中考数学专题复习对中点四边形的探究与延伸试题

合集下载

【通用版】2019年春中考数学总复习 第二轮 中考题型专题 专题复习(六)几何综合题试题

【通用版】2019年春中考数学总复习 第二轮 中考题型专题 专题复习(六)几何综合题试题

专题复习(六) 几何综合题1.(2016·德州)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.(1)如图1、四边形ABCD 中、点E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.求证:中点四边形EFGH 是平行四边形;(2)如图2、点P 是四边形ABCD 内一点、且满足PA =PB 、PC =PD 、∠APB =∠CPD.点E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.猜想中点四边形EFGH 的形状、并证明你的猜想;(3)若改变(2)中的条件、使∠APB=∠CPD=90°、其他条件不变、直接写出中点四边形EFGH 的形状.(不必证明)图1 图2解:(1)证明:连接BD.∵E 、H 分别是AB 、AD 的中点、 ∴EH =12BD 、EH ∥BD.∵F 、G 分别是BC 、CD 的中点、 ∴FG =12BD 、FG ∥BD.∴EH =FG 、EH ∥FG.∴中点四边形EFGH 是平行四边形. (2)中点四边形EFGH 是菱形. 证明:连接AC 、BD.∵∠APB =∠CPD、∴∠APB +∠AP D =∠CPD+∠APD、即∠BPD=∠APC. 又∵PA=PB 、PC =PD 、∴△APC ≌△BPD(SAS ).∴AC=BD.∵点E 、F 、G 分别为边AB 、BC 、CD 的中点、 ∴EF =12AC 、FG =12BD.∴EF=FG.又∵四边形EFGH 是平行四边形、∴中点四边形EFGH 是菱形.图3(3)当∠APB=∠CPD=90°时、如图3、AC 与BD 交于点O 、BD 与EF 、AP 分别交于点M 、Q 、中点四边形EFGH 是正方形.理由如下:由(2)知:△APC≌△BPD、∴∠PAC =∠PBD. 又∵∠AQO=∠BQP、∴∠AOQ =∠APB =90°. 又∵EF∥AC、∴∠OMF =∠AOQ=90°. 又∵EH∥BD、∴∠HEF =∠OMF=90°. 又∵四边形EFGH 是菱形、∴中点四边形EFGH 是正方形.2.(2016·菏泽)如图、△ACB 和△DCE 均为等腰三角形、点A 、D 、E 在同一直线上、连接BE. (1)如图1、若∠CAB=∠CBA=∠CDE=∠CED=50°. ①求证:AD =BE ; ②求∠AEB 的度数;(2)如图2、若∠ACB=∠DCE=120°、CM 为△DCE 中DE 边上的高、BN 为△ABE 中AE 边上的高、试证明:AE =23CM +233BN.图1 图2解:(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED、∴AC =BC 、CD =CE. ∵∠CAB =∠CBA=∠CDE=∠CED、 ∴∠ACB =∠DCE.∴∠ACD=∠BCE. ∴△ACD ≌△BCE(SAS ).∴AD=BE. ②由①得△ACD≌△BCE、∴∠ADC =∠BEC=180°-∠CDE=130°.∴∠AEB =∠BEC-∠CED=130°-50°=80°.(2)证明:在等腰△DCE 中、∵CD =CE 、∠DCE =120°、CM ⊥DE 、 ∴∠DCM =12∠DCE=60°、DM =EM.在Rt △CDM 中、DM =CM·tan ∠DCM =CM·tan 60°=3CM 、∴DE =23CM. 由(1)、得∠ADC =∠BEC=150°、AD =BE 、 ∴∠AEB =∠BEC-∠CED=120°. ∴∠BEN =60°. 在Rt △BEN 中、BE =BN sin 60°=233BN.∴AD =BE =233BN.又∵AE=DE +AD 、∴AE =23CM +233BN.3.(2016·东营)如图1、△ABC 是等腰直角三角形、∠BAC =90°、AB =AC 、四边形ADEF 是正方形、点B 、C 分别在边AD 、AF 上、此时BD =CF 、BD ⊥CF 成立.(1)当△ABC 绕点A 逆时针旋转θ(0°<θ<90°)时、如图2、BD =CF 成立吗?若成立、请证明;若不成立、请说明理由.(2)当△ABC 绕点A 逆时针旋转45°时、如图3、延长DB 交CF 于点H 、交AF 于点N. ①求证:BD⊥CF;②当AB =2、AD =32时、求线段DH 的长.图1 图2 图3解:(1)BD =CF 成立.证明:∵AB=AC 、∠BAD =∠CAF=θ、AD =AF 、 ∴△ABD ≌△ACF(SAS ).∴BD =CF.(2)①证明:由(1)得、△ABD ≌△ACF 、 ∴∠HFN =∠ADN. 又∵∠HNF=∠AND、 ∴∠NHF =∠NAD=90°. ∴HD ⊥HF 、即BD⊥CF.②连接DF 、延长AB 交DF 于点M.在△MAD 中、∵∠MAD =∠MDA=45°、 ∴∠BMD =90°.∵AD =32、四边形ADEF 是正方形、 ∴MA =MD =322=3、FD =6.∴MB =3-2=1、DB =12+32=10. 在Rt △BMD 和Rt △FHD 中、 ∵∠MDB =∠HDF、 ∴△BMD ∽△FHD. ∴MD HD =BD FD 、即3HD =106.∴DH=9105.4.(2016·宁夏)在矩形ABCD 中、AB =3、AD =4、动点Q 从点A 出发、以每秒1个单位的速度、沿AB 向点B 移动;同时点P 从点B 出发、仍以每秒1个单位的速度、沿BC 向点C 移动、连接QP 、QD 、PD.若两个点同时运动的时间为x 秒(0<x≤3)、解答下列问题:(1)设△QPD 的面积为S 、用含x 的函数关系式表示S ;当x 为何值时、S 有最大值?并求出最小值; (2)是否存在x 的值、使得QP⊥DP?试说明理由.解:(1)∵四边形ABCD 为矩形、∴BC =AD =4、CD =AB =3. 当运动x 秒时、则AQ =x 、BP =x 、∴BQ =AB -AQ =3-x 、CP =BC -BP =4-x. ∴S △ADQ =12AD ·AQ=12×4x=2x 、S △BPQ =12BQ·BP=12(3-x)x =32x -12x 2、S △PCD =12PC·CD=12·(4-x)×3=6-32x.又S 矩形ABCD =AB·BC=3×4=12、∴S =S 矩形ABCD -S △ADQ -S △BPQ -S △PCD =12-2x -(32x -12x 2)-(6-32x)=12x 2-2x +6=12(x -2)2+4、即S =12(x -2)2+4.∴S 为开口向上的二次函数、且对称轴为直线x =2.∴当0<x≤2时、S 随x 的增大而减小; 当2<x≤3时、S 随x 的增大而增大、 又当x =0时、S =6、当S =3时、S =92.但x 的范围内取不到x =0、∴S 不存在最大值. 当x =2时、S 有最小值、最小值为4.(2)存在、理由:由(1)可知BQ =3-x 、BP =x 、CP =4-x. 当QP⊥DP 时、则∠BPQ+∠DPC=∠DPC+∠PDC、 ∴∠BPQ =∠PDC.又∵∠B=∠C、 ∴△BPQ ∽△CDP. ∴BQ PC =BP CD 、即3-x 4-x =x 3、解得x =7+132(舍去)或x =7-132. ∴当x =7-132时、QP ⊥DP.5.(2016·泰安)(1)已知:△ABC 是等腰三角形、其底边是BC 、点D 在线段AB 上、E 是直线BC 上一点、且∠DEC =∠DCE、若∠A=60°(如图1)、求证:EB =AD ;(2)若将(1)中的“点D 在线段AB 上”改为“点D 在线段AB 的延长线上”、其他条件不变(如图2)、(1)的结论是否成立、并说明理由;(3)若将(1)中的“若∠A=60°”改为“∠A=90°”、其他条件不变、则EBAD 的值是多少?(直接写出结论、不要求写解答过程)图1 图2解:(1)证明:过D 点作BC 的平行线交AC 于点F. ∵△ABC 是等腰三角形、∠A =60°、 ∴△ABC 是等边三角形.∴∠ABC=60°. ∵DF ∥BC 、∴∠ADF =∠ABC=60°. ∴△ADF 是等边三角形. ∴AD =DF 、∠AFD =60°.∴∠DFC =180°-60°=120°.∵∠DBE =180°-60°=120°、∴∠DFC =∠DBE. 又∵∠FDC=∠DCE、∠DCE =∠DEC、 ∴∠FDC =∠DEC、ED =CD. ∴△DBE ≌△CFD(AAS ). ∴EB =DF.∴EB=AD.(2)EB =AD 成立.理由如下:过D 点作BC 的平行线交AC 的延长线于点F. 同(1)可证△ADF 是等边三角形、 ∴AD =DF 、∠AFD =60°.∵∠DBE =∠ABC=60°、∴∠DBE =∠AFD. ∵∠FDC =∠D CE 、∠DCE =∠DEC、 ∴∠FDC =∠DEC、ED =CD. ∴△DBE ≌△CFD(AAS ). ∴EB =DF.∴EB=AD. (3)EBAD= 2.理由如下: 如图3、过D 点作BC 的平行线交AC 于点G.图3∵△ABC 是等腰三角形、∠A =90°、 ∴∠ABC =∠ACB=45°、∴∠DBE =180°-45°=135°. ∵DG ∥BC 、∴∠GDC =∠DCE、∠DGC =180°-45°=135°. ∴∠DBE =∠DGC. ∵∠DCE =∠DEC、∴ED =CD 、∠DEC =∠GDC.∴△DBE ≌△CGD(AAS ).∴BE=GD. ∵∠ADG =∠ABC=45°、∠A =90°、 ∴△ADG 是等腰直角三角形. ∴DG =2AD.∴BE=2AD.∴EBAD = 2.6.(2016·烟台)【探究证明】(1)在矩形ABCD 中、EF ⊥GH 、EF 分别交AB 、CD 于点E 、F 、GH 分别交AD 、BC 于点G 、H.求证:EF GH =ADAB ;【结论应用】(2)如图2、在满足(1)的条件下、又AM⊥BN、点M 、N 分别在边BC 、CD 上.若EF GH =1115、则BNAM 的值为________;【联系拓展】(3)如图3、四边形ABCD 中、∠ABC =90°、AB =AD =10、BC =CD =5、AM ⊥DN 、点M 、N 分别在边BC 、AB 上、求DNAM 的值.图1 图2 图3解:(1)证明:过点A 作AP∥EF、交CD 于点P 、过点B 作BQ∥GH、交AD 于点Q. ∵四边形ABCD 是矩形、∴AB ∥DC 、AD ∥BC.∴四边形AEFP 、四边形BHGQ 都是平行四边形.∴AP=EF 、GH =BQ. 又∵GH⊥EF、∴AP ⊥BQ.∴∠QAP +∠AQB=90°.∵四边形ABCD 是矩形、∴∠DAB =∠D=90°. ∴∠DAP +∠DPA=90°.∴∠AQB =∠DPA. ∴△PDA ∽△QAB.∴AP BQ =AD AB .∴EF GH =ADAB .(2)∵EF⊥GH、AM ⊥BN 、∴由(1)中的结论可得EF GH =AD AB 、BN AM =ADAB、∴BN AM =EF GH =1115.故答案为1115. (3)连接AC 、过点D 作AB 的平行线交BC 的延长线于点E 、作AF⊥AB 交直线DE 于点F. ∵∠BAF =∠B=∠E=90°、 ∴四边形ABEF 是矩形.易证△ADC≌△ABC、∴∠ADC =∠ABC=90°. ∴∠FDA +∠EDC=90°.又∵∠EDC+∠ECD=90°、∴∠FDA =∠ECD. 又∵∠E=∠F、 ∴△ADF ∽△DCE. ∴DE AF =DC AD =510=12. 设DE =x 、则AF =2x 、DF =10-x.在Rt △ADF 中、AF 2+DF 2=AD 2、即(2x)2+(10-x)2=100、解得x 1=4、x 2=0(舍去). ∴AF =2x =8.∴DN AM =AF AB =810=45.7.(2016·武汉)在△ABC 中、P 为边AB 上一点.(1)如图1、若∠ACP=∠B、求证:AC 2=AP·AB; (2)若M 为CP 的中点、AC =2.①如图2、若∠PBM=∠ACP、AB =3、求BP 的长;②如图3、若∠ABC=45°、∠A =∠BMP=60°、直接写出BP 的长.图1 图2 图3解:(1)证明:∵∠ACP=∠B、∠CAP =∠BAC、 ∴△ACP ∽△ABC. ∴AC AB =AP AC、即AC 2=AP·AB. (2)①作CQ∥BM 交AB 的延长线于点Q 、则∠PBM=∠Q. ∵∠PBM =∠ACP、∴∠ACP =∠Q. 又∠PAC=∠CAQ、∴△APC ∽△ACQ. ∴AC AQ =AP AC、即AC 2=AP·AQ. 又∵M 为PC 的中点、BM ∥CQ 、∴设BP =x 、则BQ =x.∴AP=3-x 、AQ =3+x. ∴22=(3-x)(3+x)、解得x 1=5、x 2=-5(不合题意、舍去). ∴BP = 5. ②BP =7-1.作CQ⊥AB 于点Q 、作CP 0=CP 交AB 于点P 0. ∵AC =2、∴AQ =1、CQ =BQ = 3.设AP 0=x 、则P 0Q =PQ =1-x 、BP =3-1+x 、 ∵∠BPM =∠CP 0A 、∠BMP =∠CAP 0、 ∴△AP 0C ∽△MPB 、∴AP 0MP =P 0CBP.解得x =7-3或x =-7-3(舍去).∴BP =3-1+7-3=7-1.8.(2016·岳阳)数学活动——旋转变换(1)如图1、在△ABC 中、∠ABC =130°、将△ABC 绕点C 逆时针旋转50°得到△A′B′C、连接B B′.求∠A′B′B 的大小; (2)如图2、在△ABC 中、∠ABC =150°、AB =3、BC =5、将△ABC 绕点C 逆时针旋转60°得到△A ′B ′C 、连接BB′.以A′为圆心、A ′B ′长为半径作圆.①猜想:直线BB′与⊙A′的位置关系、并证明你的结论; ②连接A′B、求线段A′B 的长度;(3)如图3、在△ABC 中、∠ABC =α(90°<α<180°)、AB =m 、BC =n 、将△ABC 绕点C 逆时针旋转2β角度(0°<2β<180°)得到△A′B′C、连接A′B 和BB′.以A′为圆心、A ′B ′长为半径作圆.问:角α与角β满足什么条件时、直线BB′与⊙A′相切、请说明理由.并求此条件下线段A′B 的长度.(结果用角α或角β的三角函数及字母m 、n 所组成的式子表示)图1 图2 图3解:(1)由旋转得:∠A′B′C=∠ABC=130°、CB =CB′、∠BCB ′=50°、 ∴∠BB ′C =12(180°-∠BCB′)=65°.∴∠A ′B ′B =∠A′B′C-∠BB′C=130°-65°=65°. (2)①猜想:直线BB′与⊙A′相切.证明:由旋转得:∠A′B′C=∠ABC=150°、CB =CB′、∠BCB ′=60°、 ∴∠BB ′C =12(180°-∠BCB′)=60°.∴∠A ′B ′B =∠A′B′C-∠BB′C=150°-60°=90°、即B′B⊥A′B′. 又A′B′为半径、∴直线BB′与⊙A′相切.②由旋转得:A′B′=AB =3、B ′C =BC =5、∠BCB ′=60°、 ∴△BCB ′为等边三角形.∴BB′=BC =5.在Rt △A ′B ′B 中、A ′B =(A′B′)2+(BB′)2=32+52=34. (3)满足的条件:α+β=180°.理由:在△BB′C 中、∠BB ′C =180°-2β2=90°-β、∴∠A ′B ′B =α-∠BB′C=α-(90°-β)=α+β-90°.∵α+β=180°、∴∠A ′B ′B =α+β-90°=180°-90°=90°、即B′B⊥A′B′. ∴直线BB′与⊙A′相切. 过点C 作CD⊥BB′于点D. ∴∠B ′CD =12∠BCB′=β.在Rt △B ′CD 中、B ′D =B′C·s in β=BC·sin β=n sin β、∴BB ′=2B′D=2n sin β. 由α+β=180°得到△A′B′B 为直角三角形、9.(2016·宜昌)在△ABC 中、AB =6、AC =8、BC =10.D 是△ABC 内部或BC 边上的一个动点(与B 、C 不重合).以D 为顶点作△DEF、使△DEF∽△ABC(相似比k>1)、EF ∥BC. (1)求∠D 的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH.①连接GH 、AD 、当GH⊥AD 时、请判断四边形AGDH 的形状、并证明;②当四边形AGDH 的面积最大时、过A 作AP⊥EF 于P 、且AP =AD 、求k 的值.解:(1)∵AB 2+AC 2=62+82=102=BC 2、 ∴∠BAC =90°.又∵△DEF∽△ABC、∴∠D =∠BAC =90°. (2)①四边形AGDH 是正方形.证明:延长ED 、FD 分别交BC 于点M 、N. ∵△DEF ∽△ABC 、∴∠E =∠B. 又∵EF∥BC、∴∠E =∠EMC.∴∠B=∠EMC.∴ED∥BA. 同理FD∥AC.∴四边形AGDH 是平行四边形.又∵∠FDE=90°、∴四边形AGDH 是矩形. 又∵AD⊥GH、∴四边形AGDH 是正方形.②当D 点在△ABC 内部时、四边形AGDH 的面积不可能最大.其理由是:如图1、点D 在内部时、延长GD 到D′、过D′作MD′⊥AC 于点M 、则四边形GD′MA 的面积大于矩形AGDH 的面积、∴当点D 在△ABC 内部时、四边形AGDH 的面积不可能最大. 按上述理由、只有当D 点在BC 边上时、面积才有可能最大.图1 图2如图2、D 在BC 上时、易证明DG∥AC、 ∴△GDB ∽△ACB. ∴BG BA =GD AC 、即BA -AG BA =AH AC . ∴6-AG 6=AH 8、即AH =8-43AG. ∴S 矩形AGDH =AG·AH=AG×(8-43AG)=-43AG 2+8AG =-43(AG -3)2+12.当AG =3时、S 矩形AGDH 最大、此时DG =AH =4.即当AG =3、AH =4、S 矩形AG DH 最大.在Rt △BGD 中、BD =BG 2+DG 2=5、则DC =BC -BD =5. 即D 为B C 上的中点时、S 矩形AGDH 最大.∴在Rt △ABC 中、AD =BC2=5、∴PA =AD =5.延长PA 交BC 于点Q 、∵EF ∥BC 、QP ⊥EF 、 ∴QP ⊥BC.∴QP 是EF 、BC 之间的距离. ∴D 到EF 的距离为PQ 的长. 在Rt △ABC 中、12AB·AC=12BC·AQ、∴AQ =4.8.又∵△DEF∽△ABC、∴k =PQ AQ =PA +AQ AQ =5+4.84.8=4924.10.(2016·河南)(1)发现如图1、点A 为线段BC 外一动点、且BC =a 、AB =b.填空:当点A 位于CB 延长线上时、线段AC 的长取得最大值、且最大值为a +b .(用含a 、b 的式子表示)图1(2)应用点A 为线段BC 外一动点、且BC =3、AB =1.如图2所示、分别以AB 、AC 为边、作等边三角形ABD 和等边三角形ACE 、连接CD 、BE.①请找出图中与BE 相等的线段、并说明理由; ②直接写出线段BE 长的最大值. (3)拓展如图3、在平面直角坐标系中、点A 的坐标为(2、0)、点B 的坐标为(5、0)、点P 为线段AB 外一动点、且PA =2、PM =PB 、∠BPM =90°.请直接写出线段AM 长的最大值及此时点P 的坐标.图2 图3 备用图解:(2)①DC=BE.理由如下: ∵△ABD 和△ACE 为等边三角形、∴AD =AB 、AC =AE 、∠BAD =∠CA E =60°.∴∠BAD +∠BAC=∠CAE+∠BAC、即∠CAD=∠EAB. ∴△CAD ≌△EAB.∴DC =BE. ②BE 长的最大值是4.(3)AM 的最大值为3+22、点P 的坐标为(2-2、2).提示:如图3、构造△BNP≌△MAP、则NB =AM 、易得△APN 是等腰直角三角形、AP =2、∴AN =2 2.由(1)知、当点N 在BA 的延长线上时、NB 有最大值(如备用图).∴AM=NB =AB +AN =3+2 2. 过点P 作PE⊥x 轴于点E 、PE =AE = 2. 又∵A(2、0)、∴P(2-2、2).。

