[电路分析]戴维南定理和诺顿定理
戴维南定理、诺顿定理和最大功率传输的验证及分析

戴维南定理、诺顿定理和最大功率传输的验证及分析一.戴维南定理1.实验目的:1)掌握戴维南定理相关知识2)掌握利用Mulstim软件分析验证相关的原理3)加深对等效变换的理解。
2.实验原理:戴维南定理:含独立电源的线性电阻单口网络N,就端口特性而言,可以等效为一个电压源和电阻串联的单口网络。
Uoc称为开路电压,R0称为戴维南等效电阻。
当单口网络视为电源时,称此电阻为输出电阻R0;当单口网络视为负载时,则称为输入电阻Ri。
电压源Uoc和电阻R0的串联单口网络,称为戴维南等效电路。
3.实验步骤:1)画出电路2)算出理论值3)利用Mulstim软件分析验证4)得出结论理论值:R1电流I1=U/I=6A U=IR=12V二.诺顿定理1.实验目的:1)掌握诺顿定理相关知识2)掌握利用Mulstim软件分析验证相关的原理3)加深对等效变换的理解。
2.实验原理:诺顿定理:含独立源的线性电阻单口网络N,就端口特性而言,可以等效为一个电流源和电阻的并联。
电流源的电流等于单口网络从外部短路时的端口电流isc;电阻R0是单口网络内全部独立源为零值时所得网络N0的等效电阻。
4.实验步骤:1)画出电路2)算出理论值3)利用Mulstim软件分析验证4)得出结论理论值:U=1A×2×2/(2+2)=1V I=1V/2/2×(2+2)=1A三.最大功率传输1.实验目的:1)掌握最大功率传输相关知识2)掌握利用Mulstim软件分析验证相关的原理3)加深对等效变换的理解。
2.实验原理:最大功率传输定理是关于使含源线性阻抗单口网络向可变电阻负载传输最大功率的条件。
定理满足时,称为最大功率匹配,此时负载电阻(分量)RL获得的最大功率为:Pmax=Uoc^2/4R0。
直流电路含源线性电阻单口网络(Ro>0)向可变电阻负载RL传输最大功率的条件是:负载电阻RL与单口网络的输出电阻Ro相等。
满足RL=Ro条件时,称为最大功率匹配,此时负载电阻RL获得的最大功率为:Pmax=Uoc^2/4R0。
戴维南定理和诺顿定理的验证实验报告

戴维南定理和诺顿定理的验证实验报告戴维南定理和诺顿定理是电路分析中最为重要的定理之一,可用于简化电路分析并找出电路中各元件的电流和电压。
本文将介绍验实验过程和实验结果。
实验材料和器材1.直流电源2.多用万用表3.电流表4.电压表5.R1=2ohm的电阻6.R2=3ohm的电阻7.R3=4ohm的电阻8.R4=3ohm的电阻9.R5=2ohm的电阻10.基板11.导线实验方法:1.按照电路图连接电路2.将电压表和电流表依次连接到电路中的各个位置,记录下各个元件的电流和电压大小。
3.分别用戴维南定理和诺顿定理计算电路中各电阻负载的电流和电压大小,并与实验结果进行比对,验证定理的正确性。
实验结果:1.使用万用表分别测量R1,R2,R3,R4,R5电阻每个电阻的电阻值。
2.将R1,R2和R3按照电路图所示连接到基板上,并将电路接到电源。
3.使用电压表和电流表测量电路中各个电阻的电压和电流值,记录下来。
记录表格如下:元件名称测量电压(V)测量电流(A)R1R2R34.根据测量结果和欧姆定律,可以得到R1,R2和R3的电阻值分别为2ohms,3ohms和4ohms。
戴维南定理验证:按照戴维南定理的步骤,将电路图中的电源和R1电阻两端截开,得到下图所示的电路。
[图片]按照戴维南定理的公式计算,可得到R1电阻负载的电流为1.5A,电压为3V。
比对实验结果,可得到实验测量结果和戴维南定理计算结果一致。
通过本次实验,我们验证了戴维南定理和诺顿定理的正确性,证明了这两个定理在电路分析中的作用和重要性。
在实际应用中,可以结合这些定理来简化电路分析,减少计算量和提高分析效率。
专题四、戴维南定理与诺顿定理

– 6I + a +
I 3 U0
–
b
R0
+ Uoc
–
a +
3 U0 -
b
6
+ 9V 3
–
– 6I + a +
I 3 Uoc
–
b
解 (1) 求开路电压Uoc
Uoc=6I+3I
I=9/9=1A
Uoc=9V
(2) 求等效电阻R0
方法1:加压求流
6 3
独立源置零
– 6I + I
I0 a +
U0 – b
U0=6I+3I=9I I=I06/(6+3)=(2/3)I0
(3)画出等效电路,求未知电流I5
R0
E+ _
I5
R5
E = Uoc = 2V R0=24
R5 10 时
I5
E R0R5
2 24 10
0.059 A
例3
D
C_ + A
4 +
8V _
50 10V
4
RL
U
33 5
E
B
1A
求:U=?
