3人,那么报书法兴趣小组的有 人.【解析】依题意知,美术兴趣小组的人数是:12m +3.故答案是:(12m +3). 变式5: 某学校七年级有m 人,八年级人数比七年级人数的23多10人,九年级人数比八年级人数的2倍少50人,用含m 的式子表示七八九三个年级的总人数为( )A .3mB .113m ﹣40C .3m ﹣40D .3m ﹣20【分析】根据题意分别表示出各年级的人数,进而利用整式的加减运算法则得出答案.【解析】由题意可得,八年级的人数为:23m +10,九年级人数为:2(23m +10)﹣50, 故七八九三个年级的总人数为:m +23m +10+2(23m +10)﹣50=3m ﹣20.选:D . 变式6: 我校甲、乙、丙三位同学给希望工程捐款,已知甲同学捐款x 元,乙同学的捐款金额比甲同学捐款金额的3倍少8元,丙同学的捐款金额是甲、乙两同学捐款总金额的34,用含x 的代数式表示甲,乙、丙三位同学的捐款总金额.【解析】由题意可得,乙同学捐款(3x ﹣8)元,丙同学的捐款金额是:34(x +3x ﹣8)=3x ﹣6(元), 故甲,乙、丙三位同学的捐款总金额为:x +3x ﹣8+3x ﹣6=7x ﹣14(元).考点3: 列代数式(数字问题)解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范.例题3: 一个两位数,十位上的数字为a ,个位上的数字比十位上的数字少2,则这个两位数为( )A .11a ﹣20B .11a +20C .11a ﹣2D .11a +2【解析】由题意可得,这个两位数为:10a +(a ﹣2)=11a ﹣2,选:C .变式7: 设a 是一个三位数,b 是一个两位数,如果将这两个数顺次排成一个五位数(a 在左,b 在右),则这个五位数可以表示为 .【解析】∵三位数扩大了100倍,两位数的大小不变,∴这个五位数可以表示为100a +b .故答案是100a +b . 变式8: 一个三位数为x ,一个两位数为y ,把这个三位数放在两位数的左边得到一个五位数M ,把这个两位数放在三位数的左边又可以得到一个五位数N ,则M ﹣N = (结果用含x ,y 的式子表示).【解析】依题意得,M =100x +y ,N =1000y +x ,∴M ﹣N =(100x +y )﹣(1000y +x )=99x ﹣999y .变式9: 用式子表示十位上的数是x ,个位上的数是y 的两位数,再把这个两位数的十位上的数与个位上的数交换位置.求后来所得的数与原来的数的差是多少?【解析】依题意有(10y +x )﹣(10x +y )=10y +x ﹣10x ﹣y =9y ﹣9x .考点4: 列代数式(销售问题)解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范.例题4: 一件羽毛球拍先按成本价提高50%标价,再将标价打8折出售,若这件羽毛球拍的成本价是x 元,那么售价可表示为 .【解析】由题意可得:(1+50%)x ×0.8=1.2x (元)变式10: 某商店有一种商品每件成本a 元,按成本价增加20%定为售价,售出80件后,由于存积压降价,打八五折出售,又售出120件.(1)求该商品减价后每件的售价为多少元?(2)售完200件这种商品共盈利多少元?【解析】(1)由题意可得,每件商品减价后的售价是:a (1+20%)×0.85=1.02a (元),(2)20%a ×80+(1.02a ﹣a )×(200﹣80)=16a +0.02a ×120=16a +2.4a =18.4a (元),变式11: 小明经销一种服装,进货价为每件a 元,经测算先将进货价提高200%进行标价,元旦前夕又按标价的4折销售,这件服装的实际价格( )A .比进货价便宜了0.52a 元B .比进货价高了0.2a 元C .比进货价高了0.8a 元D .与进货价相同【分析】直接利用标价以及打折之间的关系得出关系式即可.【解析】由题意可得,这件服装的实际价格是:(1+200%)a ×40%=1.2a 元.则1.2a ﹣a =0.2a (元)比进货价高了0.2a 元.选:B .【小结】此题主要考查了列代数式,正确表示出标价是解题关键.变式12: 张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a >b ).根据市场行情,他将这两种小商品都以a+b 2元的价格出售.在这次买卖中,张师傅的盈亏状况为( )A .赚了(25a +25b )元B .亏了(20a +30b )元C .赚了(5a ﹣5b )元D .亏了(5a ﹣5b )元 【分析】应该比较他的总进价和总售价.分别表示出总进价为:20a +30b ,总售价为a+b 2×(20+30)=25a +25b ,通过作差法比较总进价和总售价的大小,判断他是赔是赚.【解析】根据题意可知:总进价为20a +30b ,总售价为a+b 2×(20+30)=25a +25b∴25a +25b ﹣(20a +30b )=5a ﹣5b ,∵a >b ,∴5a ﹣5b >0,那么售价>进价,∴他赚了.选:C .【小结】此题考查列代数式,列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系.本题要注意应该比较他的总进价和总售价.考点5: 列代数式(增长率问题)解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范.例题5: 某校去年初一招收新生a 人,今年比去年增加x %,今年该校初一学生人数用式子表示为( )A .(a +x %)人B .ax %人C .a(1+x)100人D .a (1+x %)人【解析】∵去年初一招收新生a人,∴今年该校初一学生人数为:a(1+x%)人.