公差分析简介

合集下载

统计公差分析方法概述

统计公差分析方法概述

统计公差分析方法概述公差分析是设计和制造过程中的重要环节,用于评估产品的尺寸和形状的变化并确定其质量要求。

它帮助确定制造过程中允许的变化范围,以确保产品的功能和性能满足设计要求。

下面是公差分析方法的概述:1.公差概念和术语:公差是表示产品尺寸和形状变异的一种度量,是设计要求和制造能力之间的差异。

了解公差的基本概念和术语对于进行有效的公差分析非常重要。

例如,公差带、公差上限、公差下限、公差等级等。

2.公差链:公差链是将不同部件的公差延伸到整个产品装配中的一种方法。

通过分析公差链,可以确定整个装配的总体公差,并评估其对产品性能的影响。

公差链分析通常采用功能环或冗余环的方法。

3.公差配合:公差配合是指零件之间在装配时的相互作用。

公差配合分析可以确定零件之间的配合方式,并对其作用进行评估。

常见的公差配合包括配合间隙、过盈配合和间隙配合等。

4. 公差分析工具:公差分析通常使用一些专门的工具来辅助。

例如,一维公差分析工具(如Matlab、Excel等)用于分析单个尺寸的公差,根据统计数据计算出尺寸的上下限。

使用二维和三维CAD软件进行公差堆叠分析,可以在装配设计阶段模拟零件堆叠时产生的误差变化。

5.公差分配:公差分配是将总体公差分配给不同的零件以实现装配要求的过程。

公差分配通常基于设计要求、制造能力和装配要求等考虑因素。

公差分配需要根据装配关系和功能要求来确定每个零件的公差。

6.公差检验:公差分析的最后一步是进行公差检验,以确保产品的尺寸和形状在规定的公差范围内。

公差检验可以通过测量和检测工具来进行,例如卡尺、测量仪器、投影仪等。

公差检验是确保产品质量和性能的关键步骤。

7.公差优化:公差优化是指通过优化公差的分配和设计来最小化产品的尺寸和形状变化,以提高产品的质量和性能。

公差优化可以通过使用计算机辅助设计(CAD)软件和专业的公差优化工具来实现。

总之,公差分析是设计和制造中的关键环节,有助于确保产品质量和性能满足要求。

公差分析

公差分析

分析目的
分析目的
公差分析目的公差分析作为面向制造和装配的产品设计中非常有用的工具,可以帮助机械工程师实现以下目 的:
1)合理设定零件的公差以减少零件的制造成本。
2)判断零件的可装配性,判断零件是否在装配过程中发生干涉。 3)判断零件装配后产品关键尺寸是否满足外观、质量以及功能等要求。 4)优化产品的设计,这是公差分析非常重要的一个目的。当通过公差分析发现产品设计不满足要求时,一般 有两种方法来解决问题。其一是通过精密的零件公差来达到要求,但这会增加零件的制造成本;其二是通过优化 产品的设计(例如,增加装配定位特征)来满足产品设计要求,这是最好的方法,也是公差分析的意义所在。
5)公差分析除了用于产品设计中,还可用于产品装配完成后,当产品的装配尺寸不符合要求时,可以通过公 差分析来分析制造和装配过程中出现的问题,寻找问题的根本原因。
分析步骤
分析步骤
公差分析具体的步骤包括: 1)定义公差分析的目标尺寸和判断标准。 2)定义尺寸链。 3)判断尺寸的正负。 4)将非双向对称公差转化为双向对称公差。 5)公差分析的计算。 6)判断和优化。
计算模型
计算模型
常用的公差分析的计算模型有两种,一是极值法,二是均方根法。 1)极值法 极值法是考虑零件尺寸最不利的情况,通过尺寸链中尺寸的最大值或最小值来计算目标尺寸的值。 2)均方根法 均方根法是统计分析法的一种,顾名思义,均方根法是把尺寸链中的各个尺寸公差的平方之和再开根即得到 目标尺寸的公差。
谢谢观看
公差分析
定义和分配零件和产品的公差
01 分析目的
03 计算模型
目录
02 分析步骤
基本信息
公差分析是指在满足品功能、性能、外观和可装配性等要求的前提下,合理地定义和分配零件和产品的公 差,优化产品设计,从而以最小的成本和最高的质量制造产品。公差分析是面向制造和装配的产品设计中非常重 要的一个环节,对于降低产品成本、提高产品质量具有重大影响。