中考数学复习《四边形》经典题型及测试题(含答案)

中考数学复习《四边形》经典题型及测试题(含答案)

中考数学复习《四边形》经典题型及测试题(含答案)命题点分类集训命题点1 平行四边形的判定与计算【命题规律】1.考查内容:①平行四边形的性质及其相关计算;②平行四边形的判定.2.考查形式:①根据平行四边形的性质考查结论判断;②利用平行四边形的性质求角度、线段或面积;③添加条件使四边形为平行四边形.3.考查题型:性质在选择和填空题中考查居多,判定题近年来多在解答题中考查,有时会在二次函数压轴题中探究平行四边形的存在问题.【命题预测】平行四边形是四边形中主要的图形之一,性质与判定常常考查,是近年命题的重点. 1. 已知四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的是( )A . OE =12DC B . OA =OC C . ∠BOE =∠OBA D . ∠OBE =∠OCE1. D第1题图 第2题图2. 如图,在▱ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC =2,▱ABCD 的周长是14,则DM 等于( )A . 1B . 2C . 3D . 42. C 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABM =∠CMB ,∵BM 平分∠ABC ,∴∠ABM =∠CBM ,∴∠CBM =∠CMB ,∴CB =MC =2,∴AD =BC =2,∵▱ABCD 的周长是14,∴AB =CD =5,∴DM =DC -MC =3.3. 如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件________(写一个即可),使四边形ABCD 是平行四边形. 3. AD ∥BC (答案不唯一)第3题图 第4题图 第5题图 4. 如图,▱ABCD 中,AC =8,BD =6,AD =a ,则a 的取值范围是________.4. 1<a <7 【解析】如解图,对角线AC ,BD 相交于点O ,则OA =12AC =4,OD =12BD =3,在△OAD中,OA -OD <AD <OA +OD ,即1<a <7.5. 如图所示,在▱ABCD 中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________. 5. 50°6. 如图,将▱ABCD 的AD 边延长至点E ,使DE =12AD ,连接CE ,F 是BC 边的中点,连接FD.(1)求证:四边形CEDF 是平行四边形; (2)若AB =3,AD =4,∠A =60°,求CE 的长.6. (1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC , ∴DE ∥FC.∵F 是BC 的中点, ∴FC =12BC =12AD ,∵DE =12AD ,∴FC =DE ,∴四边形CEDF 是平行四边形. (2)解:如解图,过点D 作DH ⊥BC 于点H. 由(1)知四边形DECF 是平行四边形,∴DF =CE.∵四边形ABCD 是平行四边形,∠A =60°,AB =3,AD =4, ∴BC =4,CD =3,∠BCD =60°, 在Rt △DHC 中,HC =DC·cos ∠HCD =32,DH =DC ·sin ∠HCD =332,∵F 是BC 的中点, ∴FC =2,∴FH =FC -HC =2-32=12,在Rt △DFH 中,由勾股定理得DF =DH 2+FH 2=(332)2+(12)2=7,∴CE =7.命题点2 矩形的判定与计算【命题规律】考查形式:①利用矩形性质,结合勾股定理求线段长或面积;②矩形的判定,一般在解答题中考查,也常在二次函数综合题中考查矩形的存在性问题;③矩形折叠的相关计算与证明(见命题点6:图形折叠的相关计算).【命题预测】矩形性质将勾股定理、全等、相似等重要知识综合考查,是全国命题趋势之一. 7. 如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F.在下列结论中,不一定正确的是( )A . △AFD ≌△DCEB . AF =12AD C . AB =AF D . BE =AD -DF7. B 【解析】逐项分析如下表:选项逐项分析正误A∵四边形ABCD 是矩形,AF ⊥DE ,∴∠C =90°=∠AFD ,AD ∥BC ,∴∠ADF =∠CED ,∵AD =DE ,∴△AFD ≌△DCE (AAS)√B只有当∠ADF =30°时,才有AF =12AD 成立×C由△AFD ≌△DCE 可知,AF =DC ,∵矩形ABCD 中,AB =DC ,∴AB =AF√D∵△AFD ≌△DCE ,∴DF =CE ,∴BE =BC -CE =AD -DF √8. 已知矩形的对角线AC 与BD 相交于点O ,若AO =1,那么BD =________. 8. 2第7题图 第8题图 第9题图 9. 如图,矩形ABCD 的面积是15,边AB 的长比AD 的长大2,则AD 的长是________.9. 3 【解析】本题主要考查了一元二次方程的实际应用问题. 设AD =x ,由题知,AB =x +2,又∵矩形ABCD 的面积为15,则x(x +2)=15,得到x 2+2x -15=0,解得,x 1=-5(舍) , x 2=3,∴AD =3. 10. 如图所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线AF 交CE 的延长线于F ,且AF =BD ,连接BF. (1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.10. (1)证明:∵点E 是AD 的中点, ∴AE =DE. ∵AF ∥BC ,∴∠AFE =∠DCE ,∠FAE =∠CDE , ∴△EAF ≌△EDC(AAS ), ∴AF =DC. ∵AF =BD , ∴BD =DC ,即D 是BC 的中点.(2)解:四边形AFBD 是矩形.证明如下: ∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形.∵AB =AC ,又由(1)可知D 是BC 的中点, ∴AD ⊥BC ,∴四边形AFBD 是矩形.11. 如图,点P 在矩形ABCD 的对角线AC 上,且不与点A ,C 重合,过点P 分别作边AB ,AD 的平行线,交两组对边于点E ,F 和点G ,H. (1)求证:△PHC≌△CFP;(2)证明四边形PEDH 和四边形PFBG 都是矩形,并直接写出它们面积之间的关系.11. (1)证明:∵四边形ABCD 是矩形,∴DC ∥AB ,AD ∥BC ,∠DCB =90°.∵EF ∥AB ,GH ∥AD ,∴EF ∥CD ,GH ∥BC , ∴四边形PFCH 是矩形, ∴∠PHC =∠PFC =90°,PH =CF ,HC =PF , ∴△PHC ≌△CFP(SAS ).(2)证明:由(1)知AB ∥EF ∥CD , AD ∥GH ∥BC ,∴四边形PEDH 和四边形PGBF 都是平行四边形, ∵四边形ABCD 是矩形, ∴∠D =∠B =90°,∴四边形PEDH 和四边形PGBF 都是矩形, ∴S 矩形PEDH =S 矩形PGBF .命题点3 菱形的判定与计算【命题规律】1.考查内容和形式:①根据菱形性质判断结论正误;②菱形的判定;③根据菱形的性质求角度、周长和面积;④与二次函数压轴题结合考查菱形的存在性问题.2.三大题型均会出现.【命题预测】菱形是特殊平行四边形中的重要内容,是中考常考知识,对菱形的性质与判定应做到牢固掌握.12. 如图,在▱ABCD 中,对角线AC 与BD 交于点O.若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确...的是( ) A . AB =AD B . AC ⊥BD C . AC =BD D . ∠BAC =∠DAC12. C 【解析】邻边相等的平行四边形是菱形,所以A 正确;对角线互相垂直的平行四边形是菱形,所以B 正确;对角线相等的平行四边形是矩形,所以C 错误;由∠BAC =∠DAC 可得对角线是角平分线,所以D 正确.第12题图 第13题图13. 已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A . (0,0)B . (1,12) C . (65,35) D . (107,57)13. D 【解析】如解图,连接CA 、AD ,CA 与OB 相交于点E ,过点E 作EF ⊥OA ,交OA 于点F .由题知点C 关于OB 的对称点是点A ,AD 与BO 的交点即为点P .根据菱形的性质,菱形的对角线互相垂直且平分两组对角,可知△COE ∽△EOF ,∴CO EO =EO OF ,∵OC =OA =5,OE =OB 2=25,∴OF =OE 2CO =(25)25=4,根据勾股定理可得EF =OE 2-OF 2=(25)2-42=2,点E 的坐标为(4,2),易得直线OE 的函数解析式为y =12x ,直线AD 的函数解析式是y =-15x +1,联立得:⎩⎨⎧y =12x y =-15x +1,解得⎩⎨⎧x =107y =57,∴点P 的坐标为(107,57).14. 如图,在菱形ABCD 中,E 、F 分别是AD 、BD 的中点,若EF =2,则菱形ABCD 的周长为________. 14. 16 【解析】∵E ,F 分别是AD ,BD 的中点,∴AB =2EF =4,∴菱形ABCD 周长是4AB =16.第14题图 第15题图15. 如图,在菱形ABCD 中,AB =5,AC =8,则菱形的面积是________.15. 24 【解析】如解图,连接BD 交AC 于点O ,∵四边形ABCD 是菱形,AB =5,AC =8,且菱形的对角线互相垂直平分,∴OA =4,在Rt △AOB 中,由勾股定理得OB =3,∴BD =6,∴S 菱形ABCD =12AC ·BD=12×8×6=24. 16. 在菱形ABCD 中,∠A =30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE ,则∠EBC 的度数为________.16. 105°或45° 【解析】如解图,∵四边形ABCD 是菱形,∠A =30°,∴∠ABC =150°,∠ABD =∠DBC =75°,且顶角为120°的等腰三角形的底角是30°.分为以下两种情况:(1)当点E 在△ABD 内时,∠E 1BC =∠E 1BD +∠DBC =30°+75°=105°;(2)当点E 在△DBC 内时,∠E 2BC =∠DBC -∠E 2BD =75°-30°=45°.综上所述,∠EBC 的度数为105°或45°.17. 如图,在Rt △ABC 中,∠B =90°,点E 是AC 的中点,AC =2AB ,∠BAC 的平分线AD 交BC 于点D ,作AF∥BC,连接DE 并延长交AF 于点F ,连接FC. 求证:四边形ADCF 是菱形.17. 证明:∵∠B =90°,AC =2AB , ∴sin ∠ACB =12,∴∠ACB =30°, ∴∠CAB =60°, ∵AD 平分∠CAB ,∴∠CAD =12∠CAB =30°,∠CAD =∠ACD ,∴AD =CD , ∵AF ∥CD ,∴∠DCE =∠FAE ,∠AFE =∠CDE , 又∵AE =CE ,∴△AFE ≌△CDE(AAS ), ∴AF =CD , 又AF ∥CD ,∴四边形ADCF 是平行四边形, 又AD =CD ,∴四边形ADCF 是菱形.命题点4 正方形的判定与计算【命题规律】正方形的考查相对比较综合,难度较大,常在选择或填空的压轴题位置出现,考查知识点综合性强,涉及到正方形面积、边长和周长的计算.【命题预测】正方形综合了所有特殊四边形的性质,因此以正方形为背景出题更具有对知识的检验性,倍受命题人青睐,考生应加以关注.18. 如图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边的正方形EFGH 的周长为( )A . 2B . 2 2C . 2+1D . 22+118. B 【解析】∵正方形ABCD 的面积为1,∴BC =CD =1,∵E 、F 是边的中点,∴CE =CF =12,∴EF=(12)2+(12)2=22,则正方形EFGH 的周长为4×22=2 2. 19. ▱ABCD 的对角线AC 与BD 相交于点O ,且AC⊥BD,请添加一个条件:________,使得▱ABCD 为正方形. 19. ∠BAD =90°(答案不唯一)20. 如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则S 正方形MNPQS 正方形AEFG的值等于________.20. 89【解析】设BD =3a ,∠CDB =∠CBD =45°,且四边形PQMN 为正方形,∴DQ =PQ =QM =NM=MB ,∴正方形MNPQ 的边长为a ,正方形AEFG 的对角线AF =12BD =32a ,∵正方形对角线互相垂直,∴S 正方形AEFG =12×32a ×32a =98a 2,∴S 正方形MNPQ S 正方形AEFG =a 298a 2=89.第20题图 第21题图21. 