选:D.【小结】此题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.注意今年比去年增加x%和今年是去年的x%的区别.变式13:某校初一年级计划初中三年每年参加植树活动,2019年已经植树a亩,如果以后每年比上一年植树面积增长20%,那么2021应植树的面积为()A.a•(1+20%)B.a•(1+2×20%)C.a•(1+20%)2D.2a•(1+20%)【分析】根据题意,可以用含a的代数式表示出2021年应植树的面积,本题得以解决.【解析】由题意可得,2021应植树的面积为:a(1+20%)2,选:C.【小结】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.变式14:某企业今年1月份产值为x万元,2月份的产值比1月份减少了10%,则1月份和2月份的产值和是()A.x+(1﹣10%)x万元B.x+(1+10%)x万元C.(1﹣10%)x万元D.(1+10%)x万元【分析】根据题意表示出2月份的产值,进而得出答案.【解析】∵今年1月份产值为x万元,2月份的产值比1月份减少了10%,∴2月份的产量为:(1﹣10%)x,故1月份和2月份的产值和是:[x+(1﹣10%)x]万元.选:A.【小结】此题主要考查了列代数式,正确表示出2月份的产值是解题关键.变式15:裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m,则下列各式中,能正确表示这个商店第一季度的总利润的是()A.50(1+m)万元B.50(1+m)2万元C.[50+50(1+m)]万元D.[50+50(1+m)+50(1+m)2]万元【分析】根据裕丰商店一月份的利润及二、三月份的利润平均增长率,即可用含m的代数式表示出二、三月份的利润,再将三个月的利润相加即可得出结论.【解析】∵裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m,∴二月份的利润为50(1+m)万元,三月份的利润为50(1+m)2,∴这个商店第一季度的总利润是[50+50(1+m)+50(1+m)2]万元.选:D.【小结】本题考查了列代数式,根据前三个月利润间的关系,用含m的代数式表示出二、三月份的利润是解题的关键.考点6:列代数式(分段计费问题)解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范.例题6:东西湖区域出租汽车行驶2千米以内(包括2千米)的车费是10元,以后每行驶1千米,再加0.7元.如果某人坐出租汽车行驶了m千米(m是整数,且m≥2),则车费是()A.(10﹣0.7m)元B.(11.4+0.7m)元C.(8.6+0.7m)元D.(10+0.7m)元【解析】由题意可得,车费是:10+(m﹣2)×0.7=(0.7m+8.6)元,选:C.【小结】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.变式16:为响应国家节能减排的号召,鼓励人们节约用电,保护能源,某市实施用电“阶梯价格”收费制度.收费标准如表:居民每月用电量单价(元/度)不超过50度的部分0.5超过50度但不超过200度的部分0.6超过200度的部分0.8已知小刚家上半年的用电情况如下表(以200度为标准,超出200度记为正、低于200度记为负):一月份二月份三月份四月份五月份六月份﹣50+30﹣26﹣45+36+25根据上述数据,解答下列问题:(1)小刚家用电量最多的是月份,实际用电量为度;(2)小刚家一月份应交纳电费元;(3)若小刚家七月份用电量为x度,求小刚家七月份应交纳的电费(用含x的代数式表示).【分析】(1)根据表格中的数据可以解答本题;(2)根据表格中的数据和题意,可以计算出小刚家一月份应交纳电费;(3)根据表格中的数据,可以用分类讨论的方法用相应的代数式表示出小刚家七月份应交纳的电费.【解析】(1)由表格可知,五月份用电量最多,实际用电量为:200+36=236(度),故答案为:五,236;(2)小刚家一月份用电:200+(﹣50)=150(度),小刚家一月份应交纳电费:0.5×50+(150﹣50)×0.6=25+60=85(元),故答案为:85;(3)当0<x≤50时,电费为0.5x元;当50<x≤200时,电费为0.5×50+(x﹣50)×0.6=25+0.6x﹣30=(0.6x﹣5)元;当x>200时,电费为0.5×50+0.6×150+(x﹣200)×0.8=25+90+0.8x﹣160=(0.8x﹣45)元.变式17:为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如下(注:水费按月份结算,表示立方米)价目表每月用水量单价不超过6m3的部分2元/m3超出6m3不超出10m3的部分4元/m3超出10m3的部分8元/m3请根据上表的内容解答下列问题:(1)填空:若该户居民2月份用水5m3,则应交水费元;3月份用水8m3,则应收水费元;(2)若该户居民4月份用水am3(其中a>10m3),则应交水费多少元(用含a的代数式表示,并化简)?(3)若该户居民5、6两个月共用水14m3(6月份用水量超过了5月份),设5月份用水xm3,直接写出该户居民5、6两个月共交水费多少元(用含x的代数式表示).