公差分析基础课件

公差分析基础课件

根据分析结果,评估现有 公差方案的优劣,提出优 化方案,并进行实施。
在产品生命周期中持续进 行公差分析,不断优化公 差方案,提高产品质量和 降低制造成本。
02
公差分析的数学基础
概率论与数理统计
概率论
概率论是研究随机现象的数学学科,它为公差分析提供了理 论基础。概率论可以帮助我们理解随机变量的分布、期望值 、方差等概念,这些概念在公差分析中非常重要。
公差优化设计的方法与步骤
确定设计目标
明确产品性能要求,确定需要优化的关键公差项。
建立数学模型
根据实际需求,建立公差优化问题的数学模型,包括目标函数、约束条件等。
求解数学模型
采用适当的优化算法,求解数学模型以获得最优解。
分析结果
对优化结果进行分析,评估其对产品性能的影响,并据此进行必要的调整。
公差优化设计实例
VS
实例二
某箱体类零件的孔径为φ10H7,要求其 与轴类零件的配合精度为H8/s7。根据尺 寸公差的计算方法,我们可以计算出该孔 径的尺寸公差,并分析其对配合精度的影 响。
04
形位公差分析
形位公差的基本概念
形位公差
描述零件几何形状、尺寸和相对位置的允许变动范围 的参数。
形位公差包括
形状公差和位置公差。
公差分析的未来发展方向
跨学科融合
将公差分析与其他工程学科、数学、统计学 等学科进行交叉融合,推动公差分析理论和 方法的发展。
云平台与大数据技术
利用云平台和大数据技术,实现公差数据的存储、 处理和分析,提高分析效率和精度。
标准化与规范化
制定和完善公差分析的标准化和规范化体系 ,推动公差分析在工业界的广泛应用。
THANKS

公差分析及实际案例分享

公差分析及实际案例分享

公差分析及实际案例分享公差分析是指在产品设计和生产过程中,通过分析产品各个零件之间的公差,确定合理的公差范围和公差配合,以保证产品能够在正常使用条件下达到设计要求。