第一步:求开端电压Uoc。
D
C_ +
4
50 10V
+ 8V _
原理等其 它方法。
一、戴维宁定理
例1:电路如图,已知E1=40V,E2=20V,R1=R2=4, R3=13 ,试
用戴维宁定理求电流I3。
a
E1
+ –
+ E2–
R3
I1 R1 I2 R2
I3
R1
实验五 戴维南定理和诺顿定理

实验五戴维南定理和诺顿定理一、实验目的1.验证戴维南定理和诺顿定理的正确性,加深对两个定理的理解。
2.掌握含源二端网络等效参数的一般测量方法。
3.验证最大功率传递定理。
二、原理说明戴维南定理与诺顿定理在电路分析中是一对“对偶”定理,用于复杂电路的化简,特别是当“外电路”是一个变化的负载的情况。
在电子技术中,常需在负载上获得电源传递的最大功率。
选择合适的负载,可以获得最大的功率输出。
1.戴维南定理任何一个线性有源网络,总可以用一个含有内阻的等效电压源来代替,此电压源的电动势Es等于该网络的开路电压Uoc,其等效内阻Ro等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。
2.诺顿定理任何一个线性含源单口网络,总可以用一个含有内阻的等效电流源来代替,此电流源的电流Is等于该网络的短路电流Isc,其等效内阻Ro等于该网络中所有独立源均置零时的等效电阻。
Uoc、Isc和Ro称为有源二端网络的等效参数。
3.最大功率传递定理在线性含源单口网络中,当把负载RL以外的电路用等效电路(Es+Ro或Is∥Ro)取代时,若使R L=Ro,则可变负载R L上恰巧可以获得最大功率:P MAX=I sc2.R L/4=Uoc2/4RL (1)4.有源二端网络等效参数的测量方法⑴开路电压Uoc的测量方法①直接测量法直接测量法是在含源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc,如图5-1(a)所示。
它适用于等效内阻Ro较小,且电压表的内阻Rv>>Ro的情况下。
②零示法在测量具有高内阻(Ro>>Rv)含源二端网络的开路电压时,用电压表进行直接测量会造成较大的误差,为了消除电压表内阻的影响,往往采用零示测量法,如图5-1(b)所示。
零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压Es与有源二端网络的开路电压Uoc相等时,电压表的读数将为“0”,然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。
实验五戴维南定理和诺顿定理

实验五戴维南定理和诺顿定理实验五戴维南定理和诺顿定理⼀、实验⽬的1.验证戴维南定理和诺顿定理的正确性,加深对两个定理的理解。
2.掌握含源⼆端⽹络等效参数的⼀般测量⽅法。
3.验证最⼤功率传递定理。
⼆、原理说明戴维南定理与诺顿定理在电路分析中是⼀对“对偶”定理,⽤于复杂电路的化简,特别是当“外电路”是⼀个变化的负载的情况。
在电⼦技术中,常需在负载上获得电源传递的最⼤功率。
选择合适的负载,可以获得最⼤的功率输出。
1.戴维南定理任何⼀个线性有源⽹络,总可以⽤⼀个含有内阻的等效电压源来代替,此电压源的电动势Es等于该⽹络的开路电压Uoc,其等效内阻Ro等于该⽹络中所有独⽴源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。
2.诺顿定理任何⼀个线性含源单⼝⽹络,总可以⽤⼀个含有内阻的等效电流源来代替,此电流源的电流Is等于该⽹络的短路电流Isc,其等效内阻Ro等于该⽹络中所有独⽴源均置零时的等效电阻。
Uoc、Isc和Ro称为有源⼆端⽹络的等效参数。
3.最⼤功率传递定理在线性含源单⼝⽹络中,当把负载RL以外的电路⽤等效电路(Es+Ro或Is∥Ro)取代时,若使R L=Ro,则可变负载R L上恰巧可以获得最⼤功率:P MAX=I sc2.R L/4=Uoc2/4RL (1)4.有源⼆端⽹络等效参数的测量⽅法⑴开路电压Uoc的测量⽅法①直接测量法直接测量法是在含源⼆端⽹络输出端开路时,⽤电压表直接测其输出端的开路电压Uoc,如图5-1(a)所⽰。
它适⽤于等效内阻Ro较⼩,且电压表的内阻Rv>>Ro的情况下。