【解析】(1)由表格可得,若该户居民2月份用水5m3,则应交水费:2×5=10(元),3月份用水8m3,则应收水费:2×6+4×(8﹣6)=12+4×2=12+8=20(元),故答案为:10,20;(2)由表格可得,该户居民4月份用水am3(其中a>10m3),则应交水费:2×6+4×(10﹣6)+8(a﹣10)=(8a﹣52)元,(3)由题意可得,x<14﹣x,得x<7,当6<x<7,该户居民5、6两个月共交水费:[2×6+(x﹣6)×4]+[2×6+(14﹣x﹣6)×4]=32(元),当4≤x≤6时,该户居民5、6两个月共交水费:2x+[2×6+(14﹣x)×4]=(﹣2x+68)(元),当0≤x<4时,该户居民5、6两个月共交水费:2x+[2×6+(10﹣6)×4+(14﹣x)×8]=(140﹣6x)(元).变式18:滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算:时长费按行车的实际时间计算远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为20公里,行车时间为30分钟,则需付车费 元;(2)若小明乘坐滴滴快车,行车里程为a 公里,行车时间为b 分钟,则小明应付车费多少元;(用含a 、b 的代数式表示,并化简)(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,受路况情况影响,小王反而比小张乘车多用24分钟,请问谁所付车费多?【分析】(1)根据滴滴快车计算得到得到所求即可;(2)根据a 的值在10公里以内还是超过10公里,分别写出小明应付费即可;(3)根据题意计算出相差的车费即可.【解析】(1)1.8×20+0.45×30+0.4×(20﹣10)=53.5(元),故答案为:53.5;(2)当a ≤10时,小明应付费(1.8a +0.45b )元;当a >10时,小明应付费1.8a +0.45b +0.4(a ﹣10)=(2.2a +0.45b ﹣4)元;(3)小王与小张乘坐滴滴快车分别为a 分钟、(a ﹣24)分钟,1.8×9.5+0.45a ﹣[1.8×14.5+0.45(a ﹣24)+0.4×(14.5﹣10)]=0,因此,小王和小张付费相同.【小结】此题考查了代数式求值,以及列代数式,弄清题意是解本题的关键.考点7: 代数式求值(整体代入法)例题7: 已知代数式x ﹣2y 的值是3,则代数式4y +1﹣2x 的值是( )A .﹣5B .﹣3C .﹣1D .0【解析】∵x ﹣2y =3,∴4y +1﹣2x =﹣2(x +2y )+1=﹣6+1=﹣5.选:A .变式19: 当x =2时,代数式px 3+qx +1的值为﹣2019,求当x =﹣2时,代数式的px 3+qx +1值是()A .2018B .2019C .2020D .2021【解析】当x =2时,代数式px 3+qx +1的值为﹣2019,即8p +2q =﹣2020.当x =﹣2时,代数式的px 3+qx +1=﹣8p ﹣2q +1=﹣(8p +2q )+1=2020+1=2021.选:D .变式20: 已知1﹣a 2+2a =0,则14a 2−12a +54的值为( )A .32B .14C .1D .5【分析】1﹣a 2+2a =0经过整理得:a 2﹣2a =1,14a 2−12a +54=14(a 2﹣2a )+54,把a 2﹣2a =1代入代数式14(a 2﹣2a )+54,计算求值即可.【解析】∵1﹣a 2+2a =0,∴a 2﹣2a =1,∴14a 2−12a +54=14(a 2﹣2a )+54=14×1+54=32,选:A变式21:(1)【探究】若a2+2a=1,则代数式2a2+4a+4=2()+4=2×()+4=.【类比】若x2﹣3x=2,则x2﹣3x﹣5的值为.(2)【应用】当x=1时,代数式px3+qx+1的值是5,求当x=﹣1时,px3+qx+1的值;(3)【推广】当x=2020时,代数式ax5+bx3+cx﹣5的值为m,当x=﹣2020时,ax5+bx3+cx﹣5的值为(含m的式子表示)【分析】(1)把代数式2a2+4a+4=2(a2+2a)+4,然后利用整体代入的方法计算;利用同样方法计算x2﹣3x﹣5的值;(2)先用已知条件得到p+q=4,而当x=﹣1时,px3+qx+1=﹣p﹣q+1=﹣(p+q)+1,然后利用整体代入的方法计算;(3)利用当x=2020时,代数式ax5+bx3+cx﹣5的值为m得到20205a+20203b+2020c=m+5,而当x=﹣2020时,ax5+bx3+cx﹣5=﹣20205a﹣20203b﹣2020c﹣5,然后利用整体代入的方法计算.【解析】(1)∵a2+2a=1,∴2a2+4a+4=2(a2+2a)+4=2×(1)+4=6;【类比】若x2﹣3x=2,则x2﹣3x﹣5=2﹣5=﹣3;故答案为a2+2a,1,6;﹣3;、(2)∵当x=1时,代数式px3+qx+1的值是5,∴p+q+1=5,∴p+q=4,∴当x=﹣1时,px3+qx+1=﹣p﹣q+1=﹣(p+q)+1=﹣4+1=﹣3;(3)∵当x=2020时,代数式ax5+bx3+cx﹣5的值为m,∴20205a+20203b+2020c﹣5=m,即20205a+20203b+2020c=m+5,当x=﹣2020时,ax5+bx3+cx﹣5=(﹣2020)5a+(﹣2020)3b+(﹣2020)c﹣5=﹣20205a﹣20203b﹣2020c﹣5=﹣(20205a+20203b+2020c)﹣5=﹣(m+5)﹣5=﹣m﹣5﹣5=﹣m﹣10.故答案为﹣m﹣10.考点8:代数式求值(程序框图)例题8:根据以下程序,当输入x=﹣2时,输出结果为()A.﹣5B.﹣16C.5D.16【解析】当x=﹣2时,9﹣x2=9﹣(﹣2)2=9﹣4=5>1,当x=5时,9﹣x2=9﹣52=9﹣25=﹣16<1,∴当输入x=﹣2时,输出结果为﹣16.选:B.【小结】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简变式22:根据如图所示的计算程序,若输入x=﹣1,则输出结果为()A.4B.2C.1D.