公差分析是一项非常重要的工作,它能够有效地提高产品的质量和可靠性,减少成本和浪费。

在进行公差分析时,首先需要明确产品的设计要求和功能需求。

然后根据零件的功能和相互关系,进行公差分布和传递分析。

公差分布是指将设计公差按照一定的规律分配给各个零件,使得各个零件能够在允许误差范围内达到最终装配要求。

公差传递是指将各个零件上的公差通过装配过程传递给最后装配件,从而确定最后装配件的公差要求。

公差分析的目的是确定合理的公差范围和公差配合。

根据产品的功能需求和使用环境,确定合适的公差范围,使得产品能够在正常使用条件下满足性能要求。

同时,通过公差配合,可以有效地控制产品的装配质量,减少配合间的间隙和摩擦,提高产品的可靠性和耐久性。

下面以一个实际案例来分享公差分析的应用。

公司生产的汽车发动机出现了使用寿命变短的问题,经过分析发现是由于气缸套和活塞配合不当导致的。

气缸套和活塞的配合间隙过大,导致燃气泄漏和油耗增加,进而影响了发动机的寿命和性能。

针对这个问题,该公司进行了公差分析,并重新设计了气缸套和活塞的配合。

首先,分析了气缸套和活塞的功能和相互关系,确定了气缸套和活塞之间的公差分布。

然后,通过公差传递分析,确定了最终装配件的公差要求。

最后,根据产品的功能需求和使用环境,确定了合理的公差范围和公差配合。

通过重新设计配合间隙,该公司成功地解决了发动机寿命变短的问题。

经过测试和验证,发动机的性能和可靠性得到了显著的提高,燃气泄漏和油耗问题得到了有效控制,产品的使用寿命大大延长。

这个案例充分说明了公差分析在产品设计和生产中的重要性和应用价值。

通过合理的公差分析和设计,可以有效地控制产品的装配质量,提高产品的性能和可靠性,降低产品的故障率和成本。

公差分析是一项非常细致和繁琐的工作,需要设计师和工程师具备较高的技术水平和经验,但它的应用价值是不可忽视的。

公差分析简介及实例分析

公差分析简介及实例分析

=0.00+0.25/-0.35mm
使用统计分析进行的公差分析
1.以相关各尺寸之设计中心值作为平均值X 2.以相关各尺寸之设计公差范围作为其对应标准偏差6σ 3.依公式进行计算 分别得出配合后共面度中心值及其偏差范围 计算得: X = (0.30+2.625)+(0.45+0.05)-(3.35+0.025)=0.05mm 3σ= 0.102+0.0252+0.052+0.0252+0.052+0.052 =0.136mm 合计: 共面度=0.05± 0.136mm (0.186~-0.086) 查表得: Z1 =3*(0.10-0.05)/0.136=1.103
CONTACT: DIM 0.45± 0.05 DIM 0.00+0.10/-0.00
使用极端情况进行的 一般公差分析
共面度: =HOUSING高+CONTACT高-SHELL高 =[(0.30± 0.10)+(2.60+0.05/-0.00)] +[(3.35± 0.05)+(0.00+0.05/-0.00)] -[(0.45± 0.05)+(0.00+0.10/-0.00)]
分类:
极端情况公差分析V.S.统计分析 (完全互换法) (大数互换法)
A极端情况公差分析
即在建立好的一條尺寸链上 保証各环(尺寸)公差均向一个 方向上累积.也仍然滿足封闭環的装配性及功能要求
方法分类:
a.正计算: 已知尺寸链上各尺寸的基本尺寸及极限偏差 求封闭环的尺寸及极限偏差用于校核功能性 b.反计算: 已知封闭环尺寸的基本尺寸及极限偏差
* 3.产品开发设计的需要 产品设计一般分为 原形设计 和 二次生产设计 不进行公差分析意味着将在制造时冒很大的风险

公差分析讲义

公差分析讲义
无类似工程数据时 在设计的最初阶段适用Min/Max 公差分析 Min/Max 公差分析是非常保守的方法. 此方法是假定所有的部品全都在限界 尺寸时的情况, 但此种情况计划不会 发生.
RSS
用于 制作模具的设计图纸出图前, 即 已收集到工程数据时 使用. RSS 公差分析方法 根据部品的变化量来 决定系统不良的可能性 根据RSS进行 6σ 设计时, 预想会发生 4.3ppm 不良
μ 1 + μ2 + μ3 + μ4
如果两部品的尺寸相互独立, 平均和标准偏差的共分散就是 “0”, 所以只进行加减计算即可
μx+y= μx + μy μx-y = μx – μy σ2x+y = σ2x + σ2y σ2x-y = σ2x + σ2y (X + Y)的平均 (X - Y)的平均 (X + Y)的分散 (X - Y)的分散
+
A
Block Box(右侧) Gap
B1 Block 1 的 大小
B2 Block 2 的 大小
B3 Block 3 的 大小
B4 Block 4 的 大小
Gap = A – B1 – B2 – B3 – B4
Gap比 0.0 小时, 会出现干扰. 平均Gap: μgap= μe - μ1+2 = 80.0 - 79.0 = 1.0mm Gap的标准偏差:
gap gap
e 1 2
2 2
2
0 . 3408
2
0 . 2032
2
0 . 1270
2
gap 0 . 3877
理想的 6σ 水平的设计是 :
- 确认是否满足顾客要求 - 确认标准偏差