②零⽰法在测量具有⾼内阻(Ro>>Rv)含源⼆端⽹络的开路电压时,⽤电压表进⾏直接测量会造成较⼤的误差,为了消除电压表内阻的影响,往往采⽤零⽰测量法,如图5-1(b)所⽰。
零⽰法测量原理是⽤⼀低内阻的稳压电源与被测有源⼆端⽹络进⾏⽐较,当稳压电源的输出电压Es与有源⼆端⽹络的开路电压Uoc相等时,电压表的读数将为“0”,然后将电路断开,测量此时稳压电源的输出电压,即为被测有源⼆端⽹络的开路电压。
戴维南等效电路和诺顿等效电路

戴维南等效电路和诺顿等效电路引言:在电路分析中,戴维南等效电路和诺顿等效电路是两个重要的概念。
它们是电路分析中常用的简化电路模型,可以帮助我们更好地理解和分析复杂电路的行为。
本文将详细介绍戴维南等效电路和诺顿等效电路的概念、原理以及应用。
一、戴维南等效电路1. 概念:戴维南等效电路是一种用电压源和电阻来代替电路中的电压源和电阻的方法,它能够将原电路和等效电路在外部电路特性上保持一致。
2. 原理:戴维南等效电路的原理是基于电压分压原理和电流合流原理。
根据电压分压原理,电路中的电压源可以用电压源和电阻串联组成的等效电路来代替。
而根据电流合流原理,电路中的电阻可以用电流源和电阻并联组成的等效电路来代替。
3. 应用:戴维南等效电路的应用非常广泛。
在电路分析和设计中,我们经常会遇到复杂的电路,使用戴维南等效电路可以将这些复杂电路简化为等效电路,从而更方便地进行分析和设计。
此外,戴维南等效电路还可以在电路模拟和电路实验中使用,用来代替实际电路进行仿真和测试。
二、诺顿等效电路1. 概念:诺顿等效电路也是一种用电流源和电阻来代替电路中的电流源和电阻的方法,它同样能够将原电路和等效电路在外部电路特性上保持一致。
2. 原理:诺顿等效电路的原理与戴维南等效电路类似,也是基于电压分压原理和电流合流原理。
根据电压分压原理,电路中的电流源可以用电流源和电阻并联组成的等效电路来代替。
而根据电流合流原理,电路中的电阻可以用电压源和电阻串联组成的等效电路来代替。
3. 应用:诺顿等效电路与戴维南等效电路一样,广泛应用于电路分析和设计中。
通过将复杂电路简化为等效电路,可以更方便地进行分析和设计工作。
此外,诺顿等效电路还可以用于电路仿真和测试,以替代实际电路进行模拟和实验。
三、戴维南等效电路和诺顿等效电路的区别戴维南等效电路和诺顿等效电路在原理和应用上有所不同。
戴维南等效电路是用电压源和电阻来代替电路中的电压源和电阻,而诺顿等效电路则是用电流源和电阻来代替电路中的电流源和电阻。
戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证实验+数据在电路分析中,戴维南定理和诺顿定理是两个非常重要的定理,它们为复杂电路的分析和简化提供了有力的工具。
为了深入理解和验证这两个定理,我们进行了一系列的实验,并记录了相关的数据。
一、实验目的本次实验的主要目的是通过实际测量和计算,验证戴维南定理和诺顿定理的正确性,并掌握运用这两个定理分析电路的方法。
二、实验原理1、戴维南定理任何一个线性含源一端口网络,对外电路来说,可以用一个电压源和电阻的串联组合来等效替代。
其中电压源的电压等于该一端口网络的开路电压 Uoc,电阻等于该一端口网络内部所有独立源置零(即电压源短路,电流源开路)后的等效电阻 Ro。
2、诺顿定理任何一个线性含源一端口网络,对外电路来说,可以用一个电流源和电阻的并联组合来等效替代。
其中电流源的电流等于该一端口网络的短路电流 Isc,电阻等于该一端口网络内部所有独立源置零后的等效电阻 Ro。
三、实验仪器和设备1、直流稳压电源2、直流电流表3、直流电压表4、电阻箱5、导线若干四、实验步骤1、按照电路图连接实验电路,如图 1 所示。
(插入图 1)2、测量含源一端口网络的开路电压 Uoc将负载电阻 RL 开路,用电压表测量端口的开路电压 Uoc,记录测量值。
3、测量含源一端口网络的短路电流 Isc将负载电阻 RL 短路,用电流表测量端口的短路电流 Isc,记录测量值。
4、测量含源一端口网络的等效电阻 Ro将含源一端口网络内部的独立源置零(电压源短路,电流源开路),用欧姆表或电阻箱测量端口的等效电阻 Ro,记录测量值。