﹣1【分析】把x=﹣1代入程序中计算即可得到结论.【解析】当入x=﹣1时,﹣x2+3=﹣1+3=2>1,当x=2时,﹣x2+3=﹣4+3=﹣1<1,选:D.变式23:按如图所示的运算程序,能使运算输出的结果为6的是()A.x=5,y=﹣1B.x=2,y=2C.x=2,y=﹣1D.x=﹣2,y=3【分析】把x与y的值代入检验即可.【解析】A、当x=5,y=﹣1时,输出结果为5+1=6,符合题意;B、当x=2,y=2时,输出结果为2﹣4=﹣2,不符合题意;C、当x=2,y=﹣1时,输出结果为2+1=3,不符合题意;D、当x=﹣2,y=3时,输出结果为﹣2﹣9=﹣11,不符合题意,选:A.变式24:如图是一个运算程序,能使输出结果为﹣1的是()A.1,2B.﹣1,0C.﹣1,2D.0,﹣1【分析】根据筛选法将各个选项分别代入运算程序即可得结果.【解析】A.当a=1,b=2时,输出结果为3,不符合题意;B.当a=﹣1,b=0时,输出结果为1,不符合题意;C.当a=﹣1,b=2时,输出结果为﹣1,符合题意;根据筛选法C选项正确.选:C.【小结】本题考查了代数式求值、有理数的混合运算,解决本题的关键是理解运算程序.考点9: 单项式的系数与次数解题关键:①单项式中的数字因数称为这个单项式的系数;②一个单项式中,所有字母的指数的和叫做这个单项式的次数例题9: 4πx 2y 4z9的系数是 ,次数是 .【分析】直接利用单项式的系数与次数确定方法得出答案. 【解析】4πx 2y 4z9的系数是:4π9,次数是:7【小结】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键. 变式25:单项式﹣3πxa +1y 2与−102x 2y 39的次数相同,则a 的值为 .【分析】根据单项式的次数相等,得到关于a 的一元一次方程,求解即可.【解析】因为−102x 2y 39的次数是5,又因为单项式﹣3πx a +1+y 2与−102x 2y 39的次数相同所以a +1+2=5解得a =2 变式26:若单项式﹣x 3y n +5的系数是m ,次数是9,则m +n 的值为 .【解析】根据题意得:m =﹣1,3+n +5=9,解得:m =﹣1,n =1,则m +n =﹣1+1=0 变式27:已知(m ﹣3)x 3y |m |+1是关于x ,y 的七次单项式,求m 2﹣2m +2= .【分析】直接利用单项式的次数确定方法分析得出答案.【解析】∵(m ﹣3)x 3y |m |+1是关于x ,y 的七次单项式,∴3+|m |+1=7且m ﹣3≠0,解得:m =﹣3, ∴m 2﹣2m +2=9+6+2=17考点10: 多项式的项与次数解题关键是熟悉几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数. 例题10:关于多项式5x 4y ﹣3x 2y +4xy ﹣2,下列说法正确的是( )A .三次项系数为3B .常数项是﹣2C .多项式的项是5x 4y ,3x 2y ,4xy ,﹣2D .这个多项式是四次四项式 【分析】根据多项式的项、次数的定义逐个判断即可.【解析】A 、多项式5x 4y ﹣3x 2y +4xy ﹣2的三次项的系数为﹣3,错误,故本选项不符合题意; B 、多项式5x 4y ﹣3x 2y +4xy ﹣2的常数项是﹣2,正确,故本选项符合题意;C 、多项式5x 4y ﹣3x 2y +4xy ﹣2的项为5x 4y ,﹣3x 2y ,4xy ,﹣2,错误,故本选项不符合题意;D 、多项式5x 4y ﹣3x 2y +4xy ﹣2是5次四项式,错误,故本选项不符合题意;选:B . 变式28:多项式 是一个关于x 的三次四项式,它的次数最高项的系数是﹣5,二次项的系数是34,一次项的系数是﹣2,常数项是4.【解析】由题意可得,此多项式可以为:﹣5x 3+34x 2﹣2x +4. 变式29:已知关于x 的整式(|k |﹣3)x 3+(k ﹣3)x 2﹣k .(1)若整式是单项式,求k 的值;(2)若整式是二次多项式,求k 的值;(3)若整式是二项式,求k 的值 【解析】(1)∵关于x 的整式是单项式,∴|k |﹣3=0且k ﹣3=0,解得k =3,∴k 的值是3; (2)∵关于x 的整式是二次多项式,∴|k |﹣3=0且k ﹣3≠0,解得k =﹣3,∴k 的值是﹣3;(3)∵关于x 的整式是二项式,∴①|k |﹣3=0且k ﹣3≠0,解得k =﹣3;②k =0.∴k 的值是﹣3或0. 变式30:已知关于x 、y 的多项式−35x 2y m+1+12x 2y 2−3y 2+8是八次四项式,单项式5x n y 6﹣m的次数与该多项式的次数相同,求m 、n 的值.【解析】∵多项式−35x 2y m+1+12x 2y 2−3y 2+8是八次四项式,所以2+m +1=8,解得m =5 又因为5x n y 6﹣m的次数与该多项式的次数相同,所以n +6﹣m =8,即n =7.考点11: 与数有关的规律探索例题11:根据图中数字的规律,则x +y 的值是( )A .729B .550C .593D .738【分析】观察发现,图中第二行左边的数比第一行数的平方大1,第二行右边的数=第二行左边的数×第一行的数+第一行的数,依此规律先求x ,再求y 即可.【解析】∵5=22+1,12=5×2+2;17=42+1,72=17×4+4;37=62+1,228=37×6+6;∴x=82+1=65,y=65×8+8=528,x+y=65+528=593.选:C.【小结】考查了规律型:数字的变化类,关键是由图形得到第二行左边的数比第一行数的平方大1,第二行右边的数=第二行左边的数×第一行的数+第一行的数.变式31:将全体正奇数排成一个三角形数阵如下,按照以上排列的规律,第19行第11个数是()A.363B.361C.359D.357【分析】根据数字的变化类寻找每一行数字的变化规律即可求解.