公差分析报告基本知识

公差分析报告基本知识公差分析是工程设计中非常重要的一项技术,它主要用于确定产品制造过程中所允许的尺寸变差范围,以保证产品在使用过程中的正常功能。

本篇文章将介绍公差分析的基本知识,包括公差的定义、公差的类型、公差的表示方法、公差链和公差分析方法等内容。

一、公差的定义公差是指将产品实际尺寸与设计尺寸之间的差值,它是制约产品功能和性能的重要因素。

公差是在设计阶段就需要考虑和确定的,通过公差的控制可以保证产品在制造和使用过程中的稳定性和可靠性。

二、公差的类型1.一般公差:是指对于产品的一般尺寸,根据所处的尺寸量级和表面质量要求而规定的公差。

2.几何公差:是指控制产品几何形状和位置关系的公差,包括平面度、圆度、圆柱度、直线度、平行度、垂直度等。

3.形位公差:是指产品形状和位置关系的公差,包括位置公差、姿态公差、形位公差、轴向公差等。

4.配合公差:是指对于产品的配合尺寸,根据配合要求而规定的公差,包括间隙、过盈和配合紧度等。

三、公差的表示方法公差的表示方法主要有四种:1.加减公差法:即在设计尺寸基础上,通过加减法确定上下限公差。

2.限界公差法:即在设计尺寸基础上,通过上限和下限值确定公差范围。

3.基础尺寸法:即以一个基础尺寸作为基准,通过加减公差法确定其他尺寸的上下限公差。

4. 数值公差法:即通过数值来表示公差的大小,如0.01mm、0.1mm 等。

四、公差链公差链是指产品由多个零件组成时,各个零件公差相加所形成的总公差。

在进行公差分析时,需要考虑到各种公差之间的相互关系和叠加效应,以保证整体装配的精度和可靠性。

五、公差分析方法公差分析有多种方法,主要包括:1.构造法:根据零件的功能要求,通过构造关系和尺寸链的分析,确定零件的公差。

2.统计法:通过对产品和工艺数据的统计分析,确定公差的适用范围和控制要求。

3.模拟法:通过建立数学模型,模拟产品在设计和制造过程中的变化和误差,分析公差对产品性能的影响。

4.比较法:通过对已有样品或标准件的测量和分析,确定公差的适用范围和控制要求。

公差分析基本知识

公差分析基本知识公差分析是指对于一组零件或产品的尺寸、形状和位置等特征进行分析,确定其所允许的变动范围,以满足设计要求的一种方法。

公差分析的目的是确定零件间和零件内的公差,以保证产品在装配和使用过程中的质量要求。

公差分析主要包括以下几个方面的内容:1.公差的定义:公差是指零件上特征的允许变动范围。

公差一般分为基本公差和附加公差。

基本公差是指通过规定零件上特征的尺寸范围来控制公差。

附加公差是指为了控制零件间和零件内的相对位置而设置的公差。

2.公差的表示方法:公差可以通过标准公差、限制公差和配合公差等方式来表示。

标准公差是指根据国家标准规定的一组统一的公差数值。

限制公差是指通过上下限值来表示公差范围。

配合公差是指根据安装或运动要求来确定的公差范围。

3.公差的传递:公差的传递是指从一个零件到另一个零件上的公差如何变化的过程。

公差的传递可以通过最大材料条件和最小材料条件来进行分析。

最大材料条件是指零件尺寸取最大限制尺寸时,所有公差作用的总和。

最小材料条件是指零件尺寸取最小限制尺寸时,公差作用的总和。

4.公差链:公差链是指由多个零件组成的装配件中公差传递的路径。

公差链的形成是由于零件之间的相互作用和相互限制引起的。

公差链的存在会导致装配精度的累积误差,因此需要对公差链进行分析和控制。

5.公差的控制:公差分析的最终目的是为了确定合理的公差范围,以保证产品在装配和使用过程中的质量要求。

公差的控制可以通过设计优化、工艺改进和设备调整等方式来实现。

公差分析在产品设计和制造中具有重要的作用,能够帮助设计人员确定合理的公差要求,同时也有助于提高产品的装配精度和使用性能,降低产品开发和生产成本。

在实际应用中,公差分析需要结合制造工艺、设备精度和市场需求等多方面因素进行综合考虑,以获得最佳的公差方案。

第4部分:公差分析指南


22
DFMA
谢 谢 !
23
3.当公差分析的结果不满足要求时:

DFMA
减少尺寸链的长度; A为54.00±0.20,C为25.00±0.15,D为28.50±0.15
优化的设计
18
四. 公差分析指南
3.当公差分析的结果不满足要求时:

DFMA
使用定位特征; 好处:
定位特征可以提供较精密的尺寸公差 定位特征的尺寸可以放置于比较容易进行尺寸管控的区域 使用定位特征时可以减少和避免对其他尺寸的公差要求,只需严格管控定 位特征的相关尺寸,就可以满足产品设计要求 因为定位特征精度高,使用定位特征有利于减少零件之间的尺寸公差累积
DFMA
制造工艺能力决定了公差分析中公差的设定; 二维图纸中公差标注与公差分析中的公差一致; 对公差分析中的尺寸需要进行制程管控;
制造工艺 能力
公差分析中 公差的设定
二维图样零 件公差标注
零件尺寸 制程管控
15
四. 公差分析指南
3.当公差分析的结果不满足要求时: 不推荐的做法:

DFMA
调整尺寸链中的尺寸公差大小; 降低目标尺寸判断标准;
100±0.20
3
一. 公差分析的介绍
2.公差的本质:

DFMA
公差是产品设计和产品制造的桥梁和纽带,是保证产品以优异的质量、 优良的性能和较低的成本进行制造的关键。
设计 功能 性能 外观 可装配性 设计限制 稳健性设计 设计意图 产品质量 客户满意
公差
制造 制造费用 装配费用 制造方法选择 机器 夹具 检验 不良率 返工率
推荐的做法:

减少尺寸链的长度; 使用定位特征;

公差分析简介

§ 公差分析简介 §一、 前言于新产品之开发过程中,为确认组件可达到预期之功能,并做适当之公差订定及分配,应于开模前作公差分析,求出一功能尺寸(如于Inkjet printer 中之PPS ,pen to paper space )经一回路之公差累积后之最差尺寸(worst case )。