如图,正方形ABCD 的边长为22,对角线AC ,BD 相交于点O ,E 是OC 的中点,连接BE ,过点A 作AM⊥BE 于点M ,交BD 于点F ,则FM 的长为________. 21.55【解析】∵四边形ABCD 为正方形,∴AO =BO ,∠AOF =∠BOE =90°,∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ,在△AFO 和△BEO 中,⎩⎪⎨⎪⎧∠AOF =∠BOE AO =BO ∠FAO =∠EBO ,∴△AFO ≌△BEO(ASA ),∴FO =EO ,∵正方形ABCD 的边长为22,E 是OC 的中点,∴FO =EO =1=BF ,BO =2,∴在Rt △BOE 中,BE =12+22=5,由∠FBM =∠EBO ,∠FMB =∠EOB ,可得△BFM ∽△BEO ,∴FM EO =BF BE ,即FM1=15,∴FM =55.22. 如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点A ,D ,G 在同一条直线上,且AD =3,DE =1,连接AC ,CG ,AE ,并延长AE 交CG 于点H. (1)求sin ∠EAC 的值; (2)求线段AH 的长.22.解:(1)由题意知EC =2,AE =10,如解图,过点E 作EM ⊥AC 于点M , ∴∠EMC =90°,易知∠ACD =45°, ∴△EMC 是等腰直角三角形, ∴EM =2,∴sin ∠EAC =EM AE =55.(2)在△GDC 与△EDA 中,⎩⎪⎨⎪⎧DG =DE ∠GDC =∠EDA DC =DA, ∴△GDC ≌△EDA(SAS ),∴∠GCD =∠EAD , 又∵∠HEC =∠DEA ,∴∠EHC =∠EDA =90°, ∴AH ⊥GC ,∵S △AGC =12×AG ×DC =12×GC ×AH ,∴12×4×3=12×10×AH , ∴AH =6510.命题点5 多边形及其性质【命题规律】1.考查内容:①多边形的内外角和公式;②正多边形的有关计算.2.考查形式:①已知正多边形一个内角或外角的度数或内角之间的关系求边数;②已知正多边形的边数求内角度数;③求多边形的内外角和.【命题预测】多边形是三角形和四边形的延伸拓展,也是中考命题不容忽视的知识点. 23. 六边形的内角和是( )A . 540°B . 720°C . 900°D . 1080°23. B24. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A . 7B . 7或8C . 8或9D . 7或8或924. D 【解析】分类讨论:(1)切去一个角,减少一条边,设减少一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是9;(2)切去一个角,增加一条边,设增加一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是7;(3)切去一个角,边数无改变,设边数没有改变时的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是8,综上所述,原多边形的边数是9,7,8都符合题意,答案选择D.25. 若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是________.25. 6 【解析】设这个多边形的边数为n ,则内角和为(n -2)·180°,外角和为360°,则根据题意有:(n -2)·180°=2×360°,解得n =6. 26. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.26. 8 【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.方法指导设正多边形的边数为n ,正多边形的外角和为360°,内角和为(n -2)×180°,每个内角的度数为180°×(n -2)n.命题点6 图形折叠的相关证明与计算【命题规律】考查内容和形式:图形折叠计算以矩形折叠考查居多,常考查:①图形的折叠计算角度;②图形的折叠计算线段长或边长;③图形折叠的证明和计算结合;④图形折叠的操作探究.【命题预测】图形折叠将原有图形变得可操作化,且又很好地引入了对称知识,使问题升华,有效地考查学生的知识迁移能力和掌握程度,是全国命题的主流趋势之一,值得每位考生关注.27. 如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B′,AB ′与DC 相交于点E ,则下列结论一定正确的是( )A .∠DAB ′=∠CAB′ B .∠ACD =∠B′CDC .AD =AE D .AE =CE27. D28. 如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE.若AB 的长为2,则FM 的长为( )A . 2B . 3C . 2D . 128. B第28题图 第29题图29. 如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处.若∠2=40°,则图中∠1的度数为( )A . 115°B . 120°C . 130°D . 140°29. A 【解析】由折叠的性质知∠EA ′B ′=∠A =90°,∵∠2=40°,∴∠B ′A ′C =50°,∴∠EA ′D =40°,∠DEA ′=50°,∴∠AEA ′=130°,∴∠AEF =∠FEA ′=12∠AEA ′=65°,∵AD ∥BC ,∴∠1=180°-65°=115°.30. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在点B′处.若∠1=∠2=44°,则∠B 为( )A . 66°B . 104°C . 114°D . 124°30. C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎪⎨⎪⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.第30题图 第31题图 第32题图31. 如图,将△ABC 沿直线DE 折叠,使点C 与点A 重合,已知AB =7,BC =6,则△BCD 的周长为________. 31. 13 【解析】由折叠的性质可得:CD =AD ,∴△BCD 的周长=BC +CD +BD =BC +AD +BD =BC +BA =6+7=13.32. 如图,在▱ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,A D′与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED′的大小为________.32. 36° 【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED=180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.33.如图,将矩形纸片ABCD(AD >AB)折叠,使点C 刚好落在线段AD 上,且折痕分别与边BC ,AD 相交.设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.33. 解:(1)四边形CEGF是菱形,理由如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折痕,∴∠GEF=∠FEC,∴∠GFE=∠GEF,∴GF=GE,∵图形翻折后EC与GE完全重合,FC与FG重合,∴GE=EC=GF=FC,∴四边形CEGF为菱形.(2)如解图①,当点F与点D重合时,四边形CEGF是正方形,此时CE最小,且CE=CD=3;如解图②,当点G与点A重合时,CE最大.设EC=x,则BE=9-x,由折叠性质知,AE=CE=x,在Rt△ABE中,AB2+BE2=AE2,即9+(9-x)2=x2,解得x=5,∴CE=5,所以,线段CE的取值范围为3≤CE≤5.34.如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.34. (1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D=60°,由折叠性质可知,∠D=∠AD′E=60°,∴∠AD′E=∠B=60°,∴ED′∥BC,又∵EC∥D′B,∴四边形BCED′是平行四边形,∴ED′=BC=AD=1,∴DE=ED′=1,又DC=AB=2,∴EC =1, ∴EC =ED′,∴四边形BCED′是菱形. (2)解:如解图所示,由折叠性质PD′=PD ,BD 之长即为所求, 作DG ⊥BA 的延长线于点G , ∵∠DAB =120°, ∴∠DAG =60°, ∵∠G =90°, ∴∠ADG =30°,在Rt △ADG 中,AD =1, ∴AG =12,DG =32,∵AB =2, ∴BG =52,在Rt △BDG 中,由勾股定理得:BD 2=BG 2+DG 2=7, ∴BD =7,即PD′+PB 的最小值为7.方法指导“将军饮马”模型:直线同侧两定点,在直线上确定一点使该点到两定点的距离和最小.作法:作其中一点关于直线的对称点,连接另一点和对称点的线段即是最短距离和;最短距离计算方法:构造以最短距离线段为斜边的直角三角形,利用勾股定理求解.中考冲刺集训一、选择题1.关于▱ABCD 的叙述,正确的是( )A . 若A B⊥BC,则▱ABCD 是菱形B . 若AC⊥BD,则▱ABCD 是正方形C . 若AC =BD ,则▱ABCD 是矩形 D . 若AB =AD ,则▱ABCD 是正方形2.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( )A . a >bB . a =bC . a <bD . b =a +180°3.如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a),(-3,2),(b ,m),(c ,m).则点E 的坐标是( )A . (2,-3)B . (2,3)C . (3,2)D . (3,-2)第3题图 第4题图4.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC +BD =16,CD =6,则△ABO 的周长是( )A . 10B . 14C . 20D . 225.菱形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是AD ,CD 边上的中点,连接EF.若EF =2,BD =2,则菱形ABCD 的面积为( )A . 2 2B . 4 2C . 6 2D . 8 2第5题图 第6题图 第7题图6.如图,平行四边形ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为( )A . 3 cmB . 4 cmC . 5 cmD . 8 cm7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH ,若BE∶EC =2∶1,则线段CH 的长是( )A . 3B . 4C . 5D . 68.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF∥AD,与AC 、DC 分别交于点G 、F2H 为CG 的中点,连接DE 、EH 、DH 、FH.下列结论:①EG =DF ;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若AE AB =23,则3S △EDH =13S △DHC ,其中结论正确的有( )A . 1个B . 2个C . 3个D . 4个二、填空题9.如图,在▱ABCD 中,BE ⊥AB 交对角线AC 于点E ,若∠1=20°,则∠2的度数为________.10.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC =8,BD =6,则菱形ABCD 的高DH =________.第9题图 第10题图 第11题图11.如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连接AE.如果∠ADB=30°,则∠E=________度. 12.如图,正方形ABCO 的顶点C ,A 分别在x 轴,y 轴上,BC 是菱形BDCE 的对角线,若∠D=60°,BC =2,则点D 的坐标是________.第12题图 第13题图 第14题图 13.如图,正十二边形A 1A 2…A 12,连接A 3A 7,A 7A 10,则∠A 3A 7A 10=________°.14.如图,菱形ABCD 的面积为120 cm 2,正方形AECF 的面积为50 cm 2,则菱形的边长为________cm . 15.如图,在矩形纸片ABCD 中,AB =6,BC =10.点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处.