【解析】观察所给数阵,得每一行的变化规律如下:第一行的第一个数:1×0+1=1第二行的第一个数:2×1+1=3第三行的第一个数:3×2+1=7…第n行的第一个数:n•(n﹣1)+1∴第19行的第一个数:19×18+1=343∴第19行的第11个数:343+10×2=363,选:A.【小结】本题考查了数字的变化类,解决本题的关键是寻找每一行数字的变化规律.变式32:将全体自然数按下面的方式进行排列,按照这样的排列规律,2020应位于()A.位B.位C.位D.位【分析】观察图形不难发现,每4个数为一个循环组依次循环,因为2020是第2021个数,所以用2021除以4,再根据商和余数的情况确定2020所在的位置即可.【解析】由图可知,每4个数为一个循环组依次循环,∵2020是第2021个数,∴2021÷4=505余1,∴2020应位于第506循环组的第1个数,在A位.选:A.【小结】本题是对数字变化规律的考查,观察出每4个数为一个循环组依次循环是解题的关键,要注意2020是第2021个数.变式33:按规律排列的一列数:−12,25,−38,411,−514,…,则第2020个数是.【分析】先分析符号,第奇数个数据为负,第偶数个数据为正,再分析分子规律:依次为1,2,3,4,5,…连续的正整数,接着分析分母的规律:每个分母分别为对应分子的3倍少1的数,按此规律写出第2020个数便可.【解析】−12=(−1)1×13×1−1,25=(−1)2×23×2−1,−38=(−1)3×33×3−1,411=(−1)4×43×4−1,−514=(−1)5×53×5−1,…由上可知第n个数为:(−1)n×n3n−1,∴第2020个数是:(−1)2020×20203×2020−1=20206059.考点12:与式有关的规律探索例题12:从2开始,连续n个偶数相加的合计为S,它们和的情况如下表:(1)若n=8时,则S的值为.(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=.加数的个数n S12=1×222+4=6=2×332+4+6=12=3×442+4+6+8=20=4×552+4+6+8+10=30=5×6(3)根据上题的规律计算2+4+6+8+10+…+2018+2020的值.【分析】(1)根据题意,可以求得当n=8时,对应的S的值;(2)根据表格中的数据,可以写出S的值;(3)根据(2)中的结论,可以求得所求式子的值.【解析】(1)当n =8时,S =2+4+6+…+16=(2+16)×4=18×4=72,故答案为:72; (2)由表格中的数据可知,S =2+4+6+8+…+2n =n (n +1),故答案为:n (n +1); (3)2+4+6+8+10+…+2018+2020=(2020÷2)×(2020÷2+1)=1010×1011=1021110. 变式34:已知a 是不为1的有理数,我们把11−a称为a 的差倒数,如2的差倒数是11−2=−1.现已知a 1=12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数. (1)求a 2,a 3,a 4的值.(2)根据(1)的计算结果,请猜想并写出a 2018•a 2019•a 2020的值. (3)计算:a 1+a 2+a 3+…+a 2018+a 2019.【分析】(1)根据题意,可以分别计算出a 2,a 3,a 4的值;(2)根据(1)中式子的值,可以发现数字的变化特点,从而可以求得a 2018•a 2019•a 2020的值; (3)根据前面发现的数字的特点,可以求得所求式子的值. 【解析】(1)∵a 1=12,∴a 2=11−12=2,a 3=11−2=−1,a 4=11−(−1)=12, 即a 2,a 3,a 4的值分别为2,﹣1,12;(2)∵2018÷3=672…2,∴a 2018•a 2019•a 2020=2×(﹣1)×12=﹣1;(3)∵2019÷3=673,12+2+(﹣1)=32,∴a 1+a 2+a 3+…+a 2018+a 2019=32×673=20192. 变式35: 小学的时候我们已经学过分数的加减法法则:“同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,转化为同分母分数,再加减.”如:12−13=32×3−22×3=3−22×3=12×3=16,反之,这个式子仍然成立,即:16=12×3=3−22×3=32×3−22×3=12−13(1)问题发现 观察下列等式:①11×2=2−11×2=21×2−11×2=1−12, ②12×3=3−22×3=32×3−22×3=12−13,③13×4=4−33×4=43×4−32×3=13−14,…,猜想并写出第n 个式子的结果:1n(n+1)= .(直接写出结果,不说明理由)(2)类比探究将(1)中的的三个等式左右两边分别相加得:11×2+12×3+13×4=1−12+12−13+13−14=1−14=34,类比该问题的做法,请直接写出下列各式的结果:①11×2+12×3+13×4+⋯+12019×2020=;②11×2+12×3+13×4+⋯+1n(n+1)=;(3)拓展延伸计算:11×3+13×5+15×7+⋯+199×101.【分析】(1)根据题目中的式子可以写出第n个式子的结果;(2)①根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值;②根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值;(3)根据题目中式子的特点,可以求得所求式子的值.