若该最差尺寸不符合规格之要求,则可考虑紧缩某些尺寸之公差,或重新设计,以缩短回路或使该功能尺寸可调整。

二、 方法2.1 为简化计算,先将极限尺寸改为平均尺寸,如:10 ± →(10+1/2)±1/2=10.5 ± 0.52.2 一回路中之公差可分为二类:各组件自身之制造公差及组件间之组装公差(即定位公差)。

参阅附图,该组件由Part A 及Part B 等二组件所组成,其中Part A 设有定位Boss 且Part B 设有定位孔。

Part A 之定位Boss 至基准面之距离,40±0.1,即为一制造公差。

而组装公差则由Part A 之Boss 之尺寸ψ10+0/-0.1及Part B 之孔之尺寸ψ10.2+0.1/-0所决定,说明如下:Boss ψ10+0/-0.1 →ψ9.95 ± 0.05 孔ψ10.2+0.1/-0 →ψ10.25 ± 0.05间隙之设计值=(10.25-9.95)÷ 2=0.15组装公差= ±(0.15+0.05/2+0.05/2)= ± 0.202.3以附图为例,于该组件中, Part B 之face X 与Part A 之reference face 之距离为一功能尺寸,欲知其最差尺寸,说明如下:○1以Part A 之reference face 为基准,该公差循环(tolerance loop )包括a , b , c , d , e , f 等6个尺寸,其中b , c , d 属于组装公差 ○2依序列出各尺寸之公称值及平均化后之公差,其中公称值应视为向量,故f 为负值○3求出各公称尺寸及公差之总合,其分别为0及0.4,其中公称值之总合可视为一验算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§ 公差分析簡介 §
一、 前言
於新產品之開發過程中,為確認組件可達到預期之功能,並做適當之公差訂定及分配,應於開模前作公差分析,求出一功能尺寸(如於Inkjet printer 中之PPS ,pen to paper space )經一迴路之公差累積後之最差尺寸(worst case )。

若該最差尺寸不符合規格之要求,則可考慮緊縮某些尺寸之公差,或重新設計,以縮短迴路或使該功能尺寸可調整。

二、 方法
2.1 為簡化計算,先將極限尺寸改為平均尺寸,如:
10
±
→(10+1/2)±1/2=10.5 ± 0.5
2.2 一迴路中之公差可分為二類:各元件自身之製造公差及元件間之組裝公差(即定位公差)。

參閱附圖,該組件由Part A 及Part B 等二元件所組成,其中Part A 設有定位Boss 且Part B 設有定位孔。

Part A 之定位Boss 至基準面之距離,40±0.1,即為一製造公差。

而組裝公差則由Part A 之Boss 之尺寸ψ10+0/-0.1及Part B 之孔之尺寸ψ10.2+0.1/-0所決定,說明如下:
Boss ψ10+0/-0.1 →ψ9.95 ± 0.05 孔ψ10.2+0.1/-0 →ψ10.25 ± 0.05 間隙之設計值=(10.25-9.95)÷ 2=0.15
組裝公差= ±(0.15+0.05/2+0.05/2)= ± 0.20
2.3以附圖為例,於該組件中, Part B 之face X 與Part A 之reference face 之距離為一功能尺寸,欲知其最差尺寸,說明如下:
1 0
○1以Part A之reference face為基準,該公差迴圈(tolerance loop)包括a , b , c , d , e , f等6個尺寸,其中b , c , d屬於組裝公差○2依序列出各尺寸之公稱值及平均化後之公差,其中公稱值應視
為向量,故f為負值
○3求出各公稱尺寸及公差之總合,其分別為0及0.4,其中公稱值
之總合可視為一驗算。

於此例中,若其不為0則表示該迴圈中
之尺寸數目有誤,或某些尺寸之公稱值有誤
○4該功能尺寸之最差值為70±0.4
該最差值係假設各尺寸均為極值分布而得
2.4將各尺寸視為極值分布於實際之製造上並不合理,若將各尺寸視為常態分布(normal distribution),並取3σvariation,所求得之結果當較實際。

說明如下:
○1求出各尺寸之公差之平方值,並將其加總
○2將該平方和代入下式,即可求得該迴路於3σvariation下之累積
公差
2
(3Σσ),其中σ為平均化之公差
○3於此例中,該累積公差為±0.4所以該功能尺寸於3σvariation
下之最差值為70 ±0.36
2.5若於3σvariation下之最差尺寸符合規格之要求,則該組件之公差訂定視為可行。

當然,各元件公差設定需符合當前之技藝水準且須顧及cost
若非為0,則尺寸值有誤。

相关文档
最新文档