5、构建戴维南等效电路根据测量得到的 Uoc 和 Ro,用一个电压源和电阻串联组成戴维南等效电路,如图 2 所示。
(插入图 2)6、构建诺顿等效电路根据测量得到的 Isc 和 Ro,用一个电流源和电阻并联组成诺顿等效电路,如图 3 所示。
(插入图 3)7、分别测量戴维南等效电路和诺顿等效电路在不同负载电阻 RL 下的端口电压和电流,并记录数据。
[理学]第二章戴维南定理诺顿定理
![[理学]第二章戴维南定理诺顿定理](https://img.taocdn.com/s3/m/9c5fa48e50e79b89680203d8ce2f0066f5336411.png)
名词解释无源二端网络二端网络中没有电源有源二端网络二端网络中含有电源二端网络若一个电路只通过两个输出端与外电路相联则该电路称为“二端网络”。
Two-terminals One port A B A B 2-7 戴维宁定理与诺顿定理等效电源定理戴维宁定理和诺顿定理Thevenin-Norton Theorem 工程实际中常常碰到只需研究某一支路的电压、电流或功率的问题。
对所研究的支路来说电路的其余部分就成为一个有源二端网络可等效变换为较简单的含源支路电压源与电阻串联或电流源与电阻并联支路使分析和计算简化。
戴维宁定理和诺顿定理正是给出了等效含源支路的计算方法。
I Rx a b – 10V 4 6 6 4 计算Rx分别为1.2、 5.2时的I I a b E – Rx R0 aa bb RR aa bb 无源无源二端二端网络网络__ EE RR00 aa bb 电压源电压源戴维宁定理戴维宁定理电流源电流源诺顿定理诺顿定理aa bb 有源有源二端二端网络网络aa bb IISS RR00 无源二端网络可无源二端网络可化简为一个电阻化简为一个电阻有源二端网络可有源二端网络可化简为一个电源化简为一个电源一、戴维宁定理一、戴维宁定理任何一个有源二端任何一个有源二端线性线性网络都可以用一个电动势为网络都可以用一个电动势为E E 的理想电压源和内阻的理想电压源和内阻RR0 0 串联的电源来等效代替。
串联的电源来等效代替。
有源有源二端二端网络网络RRLL aa bb UU –– II EE RR00 __ RRLL aa bb UU –– II 等效电源等效电源注意“等效”是指对端口外等效注意“等效”是指对端口外等效即即用等效电源替代原来的二端网络后待求用等效电源替代原来的二端网络后待求支路上图是支路上图是RRLL的电压、电流不变。
的电压、电流不变。
等效电压源的内阻R0等于有源二端网络除源后相应的无源二端网络的等效电阻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
戴维南定理和诺顿定理
一、戴维南定理
出发点:对于一个复杂的含有独立源的电路,如果只要计算某条支路上的电压和电流,那么就可以把电路分解成两个部分,把该条支路作为一个部分,把电路的其余部分作为另一个部分,并用一个含源二端网络 Ns 来表示。
试图找到一个简化的等效电路去替换 Ns ,则该支路上的电压和电流的计算就会简单得多。
1 、戴维南定理
图 4.3-1 ( a )中, Ns 是含源二端网络,欲计算电阻 R 的端电压 u 和端电流 i 。
根据替代定理,可以用一个电流为 i 的理想电流源去替代外电路,如图 4.3-1 ( b )所示,替代之后,电路中其他支路上的电压和电流则保持不变。
用叠加定理计算 a 、 b 端钮的电压 u 。
当含源二端网络 Ns 中的独立源单独作用时,外部的电流源 i 应视为开路,这时的电路如图 4.3-1 ( c )所示。
显然,这时的端钮电压就是含源二端网络 Ns 的开路电压。
当外部的电流源 i 单独作用时,把含源二端网络 Ns 中的所有独立源都视为 0 ,这时Ns 中只剩下线性电阻和线性受控源等元件,没有独立源,成为一个无源二端网络,用 N 表示,其电路如图 4.3-1 ( d )所示。
显然,无源二端网络 N 可以等效为一个电阻,这个电
阻称为含源二端网络 Ns 的等效内阻用 Ro 表示。
这时电阻的端电压为。
根据叠加定理,得图 4.3-1 ( a )电路中电阻的端电压为