【解析】(1)由题目中的式子可得,1n(n+1)=1n−1n+1(2)①11×2+12×3+13×4+⋯+12019×2020=1−12+12−13+13−14+⋯+12019−12020=1−12020=2019 2020,②11×2+12×3+13×4+⋯+1n(n+1)=1−12+12−13+13−14+⋯+1n−1n+1=1−1n+1=n n+1,(3)11×3+13×5+15×7+⋯+199×101=12×(1−13+13−15+15−17+⋯+199−1101)=12×(1−1101)=12×100101=50 101.【小结】解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值.变式36:阅读材料:求1+2+22+23+24+…+22020的值.解:设S=1+2+22+23+24+…+22020,将等式两边同时乘以2得,2S=2+22+23+24+25+ (22021)将下式减去上式,得2S﹣S=22021﹣1,即S=22021﹣1.即1+2+22+23+24+…+22020=22021﹣1仿照此法计算:(1)1+3+32+33+…+320;(2)1+12+122+123+⋯+12100.【解析】(1)设S=1+3+32+33+…+320,则2S=3+32+33+…+321,∴3S﹣S=321﹣1,即S=321−1 2,则1+3+32+33+…+320=321−1 2;(2)设S=1+12+122+123+⋯+12100,则12S=12+122+123+⋯+12100+12101,∴S−12S=1−12101=2101−12101,即S=21101−12100,则S=1+12+122+123+⋯+12100=21101−12100.【小结】此题考查了规律型:数字的变化类,以及有理数的混合运算,弄清题中的规律是解本题的关键.考点13:与图形排列有关的规律探索例题13:如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为()A.42B.43C.56D.57【解析】设第n个图形中一共有a n个菱形(n为正整数),∵a1=12+2=3,a2=22+3=7,a3=32+4=13,a4=42+5=21,…,∴a n=n2+n+1(n为正整数),∴a6=62+7=43.选:B.变式37:观察如图所示一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第10个图中共有点的个数是()A.109个B.136个C.166个D.199个【解析】由图可得,第1个图中点的个数为:1+3×1=4,第2个图中点的个数为:1+3×1+3×2=10,第3个图中点的个数为:1+3×1+3×2+3×3=19,…,第10个图中点的个数为:1+3×1+3×2+3×3+…+3×10=1+3+6+9+…+30=166,选:C.变式38:将图1中的正方形剪开得到图2,则图2中共有4个正方形;将图2中的一个正方形剪开得到图3,图3中共有7个正方形;将图3中4个较小的正方形中的一个剪开得到图4,则图4中共有10个正方形,照这个规律剪下去…(1)根据图中的规律补全下表:图形标号123456…n正方形个数14710…(2)求第几幅图形中有2020个正方形?【分析】(1)第1个图形有正方形1个,第2个图形有正方形4个,第3个图形有正方形7个,第4个图形有正方形10个,…,第n个图形有正方形(3n﹣2)个,计算出结果填上即可;(2)由第n个图形有正方形(3n﹣2)个,得出3n﹣2=2020,解得n=674.【解析】(1)第1个图形有正方形1个,第2个图形有正方形4个,第3个图形有正方形7个,第4个图形有正方形10个,…,第n个图形有正方形(3n﹣2)个,∴第5个图形有正方形13个,第6个图形有正方形16个,补全表如下:(2)由第n个图形有正方形(3n﹣2)个,得出:3n﹣2=2020,解得:n=674,∴第674幅图形中有2020个正方形.变式39:某餐厅中1张餐桌可坐6人,有以下两种摆放方式:(1)对于方式一:4张桌子拼在一起可坐人;对于方式二,n张桌子拼在一起可坐人;(2)该餐厅有40张这样的长方形桌子,若按方式一每5张拼成一张大桌子,则40张桌子可拼成8张大桌子,共可坐多少人?(3)在(2)中,若改成每8张拼成一张大桌子,按方式二的拼法,则40张桌子共可坐多少人?(4)一天中午,该餐厅来了98位顾客共同就餐,要求用满座位,但餐厅中只有25张这样的长方形桌子可用,若你是这家餐厅的经理,你打算选择哪种方式来摆餐桌呢(不考虑场地等因素)?【解析】(1)对于方式一:4张桌子拼在一起可坐2+4×4=18(人),对于方式二,n张桌子拼在一起可坐:(2n+4)人,。
2024年中考数学复习专题课件★★代数式、整式与因式分解
2.已知 a+b=5,ab=3,则 a2+b2=1199 ,(a-b)2=1133 . 3.已知 x2+y2=10,xy=3,则 x+y=±±44;
x-y=±±22. 4.若 x2+4x-4=0,则 3(x-2)2-6(x+1)(x-1)=6 . 5.当 x=-6,y=16时,x2 y 022 2 023 的值为6161 .
2024年中考数学复习专题课件★★ 代数式、整式与因式分解
重难点1:整式的运算
1.计算:
(1)a·a2=a 33; (2)(a2)4=a 88; (3)x6÷x2=x 44; (4)(m2n)3=mm66n3n3; (5)(-2m2)3=-88mm6 6; (6)-2ab+ab=- aabb; (7)8a+2b+(-5a+b)=33aa++33bb; (8)(ab-3b)-3(a2-b)=aabb--33aa22; (9)(x+y-1)(x-y+1)=xx22-yy22++2y2-y-1 1.