有下列结论: ①∠EBG =45°;②△DEF∽△ABG;③S △ABG =32S △FGH ;④AG +DF =FG.其中正确的是______________.(把所有正确结论的序号都选上)第15题图 第16题图16.如图,正方形ABCD 的面积为3 cm 2,E 为BC 边上一点,∠BAE =30°,F 为AE 的中点,过点F 作直线分别与AB ,DC 相交于点M ,N.若MN =AE ,则AM 的长等于________cm . 三、解答题17.如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF 、CE. 求证:AF∥CE.18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形;(2)已知DE=4,FN=3,求BN的长.20.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.21.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ长.22.已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.23.如图,已知△ABC 中,AB =AC ,把△ABC 绕A 点沿顺时针方向旋转得到△ADE,连接BD 、CE 交于点F. (1)求证:△AEC≌△ADB;(2)若AB =2,∠BAC =45°,当四边形ADFC 是菱形时,求BF 的长.24.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG∥CD 交AF 于点G ,连接DG. (1)求证:四边形EFDG 是菱形;(2)探究线段EG 、GF 、AF 之间的数量关系,并说明理由; (3)若AG =6,EG =25,求BE 的长.答案与解析:1. C2. B3. C4. B5. A 【解析】∵E ,F 分别是 AD ,CD 边上的中点,即EF 是△ACD 的中位线,∴AC =2EF =22,则菱形ABCD 的面积=12AC ·BD =12×22×2=2 2.6. B 【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.7. B 【解析】设CH =x ,∵BE ∶EC =2∶1,BC =9,∴EC =3,由折叠可知,EH =DH =9-x ,在Rt △ECH 中,由勾股定理得:(9-x )2=32+x 2,解得:x =4.8. D 【解析】逐项分析如下表:序号逐项分析正误难点突破对于多选项判断正误性的题目,几乎每个选项之间都是紧密联系的,单独判断其中每个的正误或跳跃式判断往往使题目变得复杂而无法求解,本题目难点在于④中,需将S △FDH 与已知条件AE AB =23联系起来,并用含相同未知数的代数式分别表示出S △EDH 和S △DHC ,继而求解.9. 110° 【解析】 ∵四边形ABCD 是平行四边形,∴CD ∥AB ,∴∠CAB =∠1=20°,∵BE ⊥AB 交对角线AC 于点E ,∴∠ABE =90°,∴∠2=∠CAB +∠ABE =20°+90°=110°.10. 4.8 【解析】∵S =1AC·BD =2AB·DH ,∴AC ·BD =2AB·DH.∵四边形ABCD 是菱形,∴∠AOB =90°,AO =12AC =4,BO =12BD =3,∴在Rt △AOB 中,AB =42+32=5,∴DH =8×62×5=4.8.第11题解图11. 15 【解析】如解图,连接AC.∵四边形ABCD 是矩形,∴AD =BC ,AC =BD ,又∵AB =BA ,∴△DAB ≌△CBA(SSS ),∴∠ACB =∠ADB =30°,∵CE =BD ,∴AC =CE ,∴∠E =∠CAE =12∠ACB=15°.第12题解图12. (3+2,1) 【解析】如解图,过点D 作DG ⊥BC 于G ,DF ⊥x 轴于F ,∵在菱形BDCE 中,BD =CD ,∠BDC =60°,∴△BCD 是等边三角形,∴DF =CG =12BC =1,CF =DG =3,∴OF =3+2,∴D(3+2,1).13. 75 【解析】∵多边形A 1A 2…A 12是正十二边形,作它的外接圆⊙O ,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.第14题解图14. 13 【解析】如解图,连接AC 、BD 交于O ,则有12AC·BD =120,∴AC ·BD =240,又∵菱形对角线互相垂直平分,∴2OA ·2OB =240,∴ OA ·OB =60,∵AE 2=50, OA 2+OE 2= AE 2,OA =OE ,∴OA =5,∴OB =12,∴AB =OA 2+OB 2=122+52=13.15. ①③④ 【解析】由折叠的性质得,∠CBE =∠FBE ,∠ABG =∠FBG ,∴∠EBG =∠FBE +∠FBG =12×90°=45°,故①正确;由折叠的性质得,BF =BC =10,BA =BH =6,∴HF =BF -BH =4,AF =BF 2-BA 2=102-62=8,设GH =x ,则GF =8-x ,在Rt △GHF 中,x 2+42=(8-x)2,∴x =3,∴GF =5,∴AG =3,同理在Rt △FDE 中,由FD 2=EF 2-ED 2,得ED =83,EF =103,∴ED FD =43≠ABAG =2,∴△DEF 与△ABG 不相似,故②不正确;S △ABG =12×3×6=9,S △FGH =12×3×4=6,∴S △ABG S =96=32,故③正确;∵AG =3,DF =AD -AF =2,∴FG =5,∴AG +DF =FG =5,故④正确.综上,答案是①③④.第16题解图16.233或33【解析】如解图,过N 作NG ⊥AB ,交AB 于点G ,∵四边形ABCD 为正方形,∴AB =AD =NG = 3 cm ,在Rt △ABE 中,∠BAE =30°,AB = 3 cm ,∴BE =1 cm ,AE =2 cm ,∵F 为AE 的中点,∴AF =12AE =1 cm ,在Rt △ABE 和Rt △NGM 中,⎩⎪⎨⎪⎧AB =NG AE =NM ,∴Rt △ABE ≌Rt △NGM(HL ),∴BE =GM ,∠BAE =∠MNG =30°,∠AEB =∠NMG =60°,∴∠AFM =90°,即MN ⊥AE ,在Rt △AMF 中,∠FAM =30°,AF =1 cm ,∴AM =AF cos 30°=132=233 cm ,由对称性得到AM′=BM =AB -AM =3-233=33 cm ,综上,AM 的长等于233或33 cm . 17. 证明:∵四边形ABCD 是平行四边形,第17题解图∴AD ∥BC ,AD =BC , ∴∠1=∠2, 又∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.∴△ADF ≌△CBE(SAS ). ∴∠AFD =∠CEB ,∴AF ∥CE.18. (1)【思路分析】根据四边形ABCD 是菱形,∠ABC ∶∠BAD =1∶2,可求出∠DBC 的度数,其正切值可求出.解:∵四边形ABCD 是菱形,∴AD ∥BC ,∠DBC =12∠ABC ,∴∠ABC +∠BAD =180°, 又∵∠ABC ∶∠BAD =1∶2, ∴∠ABC =60°, ∴∠DBC =12∠ABC =30°,∴tan ∠DBC =tan 30°=33. (2)【思路分析】由BE ∥AC ,CE ∥BD 可知四边形BOCE 是平行四边形,再结合菱形对角线垂直的性质即可证明四边形BOCE 是矩形.证明:∵四边形ABCD 是菱形, ∴AC ⊥BD ,即∠BOC =90°, ∵BE ∥AC ,CE ∥BD , ∴BE ∥OC ,CE ∥OB ,∴四边形OBEC 是平行四边形,且∠BOC =90°,∴四边形OBEC 是矩形.19. (1)证明:∵AE ⊥BD ,CF ⊥BD , ∴AM ∥CN ,又∵四边形ABCD 是平行四边形, ∴MC ∥AN ,∴四边形CMAN 是平行四边形.(2)解:∵四边形ABCD 是平行四边形, ∴∠ADE =∠CBF ,AD =CB , 又∵∠AED =∠CFB =90°, ∴△AED ≌△CFB(AAS ), ∴DE =BF =4,∴在Rt △BFN 中,BN =32+42=5.20. (1)【思路分析】要证∠CEB =∠CBE ,结合CE ∥DB ,可得到∠CEB =∠DBE ,从而只需证明∠CBE =∠DBE ,结合△ABC ≌△ABD 即可得证.证明:∵△ABC ≌△ABD , ∴∠ABC =∠ABD , ∵CE ∥BD ,∴∠CEB =∠DBE ,∴∠CEB =∠CBE.(2)证明:∵△ABC ≌△ABD ,∴BC =BD , 由(1)得∠CEB =∠CBE , ∴CE =CB , ∴CE =BD , ∵CE ∥BD ,∴四边形BCED 是平行四边形, ∵BC =BD ,∴四边形BCED 是菱形.21. (1)证明:∵四边形ABCD 是正方形, ∴AB =AD, ∠BAQ +∠DAP =90°=∠DAB , ∵DP ⊥AQ ,∴∠DAP +∠ADP =90°, ∴∠BAQ =∠ADP.在△DAP 和△ABQ 中, ⎨⎪⎧∠APD =∠AQB =90°∠ADP =∠BAQ ,∴△DAP ≌△ABQ(AAS ),∴AP =BQ.(2)解:①AQ 和AP ;②DP 和AP ;③AQ 和BQ ;④DP 和BQ.【解法提示】①由题图直接得:AQ -AP =PQ ;②∵△ABQ ≌△DAP ,∴AQ =DP ,∴DP -AP = AQ -AP =PQ ;③∵△ABQ ≌△DAP ,∴BQ =AP ,∴AQ -BQ =AQ -AP =PQ ;④∵△ABQ ≌△DAP ,∴DP =AQ ,BQ =AP ,∴DP -BQ =AQ -AP =PQ.22. (1)证明:在△ADF 和△ABE 中,⎩⎪⎨⎪⎧AB =AD ∠ABE =∠ADF =90°EB =FD, ∴△ADF ≌△ABE(SAS ).(2)解:∵AB =3,BE =1,∴AE =10,EC =4,∴ED =CD 2+EC 2=5,设AH =x ,EH =y ,在Rt △AHE 和Rt △AHD 中,⎩⎪⎨⎪⎧x 2+y 2=10x 2+(5-y )2=9, 解得,x =1.8,y =2.6,∴tan ∠AED =AH EH =x y =1.82.6=913. 23. (1)证明:∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,AE =AC ,∠BAC =∠DAE ,∵AB =AC ,∴AD =AB =AE =AC ,∠EAC =∠DAB ,在△AEC 和△ADB 中∵⎩⎪⎨⎪⎧AD = AE ∠EAC =∠DAB AB =AC, ∴△AEC ≌△ADB(SAS ).(2)解:当四边形ADFC 是菱形时,AC =DF ,AC ∥DF ,∴∠BAC =∠ABD ,又∵∠BAC =45°,∴∠ABD =45°,又∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,∴∠DAB =90°,又∵AB =2,由勾股定理可得:BD =AD 2+AB 2=2AB =22,在菱形ADFC 中,DF =AD =AB =2,∴BF =BD -DF =22-2.24. (1)【思路分析】根据折叠的性质,易得DF =EF ,DG =EG ,∠AFD =∠AFE ,再由EG ∥DC ,可得∠EGF =∠AFD ,从而得出EG =EF.根据四条边都相等的四边形是菱形得证;证明:由折叠的性质可得,EF =FD ,∠AEF =∠ADF =90°,第24题解图∠EFA =∠DFA ,EG =GD.∵EG ∥DC ,∴∠DFA =∠EGF ,∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形.(2)【思路分析】由(1)可知EG =EF ,连接DE ,则DE 与GF 相互垂直平分,证得Rt △FHE ∽Rt △FEA ,列比例式,结合FH =12GF 得到EG 、GF 、AF 的关系; 解:如解图,连接ED ,交AF 于点H ,∵四边形EFDG 是菱形,∴DE ⊥AF ,FH =GH =12GF ,EH =DH =12DE. ∵∠FEH =∠FAE =90°-∠EFA ,∴Rt △FEH ∽Rt △FAE ,∴EF FH =AF EF,即EF 2=FH·AF , ∴EG 2=12GF·AF. (3)【思路分析】把AG ,EG 代入(2)中的关系式,求得GF ,AF 的值,根据勾股定理求得AD ,DE ,再证Rt △ADF ∽Rt △DCE ,可求出EC ,从而可求出BE 的值.解:∵AG =6,EG =25,EG 2=12GF·AF , ∴(25)2=12(6+GF)·GF ,∴GF =4, ∴AF =10.∵DF =EG =25,∴AD =BC =AF 2-DF 2=45,DE =2EH =2EG 2-(12GF )2=8. ∵∠CDE +∠DFA =90°,∠DAF +∠DFA =90°,∴∠CDE =∠DAF ,∴Rt △ADF ∽Rt △DCE ,∴EC DF =DE AF ,即EC 25=810, ∴EC =855, ∴BE =BC -EC =AD -EC =45-855=1255.。