戴维南定理(Thevenin's theorem ):对于一个线性的含源二端网络,对外电路而言,它可以用一个理想电压源和一个内阻相串联的支路来等效,这条支路称为戴维南等效支路,
又称戴维南模型。
其中,等效电压源的电压为该含源二端网络的开路电压,等效内阻为该含源二端网络中所有独立源都取 0 时的等效电阻。
2 、戴维南模型参数的计算
1 、电压的计算
先画出含源二端网络 Ns 开路时的电路,然后再计算开路电压。
2 、等效内阻的计算
( 1 )如果无源二端网络 N 中没有受控源,可以用电阻网络的等效方法,如电阻的串、并联方法等。
( 2 )外加电压法。
电路如图 4.3-2 ( a )所示,
( 3 )短路电流法。
如图 4.3-2 ( b )所示,
3 、应用戴维南定理时应注意的问题
1 、戴维南定理只适用于线性电路,也就是说,含源二端网络 Ns 必须是线性电路。
但是,含源二端网络 Ns 以外的电路则没有限制,可以是线性电路,也可以是非线性电路。
2 、戴维南等效支路的“等效”是针对外电路而言的,即保证端钮处的电压、电流不变,而对端钮以内的电路并不等效。
3 、如果电路中含有受控源,对电路作分解时,不要把受控源和其控制量分开,否则无法求解。
求含源二端网络 Ns 的等效内阻时,不能把受控源当独立源看待,即其他独立源都取 0 时,受控源应保留在电路中。
例 4.3-1 电路如图 4.3-3 ( a )所示,试用戴维南定理求电流 I 。
解:为计算 4.5 Ω电阻上的电流 I ,可将电路分解成两个部分,如图 4.3-3 ( b )所示。
利用戴维南定理求 a 、 b 两端左侧电路的等效电路。
1 .计算开路电压
电路中 2V 电压源和 2A 电流源共同激励产生开路电压,由于是线性电路,可以采用叠加定理来计算。
当 2V 电压源单独激励时,电流源视为开路,这时产生的开路电压为,如图 4.3-3
( c )所示。
这里应注意,因为 a 、 b 端钮已开路,所以 1 Ω电阻上无电流通过,当然也就无电压。
由分压公式得
又当 2A 电流源单独激励时,电压源视为短路,这时产生的开路电压为,如图
4.3-3 ( d )所示。
Uoc''=2 × (1+3 ∥ 3)=5V
所以,当 2V 电压源和 2A 电流源共同激励时,由叠加定理得,开路电压为
2 .计算等效内阻
计算等效内阻时,把二端网络中的 2V 电压源和 2A 电流源都取 0 ,电路如图
4.3-3 ( e )所示。
显然,
Ro=1+3 ∥ 3=2.5 Ω
3 .用戴维南等效支路替换图 4.3-3 ( b )中左侧的含源二端网络,到了图 4.3-3 ( f )所示的等效电路。
所以,由全欧姆定律得电流
例 4.3-2 电路如图 4.3-4 ( a )所示,试用戴维南定理求 1V 电压源的功率。
解:欲求 1V 电压源的功率,只要求出该电压源支路的电流即可。
现求 a 、 b 端钮左侧电路的戴维南等效支路。
计算 a 、 b 二端网络开路电压的电路如图 4.3-4 ( b )所示。
由 KVL 得
则
故开路电压为
再计算 a 、 b 二端网络的等效内阻。
由于该二端网络内含有受控源,因此应采用外加电压法或短路电流法。
我们先采用外加电压法计算,这时应把二端网络内的所有独立源都取为 0 ,电路如图 4.3-4 ( c )所示。
图 4.3-4 ( c )中,有
则
故
所以,等效内阻为
下面,采用短路电流法计算,这时应把二端网络内的所有独立源都保留,电路如图 4.3-4 ( d )所示。
图 4.3-4 ( d )中,
则
又
所以
等效内阻为
显然,这两种方法计算的结果是一样的。
实际应用时,可根据具体情况选择一种方法。
3 .戴维南等效电路如图 4.3-
4 ( e )所示。
由图 4.3-4 ( e ),得到 1V 电压源支路的电流为
所以, 1V 电压源吸收的功率为
二、诺顿定理
诺顿定理
( Norton theorem )
对于一个线性的含源二端网络,对外电路而言,它可以用一个理想电流源和一个内阻相并联的电路来等效,称为诺顿等效模型。
其中,等效电流源的电流为该含源二端网络的短路电流,等效内阻为该含源二端网络中所有独立源都视为 0 时的等效电阻。