解:a(1+a)-(a-1)2 =a+a2-(a2-2a+1) =a+a2-a2+2a-1 =3a-1.
命题点3:因式分解(近6年考查24次) 6.(2023·贵州第13题4分)因式分解: x2-4=((xx++22))(x-(x-2)2). 7.(2022·贵阳第13题4分)因式分解: a2+2a=aa((aa++2)2). 8.(2022·黔东南州第12题3分)因式分解:2 022x2-4 044x+2 022= 22 022((xx--11))22.
重难点 2:因式分解
6.下列因式分解中正确的是 A.a2+b2=(a+b)2 B.a2+2ab+b2=(a-b)2 C.a2-a=a(a+1) D.a2-b2=(a+b)(a-b)
(D )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考代数式要点解读 江苏 刘顿 本文所要复习的代数式包括整式与分式.这些内容都是初中数学的基础知识,且知识点较多,为了帮助同学们在有限的温考时间里牢固地掌握这些知识,决胜中考,现从以下几个方面加以归纳与研练,供参考. 一、知识网络
二、考纲要求 1,在现实情境中进一步理解用字母表示数的意义,分析简单问题的数量关系,并能用代数式表示,能解释一些简单代数式的实际背景或几何意义.会求代数式的值. 2,了解整数指数幂的意义和基本性质,了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算. 3,了解乘法公式的几何背景,并能熟练运用乘法公式进行简单与计算.会用提公因式法、公式法进行因式分解. 4,了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的加、减、乘、除运算. 5,正确理解二次根式的定义,能运用二次根式的定义确定有关二次根式的字母取值范
围,正确理解式子2a和2a的意义,掌握它们之间的区别与联系,并能熟练地运用它们的性质化简二次根式.掌握二次根式的有关运算. 6,能综合运用上述知识解决实际问题. 三、思想方法 复习本单元的知识应注意领会以下几种思想方法的运用: 1,化归与转化思想 多项式乘法是化归为多项式乘以单项式来完成的,多项式乘以单项式又化归为单项式乘以单项式来完成的,而单项式乘以单项式又化归为同底数幂的运算来完成的,要使分式为零,必须使分子为零,且分母不为零,从而把求分式为零的问题转化为解一元一次方程或不等式问题.(2)在分式的除法运算中,把除法转化成乘法做. 2,类比的思想 在复习分式的有关概念的过程中,要注意与分数的情形类比,以加深对分式知识的理解和运用. 3,逆向变换 整式的乘法与整式的除法、同底数的幂的乘法与同底数的幂的除法等都是互逆运算,逆向运用幂的运算法则、乘法公式等都是通过逆向变换来完成的,因式分解与整式的乘法是互为逆运算.
零指数幂和 负整指数幂
代数式
有理式
无理式 整式 分式 分式运算 分式的基本性质 整式运算 幂的运算 二次根式的定义 二次根式的性质 二次根式的运算 4,整体思想 在进行整式或分式的运算与求值时经常要用到整体思维.如,幂的运算法则中的底数、乘法公式中的a、b等等,它们既可以是一个数,又可以是一个单项式或多项式. 5,数学方法 分解因式是进行整式与分式运算的关键,通分、约分、去分母时一般都需要先分解因式. 四、要点回顾
1,像m2n、43x、7a3等,都是数与字母的乘积,这样的代数式叫做单项式,单独一
个数或一个字母也是单项式;几个单项式的和叫做多项式,如,a-7a3、-2x2+43x+1等;单项式和多项式统称为整式.一个单项式中,所有字母的指数和叫做这个单项式的次数.如,
43x是一次单项式,m2n、7a3等都是三次单项式.一个多项式中,次数最高的项的次数,叫
做这个多项式的次数.如,-2x2+43x+1是二次多项式,a-7a3是三次多项式. 2,整式加减的实质是合并同类项,其一般步骤是:①若有括号,先去括号;②合并同类项.代数式求值就是用数值代替代数式里的字母,并按照代数式指明的运算过程和顺序计算出结果.代数式求值时一定注意代数式的值由代数式里的字母的值确定,同一个代数式的字母若取值不同,所求的代数式的值一般也不同;要注意去括号与添括号的法则的运用. 3,幂的运算法则有:①同底数幂的乘法:am×an=am+n(m、n都是正整数);即同底数幂相乘,底数不变,指数相加;②幂的乘方:(am)n=amn(m、n都是正整数);即幂的乘方,底数不变,指数相乘;③积的乘方:(a×b)n=an×bn(n是正整数);即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;④底数幂的除法:am÷an=am+n(a≠0,m、n都是正整数,且m>n);即同底数幂相除,底数不变,指数相减.特别地,我们还规定:a0
=1(a≠0);a-p=1pa(a≠0,p是正整数). 4,整式的乘法:①单项式乘以单项式 单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加;③多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加;④单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式;⑤多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加. 5,我们学过的乘法公式有两个:①平方差公式:(a+b)(a-b)=a2-b2,即两数和与这两数差的积,等于它们的平方差.②完全平方公式:(a+b)2=a2+2ab+b2,即两数和的平方,等于它们的平方和,加上它们的积的2倍;(a-b)2=a2-2ab+b2,即两数差的平方,等于它们的平方和,减去它们的积的2倍. 6,因式分解 把一个多项式化成几个整式乘积的形式叫做因式分解.分解因式常见的有两种方法:①提取公因式法分解因式.具体地说,首先应确定公因式.确定公因式的原则是:①各项系数都是整数应提取各项系数的最大公约数;②字母提取各项的相同的字母;③各字母的指数取次数最低的.然后再提取公因式将多项式分解因式.②运用公式法分解因式.即利用平方差公式:(a+b)(a-b)=a 2-b2和完全平方公式:a 2±2ab+b2=(a±b)2.