2021年中考复习数学压轴题:四边形 综合专题练习

2021年中考复习数学压轴题:四边形 综合专题练习

2021年中考数学压轴题专题练习:四边形综合复习1、如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△FAE;(2)求证:四边形ADCF为矩形.2、如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.3、如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交BC于G.(1)求证:BG=DE;(2)若点G为CD的中点,求的值.4、已知:在平行四边形ABCD中,点E、F分别在AD和BC上,点G、H在对角线AC上,且BF=DE,AH=CG,连接FH 、HE 、BG 、FG .(1)求证:FG=EH .(2)若EG 平分∠AEH ,FH 平分∠CFG ,FG//AB ,∠ACD=68°,∠GFH=35°,求∠GHF 的度数.5、如图,点E 是正方形ABCD 的边BC 上一点,连接DE ,将DE 绕着点E 逆时针旋转90°,得到EG ,过点G 作GF ⊥CB ,垂足为F ,GH ⊥AB ,垂足为H ,连接DG ,交AB 于I .(1)求证:四边形BFGH 是正方形;(2)求证:ED 平分∠CEI ;(3)连接IE ,若正方形ABCD 的边长为,则△BEI 的周长为 .6、如图,正方形CD AB 的边长为1,点E 为边AB 上一动点,连结C E 并将其绕点C 顺时针旋转90得到CF ,连结DF ,以C E 、CF 为邻边作矩形CFG E ,G E 与D A 、C A 分别交于点H 、M ,GF 交CD 延长线于点N .(1)证明:点A 、D 、F 在同一条直线上;(2)随着点E 的移动,线段D H 是否有最小值?若有,求出最小值;若没有,请说明理由;(3)连结F E 、MN ,当//F MN E 时,求AE 的长.7、定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=_____;(2)如图2,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,求这个准矩形的面积.8、【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当时,求的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD 面积的时,请直接写出tan∠BAE的值.9、若边长为6的正方形ABCD绕点A顺时针旋转,得正方形AB′C′D′,记旋转角为a.(I)如图1,当a=60°时,求点C经过的弧CC 的长度和线段AC扫过的扇形面积;(Ⅱ)如图2,当a=45°时,BC与D′C′的交点为E,求线段D′E的长度;(Ⅲ)如图3,在旋转过程中,若F为线段CB′的中点,求线段DF长度的取值范围.10、△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.11、点P 是平行四边形ABCD 的对角线AC 所在直线上的一个动点(点P 不与点A 、C 重合),分别过点A 、C 向直线BP 作垂线,垂足分别为点E 、F .点O 为AC 的中点.(1)如图1,当点P 与点O 重合时,线段OE 和OF 的关系是 ;(2)当点P 运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?(3)如图3,点P 在线段OA 的延长线上运动,当∠OEF =30°时,试探究线段CF 、AE 、OE 之间的关系.12、如图(1),在矩形ABCD 中,8,6AB AD ==,点,E F 分别是边,DC DA 的中点,四边形DFGE 为矩形,连接BG .(1)问题发现在图(1)中,CE BG=_________; (2)拓展探究将图(1)中的矩形DFGE绕点D旋转一周,在旋转过程中,CEBG的大小有无变化?请仅就图(2)的情形给出证明;(3)问题解决当矩形DFGE旋转至,,B G E三点共线时,请直接写出线段CE的长.13、如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是,位置关系是;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.14、已知:Rt△EFP和矩形ABCD如图①摆放(点P与点B重合),点F,B(P),C在同一直线上,AB=EF=6cm,BC=FP=8cm,∠EFP=90°,如图②,△EFP从图①的位置出发,沿BC方向匀速运动,速度为1cm/s,EP与AB交于点G;同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s.过点Q作QM⊥BD,垂足为H,交AD于点M,连接AF,FQ,当点Q停止运动时,△EFQ也停止运动.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,PQ∥BD?(2)设五边形AFPQM的面积为y(cm2),求y与t之间的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形AFPQM :S矩形ABCD=9:8?若存在,求出t的值;若不存在,请说明理由.(4)在运动过程中,是否存在某一时刻t,使点M在线段PG的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.15、问题背景:如图1,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=120°,∠MBN =60°,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.小李同学探究此问题的方法是:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论,他的结论就是;探究延伸1:如图2,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F,上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由;探究延伸2:如图3,在四边形ABCD中,BA=BC,∠BAD+∠BCD=180°,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由;实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处.且指挥中心观测两舰艇视线之间的夹角为70°.试求此时两舰艇之间的距离.。

2020年中考数学二轮复习压轴专题四边形(含解析)

2020年中考数学二轮复习压轴专题四边形(含解析)

《四边形》1.【习题再现】课本中有这样一道题目:如图1,在四边形ABCD中,E,F,M分别是AB,CD,BD的中点,AD=BC.求证:∠EFM =∠FEM.(不用证明)【习题变式】(1)如图2,在“习题再现”的条件下,延长AD,BC,EF,AD与EF交于点N,BC与EF 交于点P.求证:∠ANE=∠BPE.(2)如图3,在△ABC中,AC>AB,点D在AC上,AB=CD,E,F分别是BC,AD的中点,连接EF并延长,交BA的延长线于点G,连接GD,∠EFC=60°.求证:∠AGD=90°.【习题变式】解:(1)∵F,M分别是CD,BD的中点,∴MF∥BP,,∴∠MFE=∠BPE.∵E,M分别是AB,BD的中点,∴ME∥AN,,∴∠MEF=∠ANE.∵AD=BC,∴ME=MF,∴∠EFM=∠FEM,∴∠ANE=∠BPE.(2)连接BD,取BD的中点H,连接EH,FH.∵H,F分别是BD和AD的中点,∴HF∥BG,,∴∠HFE=∠FGA.∵H,E分别是BD,BC的中点,∴HE∥AC,,∴∠HEF=∠EFC=60°.∵AB=CD,∴HE=HF,∴∠HFE=∠EFC=60°,∴∠A GF=60°,∵∠AFG=∠EFC=60°,∴△AFG为等边三角形.∴AF=GF,∵AF=FD,∴GF=FD,∴∠FGD=∠FDG=30°,∴∠AGD=60°+30°=90°.2.(1)问题:如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为BC边上一点(不与点B,C重合),连接AD,过点A作AE⊥AD,并满足AE=AD,连接CE.则线段BD和线段CE的数量关系是BD=CE,位置关系是BD⊥CE.(2)探索:如图2,当D点为BC边上一点(不与点B,C重合),Rt△ABC与Rt△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,AB=AC,AD=AE.试探索线段BD2、CD2、DE2之间满足的等量关系,并证明你的结论;(3)拓展:如图3,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=3,CD=1,请直接写出线段AD的长.解:(1)问题:在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),故答案为:BD=CE,BD⊥CE;(2)探索:结论:DE2=BD2+CD2,理由是:如图2中,连接EC.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,∵,∵△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,∴DE2=CE2+CD2,∴DE2=BD2+CD2;(3)拓展:如图3,将AD绕点A逆时针旋转90°至AG,连接CG、DG,则△DAG是等腰直角三角形,∴∠ADG=45°,∵∠ADC=45°,∴∠GDC=90°,同理得:△BAD≌△CAG,∴CG=BD=3,Rt△CGD中,∵CD=1,∴DG===2,∵△DAG是等腰直角三角形,∴AD=AG=2.3.如图1,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.(1)BE和DG的数量关系是BE=DG,BE和DG的位置关系是BE⊥DG;(2)把正方形ECGF绕点C旋转,如图2,(1)中的结论是否还成立?若成立,写出证明过程,若不成立,请说明理由;(3)设正方形ABCD的边长为4,正方形ECGF的边长为3,正方形ECGF绕点C旋转过程中,若A、C、E三点共线,直接写出DG的长.解:(1)BE=DG.BE⊥DG;理由如下:∵四边形ABCD和四边形CEFG为正方形,∴CD=BC,CE=CG,∠BCE=∠DCG=90°,在△BEC和△DGC中,,∴△BEC≌△DGC(SAS),∴BE=DG;如图1,延长GD交BE于点H,∵△BEC≌△DGC,∴∠DGC=∠BEC,∴∠DGC+∠EBC=∠BEC+∠EBC=90°,∴∠BHG=90°,即BE⊥DG;故答案为:BE=DG,BE⊥DG.(2)成立,理由如下:如图2所示:同(1)得:△DCG≌△BCE(SAS),∴BE=DG,∠CDG=∠CBE,∵∠DME=∠BMC,∠CBE+∠BMC=90°,∴∠CDG+∠DME=90°,∴∠DOB=90°,∴BE⊥DG;(3)由(2)得:DG=EB,分两种情况:①如图3所示:∵正方形ABCD的边长为4,正方形ECGF的边长为3,∴AC⊥BD,BD=AC=AB=4,OA=OC=OB=AC=2,CE=3,∴AE=AC﹣CE=,∴OE=OA﹣AE=,在Rt△BOE中,由勾股定理得:DG=BE==;②如图4所示:OE=CE+OC=2+3=5,在Rt△BOE中,由勾股定理得:DG=BE==;综上所述,若A、C、E三点共线,DG的长为或.4.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,动点D从点C出发,沿CA方向匀速运动,速度为2cm/s;同时,动点E从点A出发,沿AB方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.设点D,E运动的时间是t(s)(0<t<5).过点D作DF⊥BC于点F,连接DE,EF.(1)t为何值时,DE⊥AC?(2)设四边形AEFC的面积为S,试求出S与t之间的关系式;(3)是否存在某一时刻t,使得S四边形AEFC:S△ABC=17:24,若存在,求出t的值;若不存在,请说明理由;(4)当t为何值时,∠ADE=45°?解:(1)∵∠B=90o,AB=6 cm,BC=8 cm,∴AC===10(cm),若DE⊥AC,∴∠EDA=90°,∴∠EDA=∠B,∵∠A=∠A,∴△ADE∽△ABC,∴=,即:=,∴t=,∴当t=s时,DE⊥AC;(2)∵DF⊥BC,∴∠DFC=90°,∴∠DFC=∠B,∵∠C=∠C,∴△CDF∽△CAB,∴=,即=,∴CF=,∴BF=8﹣,BE=AB﹣AE=6﹣t,∴S=S△ABC﹣S△BEF=×AB•BC﹣×BF•BE=×6×8﹣×(8﹣t)×(6﹣t)=﹣t2+t;(3)若存在某一时刻t,使得S四边形AEFC:S△ABC=17:24,根据题意得:﹣t2+t=××6×8,解得:t1=,t2=(不合题意舍去),∴当t=s时,S四边形AEFC:S△ABC=17:24;(4)过点E作EM⊥AC与点M,如图所示:则∠EMA=∠B=90°,∵∠A=∠A,∴△AEM∽△ACB,∴==,即==,∴EM=t,AM=t,∴DM=10﹣2t﹣t=10﹣t,在Rt△DEM中,当DM=ME时,∠ADE=45°,∴10﹣t=t,∴t=∴当t=s时,∠ADE=45°.5.我们定义:如果两个等腰三角形的顶角相等,且项角的顶点互相重合,则称此图形为“手拉手全等模型”.因为顶点相连的四条边,形象的可以看作两双手,所以通常称为“手拉手模型”.例如,如图(1),△ABC与△ADE都是等腰三角形,其中∠BAC=∠DAE,则△ABD≌△ACE(SAS)(1)熟悉模型:如图(2),已知△ABC与△ADE都是等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE,求证:BD=CE;(2)运用模型:如图(3),P为等边△ABC内一点,且PA:PB:PC=3:4:5,求∠APB 的度数.小明在解决此问题时,根据前面的“手拉手全等模型”,以BP为边构造等边△BPM,这样就有两个等边三角形共顶点B,然后连结CM,通过转化的思想求出了∠APB的度数,则∠APB的度数为150 度;(3)深化模型:如图(4),在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC =45°,求BD的长.(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE;(2)解:以BP为边构造等边△BPM,连接CM,如图(3)所示:∵△ABC与△BPM都是等边三角形,∴AB=BC,BP=BM=PM,∠ABC=∠PBM=∠BMP=60°,∴∠ABC﹣∠PBC=∠PBM﹣∠PBC,即∠ABP=∠CBM,在△ABP和△CBM中,,∴△ABP≌△CBM(SAS),∴AP=CM,∠APB=∠CMB,∵PA:PB:PC=3:4:5,∴CM:PM:PC=3:4:5,∴PC2=CM2+PM2,∴△CMP是直角三角形,∴∠PMC=90°,∴∠CMB=∠BMP+∠PMC=60°+90°=150°,∴∠APB=150°,故答案为:150;(3)解:过点A作EA⊥AD,且AE=AD,连接CE,DE,如图(4)所示:则△ADE是等腰直角三角形,∠EAD=90°,∴DE=AD=4,∠EDA=45°,∵∠ADC=45°,∴∠EDC=45°+45°=90°,在Rt△DCE中,CE===,∵∠ACB=∠ABC=45°,∴∠BAC=90°,AB=AC,∵∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=.6.(1)某学校“学习落实”数学兴趣小组遇到这样一个题目如图,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO =2:1,求AB的长经过数学小组成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2)请回答:∠ADB=75 °,AB=3(2)请参考以上解决思路,解决问题:如图3在四边形ABCD中对角线AC与BD相交于点0,AC⊥AD,AO=,∠ABC=∠ACB =75°,BO:OD=2:1,求DC的长解:(1)如图2中,过点B作BD∥AC,交AO的延长线于点D,∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴==2,.又∵AO=,∴OD=2AO=2,∴AD=AO+OD=3.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=3;故答案为75,3.(2)如图3中,过点B作BE∥AD交AC于点E.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴===2.∵BO:OD=1:3,∵AO=,∴EO=2,∴AE=3.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4BE2)2+BE2=(2BE)2,解得:BE=3,∴AB=AC=6,AD=在Rt△CAD中,AC2+AD2=CD2,即62+()2=CD2,解得:CD=(负根已经舍弃).7.正方形ABCD中,AB=4,点E、F分别在AB、BC边上(不与点A、B重合).(1)如图1,连接CE,作DM⊥CE,交CB于点M.若BE=3,则DM= 5 ;(2)如图2,连接EF,将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;再将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去…,①如图3,线段EF经过两次操作后拼得△EFD,其形状为等边三角形,在此条件下,求证:AE=CF;②若线段EF经过三次操作恰好拼成四边形EFGH,(3)请判断四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF;(4)以1中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.解:(1)如图1中,∵四边形ABCD是正方形,∴∠B=∠DCM=90°,∵BE=3,BC=4,∴CE===5,∵DM⊥EC,∴∠DMC+∠MCE=90°,∠MCE+∠CEB=90°,∴∠DMC=∠CEB,∵BC=CD,∴△BCE≌△CDM(AAS),∴DM=EC=5.故答案为5.(2)如题图3,由旋转性质可知EF=DF=DE,则△DEF为等边三角形.故答案为等边三角形.(2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下:依题意画出图形,如答图1所示:连接EG、FH,作HN⊥BC于N,GM⊥AB于M.由旋转性质可知,EF=FG=GH=HE,∴四边形EFGH是菱形,由△EGM≌△FHN,可知EG=FH,∴四边形EFGH的形状为正方形.∴∠HEF=90°∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.∵∠3+∠4=90°,∠2+∠3=90°,∴∠2=∠4.在△AEH与△BFE中,,∴△AEH≌△BFE(ASA)∴AE=BF.故答案为正方形,AE=BF.(4)利用①中结论,易证△AEH、△BFE、△CGF、△DHG均为全等三角形,∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x.∴y=S正方形ABCD﹣4S△AEH=4×4﹣4×x(4﹣x)=2x2﹣8x+16.∴y=2x2﹣8x+16(0<x<4)∵y=2x2﹣8x+16=2(x﹣2)2+8,∴当x=2时,y取得最小值8;当x=0时,y=16,∴y的取值范围为:8≤y<16.8.已知:如图1,在平面直角坐标系中,长方形OABC的顶点B的坐标是(6,4).(1)直接写出A点坐标( 6 ,0 ),C点坐标(0 , 4 );(2)如图2,D为OC中点.连接BD,AD,如果在第二象限内有一点P(m,1),且四边形OADP的面积是△ABC面积的2倍,求满足条件的点P的坐标;(3)如图3,动点M从点C出发,以每钞1个单位的速度沿线段CB运动,同时动点N 从点A出发.