7,分式的概念 形如AB(A、B是整式,且B中含有字母,B≠0)的式子叫做分式.其中A叫做分式的分子,B•叫做分式的分母.整式和分式统称有理数,即有理式整式,分式. 8,分式的基本性质 分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用字母表示如下:AB=ACBC,AB=ACBC(其中B中是含有字母且不等于0的整式,C是整式且C≠0).分式的这一基本性质可类比分数的基本性质而得到,但又区别于分数的基本性质. 9,约分与通分 约分是根据分式的基本性质,分子、分母都同除以最大公约式,化成最简分式.约分后,分子与分母不再有公因式.我们把这样的分式称为最简分式. 最大公约式:①系数取最大公约数;②字母取相同字母;③相同字母取最低次幂. 分式的通分,即要求把几个异分母的分式分别化为与原来的分式相等的同分母的分式.通分的关键是确定几个分式的公分母,通常取各分母所有因式的最高次幂作为公分母,叫做最简公分母. 最简公分母:①系数取最小公倍数;②字母取所有字母;③取所有字母的最高次幂.特别强调:为确定最简公分母,通常先将各分母分解因式. 10,分式的运算 ①分式的乘除 类似分数乘除法法则即可得出分式乘除法法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、
分母颠倒位置后与被除数相乘.用字母表示分式的乘除法法则:ab·cd=acbd;ab÷cd=ab·dc=adbc;②同分母的分式的加减法法则 同分母的分式的加减法,只要把分子相加减,
而分母不变.用字母表示为:ba±ca=bca.异分母的分式的加减法法则 异分母分式相加减,先通分,变为同分母分式,然后再加减.即用字母表示为:ba±dc=bcadac.分式的混合运算类似分数的混合运算法则. 11,象4、0、„、a(a≥0)等式子,这些式子是什么样的一个式子呢?于是,
我们把式子a(a≥0)叫做二次根式. 12,二次根式的性质:(1)2a=a (a≥0),(2)2a=a,(3)ab=a·b
(a≥0,b≥0),ab=ab(a≥0,b>0). 13,最简二次根式必须满足:一是被开方数不含有分母;二是被开方数不含有开得尽方的因数或因式,二者缺一不可.几个二次根式,化成最简二次根式后,•被开方式相同的二次根式叫做同类二次根式.
14,二次根式的运算:(1)乘除运算:按a·b=ab,ab=ab运算,再化成最简二次根式;(2)加减运算:化成同类二次根式后,再合并同类二次根式. 15,分母有理化:(1)互为有理化因式:两个带有二次根式的代数式相乘不再含有根号,则这两个代数式叫做互为有理化因式,常见的有理化因式有:a与a,a+b与a-b,a+b与a-b,ma+nb与ma-nb.(2)分母有理化:把分母中的根号化
去的过程,叫做分母有理化,方法是在分子分母上同乘以分母的有理化因式. 16,2a与2a区别:(1)表示的意义不同. 2a表示非负实数a的算术平方根的平方;2a表示实数a的平方的算术平方根.(2)运算的顺序不同. 2a是先求非负实数a的算术平方根,然后再进行平方运算;而2a则是先求实数a的平方,再求a2的算术平方根.(3)取值范围不同. 在2a中,a只能取非负实数,即a≥0;而在2a中,a可
以取一切实数.(4)写法不同.在2a中,幂指数2在根号的外面;而在2a中,幂指数
2在根号的内面.(5)结果不同. 2a=a(a≥0),而2a=a=0,00,0.aaaaa>< 2
a与2a联系:(1)在运算时,都有平方和开平方的运算.(2)两式运算的结果
都是非负数,即2a≥0,2a≥0.(3)仅当a≥0时,对有2a=2a. 五、专题解读(所选例题均出自2006年全国部分省市中考试卷) 专题一 代数式 例1(长春市)如图1,阴影部分的面积是( )A
A.72xy B.92xy C.4xy D.2xy 分析 阴影部分的面积可以由两个矩形组成,一是边长分别为1.5x和2y,另一个是边长分别为0.5x和y,这样即可求出阴影部分的面积.
解 阴影部分的面积为1.5x×2y+0.5x×y=3xy+0.5xy=3.5xy.故应选A. 例2(盐城市)已知x-y=2,则x2-2xy+y2=___. 分析 要求x2-2xy+y2的值,只知道x-y=2,但考虑x2-2xy+y2=(x-y)2,这可以整体代入求解. 解 因为x2-2xy+y2=(x-y)2,所以当x-y=2时,原式=22=4. 例3(济南市)根据如图2的程序,计算当输入x=3时,输出的结果y=___. 分析 输入的x>1,则运用等式y=-x+5,若输入的x≤1,则运用等式y=x+5,而现在输入的是x=3,所以应选用y=-x+5. 解 根据计算的程序,因为输入x=3>1,所以输出的是y=-x+5=-3+5=2. 例4衡阳市)观察算式:1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9
图1 图2 输入 x 输出 x
y=-x+5(x>1)
y=x+5(x≤1)