以每秒2个单位的速度沿线段AO运动,当N到达O点时,M,N同时停止运动,运动时间是t秒(t>0),在M,N运动过程中.当MN=5时,直接写出时间t的值.解:(1)∵四边形OABC是长方形,∴AB∥OC,BC∥OA,∵B(6,4),∴A(6,0),C(0,4),故答案为:6,0,0,4;(2)如图2,由(1)知,A(6,0),C(0,4),∴OA=6,OC=4,∵四边形OABC是长方形,∴S长方形OABC=OA•OC=6×4=24,连接AC,∵AC是长方形OABC的对角线,∴S△OAC=S△ABC=S长方形OABC=12,∵点D是OC的中点,∴S△OAD=S△OAC=6,∵四边形OADP的面积是△ABC面积的2倍,∴S四边形OADP=2S△ABC=24,∵S四边形OADP=S△OAD+S△ODP=6+S△ODP=24,∴S△ODP=18,∵点D是OC的中点,且OC=4,∴OD=OC=2,∵P(m,1),∴S△ODP=OD•|m|=×2|m|=18,∴m=18(由于点P在第二象限,所以,m小于0,舍去)或m=﹣18,∴P(﹣18,1);(3)如图3,由(2)知,OA=6,OC=4,∵四边形OABC是长方形,∴∠AOC=∠OCB=90°,BC=6,由运动知,CM=t,AN=2t,∴ON=OA﹣AN=6﹣2t,过点M作MH⊥OA于H,∴∠OHM=90°=∠AOC=∠OCB,∴四边形OCMH是长方形,∴MH=OC=4,OH=CM=t,∴HN=|ON﹣CM|=6﹣2t﹣t|=|6﹣3t|,在Rt△MHN中,MN=5,根据勾股定理得,HN2=MN2﹣MH2,∴|6﹣3t|2=52﹣42=9,∴t=1或t=3,即:t的值为1或3.9.综合与实践问题情境数学课上,李老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB =2,PC=3.你能求出∠APB的度数吗?(1)小敏与同桌小聪通过观察、思考、讨论后,得出了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP',求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP',求出∠APB的度数.请参考以上思路,任选一种写出完整的解答过程.类比探究(2)如图2,若点P是正方形ABCD外一点,PA=3,PB=1,,求∠APB的度数.拓展应用(3)如图3,在边长为的等边三角形ABC内有一点O,∠AOC=90°,∠BOC=120°,则△AOC的面积是.解:(1)思路一,如图1,将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP',则△ABP'≌△CBP,AP'=CP=3,BP'=BP=2,∠PBP'=90°∴∠BPP'=45°,根据勾股定理得,,∵AP=1,∴AP2+P'P2=1+8=9,又∵P'A2=32=9,∴AP2+P'P2=P'A2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=135°.思路二、同思路一的方法.(2)如图2,将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP'.则△ABP'≌△CBP,,BP'=BP=1,∠PBP'=90°∴∠BPP'=45°,根据勾股定理得,,∵AP=3,∴AP2+P'P2=9+2=11,又∵,∴AP2+P'P2=P'A2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°.(3)如图,将△ABO绕点B顺时针旋转60°,得到△BCE,连接OE.则△BAO≌△BCE,∠AOB=∠BEC=360°﹣90°﹣120°=150°,∵△BOE是等边三角形,∴∠BEO=∠BOE=60°,∴∠OEC=90°,∠OEC=120°﹣60°=60°,∴sin60°==,设EC=k,OC=2k,则OA=EC=k,∵∠AOC=90°,∴OA2+OC2=AC2,∴3k2+4k2=7,∴k=1或﹣1(舍弃),∴OA=,OC=2,∴S△AOC=•OA•OC=××2=.故答案为.10.如图1,在矩形ABCD中,点P是BC边上一点,连接AP交对角线BD于点E,BP=BE.作线段AP的中垂线MN分别交线段DC,DB,AP,AB于点M,G,F,N.(1)求证:∠BAP=∠BGN;(2)若AB=6,BC=8,求;(3)如图2,在(2)的条件下,连接CF,求tan∠CFM的值.(1)证明:如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠BAP=∠APB=90°∵BP=BE,∴∠APB∠BEP=∠GEF,∵MN垂直平分线段AP,∴∠GFE=90°,∴∠BGN+∠GEF=90°,∴∠BAP=∠BGN.(2)解:∵四边形ABCD是矩形,∴∠BAD=∠ABP=90°,AD∥BC,AD=BC=8,∴BD===10,∵AD∥BC,∴∠DAE=∠APB,∵∠APB=∠BEP=∠DEA,∴∠DAE=∠DEA,∴DA=DE=8,∴BE=BP=BD﹣DE=10﹣8=2,∴PA===2,∵MN垂直平分线段AP,∴AF=PF=,∵PB∥AD,∴===,∴PE=PA=,∴EF=PF﹣PE=﹣=,∴==.(3)解:如图3中,连接AM,MP.设CM=x.∵四边形AB CD是矩形,∴∠ADM=∠MCP=90°,AB=CD=6,AD=BC=8,∵MN垂直平分线段AP,∴MA=MP,∴AD2+DM2=PC2+CM2,∴82+(6﹣x)2=62+x2,∴x=,∵∠PFM=∠PCM=90°,∴P,F,M,C四点共圆,∴∠CFM=∠CPM,∴tan∠CFM=tan∠CFM===.11.在利用构造全等三角形来解决的问题中,有一种典型的利用倍延中线的方法,例如:在△ABC中,AB=8,AC=6,点D是BC边上的中点,怎样求AD的取值范围呢?我们可以延长AD到点E,使AD=DE,然后连接BE(如图①),这样,在△ADC和△EDB中,由于,∴△ADC≌△EDB,∴AC=EB,接下来,在△ABE中通过AE的长可求出AD的取值范围.请你回答:(1)在图①中,中线AD的取值范围是1<AD<7 .(2)应用上述方法,解决下面问题①如图②,在△ABC中,点D是BC边上的中点,点E是AB边上的一点,作DF⊥DE交AC边于点F,连接EF,若BE=4,CF=2,请直接写出EF的取值范围.②如图③,在四边形ABCD中,∠BCD=150°,∠ADC=30°,点E是AB中点,点F在DC上,且满足BC=CF,DF=AD,连接CE、ED,请判断CE与ED的位置关系,并证明你的结论.解:(1)延长AD到点E,使AD=DE,连接BE,如图①所示:∵点D是BC边上的中点,∴BD=CD,在△A DC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=EB=6,在△ABE中,AB﹣BE<AE<AB+BE,∴8﹣6<AE<8+6,即2<AE<14,∴1<AD<7,故答案为:1<AD<7;(2)①延长ED到点N,使ED=DN,连接CN、FN,如图②所示:∵点D是BC边上的中点,∴BD=CD,在△NDC和△EDB中,中,,∴△NDC≌△EDB(SAS),∴BE=CN=4,∵DF⊥DE,ED=DN,∴EF=FN,在△CFN中,CN﹣CF<FN<CN+CF,∴4﹣2<FN<4+2,即2<FN<6,∴2<EF<6;②CE⊥ED;理由如下:延长CE与DA的延长线交于点G,如图③所示:∵点E是AB中点,∴BE=AE,∵∠BCD=150°,∠ADC=30°,∴DG∥BC,∴∠GAE=∠CBE,在△GAE和△CBE中,,∴△GAE≌△CBE(ASA),∴GE=CE,AG=BC,∵BC=CF,DF=AD,∴CF+DF=BC+AD=AG+AD,即:CD=GD,∵GE=CE,12.如图,在平行四边形ABCD中,AB⊥AC,对角线AC、BD相交于点O,将直线AC绕点O 顺时针旋转一个角度α(0°<α≤90°),分别交线段BC、AD于点E、F,已知AB=1,,连接BF.(1)如图①,在旋转的过程中,请写出线段AF与EC的数量关系,并证明;(2)如图②,当α=45°时,请写出线段BF与DF的数量关系,并证明;(3)如图③,当α=90°时,求△BOF的面积.解:(1)AF=CE;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,AO=CO,∴∠FAO=∠ECO,∴在△AFO与△CEO中,,∴△AFO≌△CEO(ASA),(2)BF=DF;理由如下:∵AB⊥AC,∴∠BAC=90°,∴AC===2,∵四边形ABCD是平行四边形,∴BO=DO,AO=CO=AC=1,∴AB=AO,又∵AB⊥AC,∴∠AOB=45°,∵α=45°,∠AOF=45°,∴∠BOF=∠AOB+∠AOF=45°+45°=90°,∴EF⊥BD,∵BO=DO,∴BF=DF;(3)∵AB⊥AC,∴∠CAB=90°,∴∠CAB=∠AOF=α=90°,∴AB∥EF,∵四边形ABCD是平行四边形,∴AF∥BE,∴四边形ABEF是平行四边形,∴AB=EF=1,由(1)得:△AFO≌△CEO,∴OF=OE=EF=,由(2)得:AO=1,∵AB∥EF,AO⊥EF,∴S△BOF=S△AOF=AO•OF=×1×=.13.综合与实践(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.请写出∠AEB的度数及线段AD,BE之间的数量关系,并说明理由.(2)类比探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE.填空:①∠AEB的度数为90°;②线段CM,AE,BE之间的数量关系为AE=BE+2CM.(3)拓展延伸在(2)的条件下,若BE=4,CM=3,则四边形ABEC的面积为35 .解:(1)∠AEB=60°,AD=BE,理由如下:∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.AD=BE,∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.(2)猜想:①∠AEB=90°,②AE=BE+2CM.理由如下:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.故答案为:90°,AE=BE+2CM;(3)由(2)得:∠AEB=90°,AD=BE=4,∵△DCE均为等腰直角三角形,CM为△DCE中DE边上的高,∴CM⊥AE,DE=2CM=6,∴AE=AD+DE=4+6=10,∴四边形ABEC的面积=△ACE的面积+△ABE的面积=AE×CM+AE×BE=×10×3+×10×4=35;故答案为:35.14.如图,正方形OABC的边长为8,P为OA上一点,OP=2,Q为OC边上的一个动点,分别以OP\PQ为边在正方形OABC内部作等边三角形OPD和等边三角形PQE.(1)证明:DE=OQ;(2)直线ED与OC交于点F,点Q在运动过程中.①∠EFC的度数是否发生改变?若不变,求出这个角的度数;若改变,说明理由;②连结AE,求AE的最小值.(1)证明:如图1中,∵△OPD和△PQE是等边三角形,∴PO=PD,PQ=PE,∠OPD=∠QPE=60°,∴∠OPQ=∠DPE,∴△OPQ≌△DPE(SAS),∴DE=OQ.(2)①∵△OPQ≌△DPE,∴∠EDP=∠POQ=90°,∵∠DOP=∠ODP=60°∴∠FDO=∠FDO=30°,∴∠EFC=∠FOC+∠FDO=60°.②如图2中,当点Q与点C重合时,以PQ为边作正三角形PQM.∵∠EFC=60°为定值,点E的运动路径为线段DM,过点P作PH⊥EA,垂足为H,∴当AE⊥DE时,AE的值最小∵∠PDE=∠DEH=∠PHE=90°,∴四边形PDEH是矩形,∴∠DPH=90°,EH=PD=2,∴EH=DP=2,在△PHA中,∠AHP=90°,∠HPA=30°∴AH=PA=3,∴AE=EH+AH=2+3=5.15.我们把对角线互相垂直的四边形叫做垂直四边形.(1)如图1,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂直四边形吗?请说明理由;(2)如图2,四边形ABCD是垂直四边形,求证:AD2+BC2=AB2+CD2;(3)如图3,Rt△ABC中,∠ACB=90°,分别以AC、AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,BC=3,求GE长.(1)解:四边形ABCD是垂直四边形;理由如下:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂直四边形;(2)证明:设AC、BD交于点E,如图2所示:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得:AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+DE2+CE2,∴AD2+BC2=AB2+CD2;(3)解:连接CG、BE,如图3所示:∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,CG=AC=4,BE=AB,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∵∠AEC+∠CEB+∠ABE=90°,∴∠ABG+∠CEB+∠ABE=90°,即CE⊥BG,∴四边形CGEB是垂直四边形,由(2)得,CG2+BE2=BC2+GE2,∵AC=4,BC=3,∴AB===5,BE=AB=5,∴GE2=CG2+BE2﹣BC2=(4)2+(5)2﹣32=73,∴GE=.。

全国通用中考数学复习第五单元四边形方法技巧训练(五)与中点有关的基本模型练习(2021年整理)

全国通用中考数学复习第五单元四边形方法技巧训练(五)与中点有关的基本模型练习(2021年整理)

(全国通用版)2019年中考数学复习第五单元四边形方法技巧训练(五)与中点有关的基本模型练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2019年中考数学复习第五单元四边形方法技巧训练(五)与中点有关的基本模型练习)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2019年中考数学复习第五单元四边形方法技巧训练(五)与中点有关的基本模型练习的全部内容。

方法技巧训练(五)与中点有关的基本模型题组11。

如图,在△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=错误!,则∠CDE+∠ACD =(C)A。

60° B。

75° C。

90° D。

105°第1题图第2题图2.如图,在△ABC中,D是BC上一点,AB=AD,E,F分别是AC,BD的中点,EF=2,则AC的长是(B)A.3 B。

4 C.5 D.63。

如图,在四边形ABCD中,∠DAB=90°,∠DCB=90°,E,F分别是BD,AC的中点,AC=6,BD=10,则EF的长为(B)A。

3 B。

4 C。

5 D。

错误!第3题图第4题图4。

如图,在钝角△ABC中,已知∠A为钝角,边AB,AC的垂直平分线分别交BC于点D,E.若BD2+CE2=DE2,则∠A的度数为135°W.5。

(2018·青岛)如图,已知正方形ABCD的边长为5,点E,F分别在AD,DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为错误!W.题组26。

如图,在△ABC中,两条中线BE,CD相交于点O,则S△DOE∶S△DCE=(B)A.1∶4B。

中考数学专题复习19四边形试题

中考数学专题复习19四边形试题

卜人入州八九几市潮王学校19四边形 专题总结及应用一、 知识性专题专题1平行四边形、矩形、菱形、正方形、等腰梯形的概念及性质【专题解读】例1以下说法错误的选项是()例2如图19-125所示,在梯形ABCD 中,AB ∥CD ,E 为BC 的中点,设△DEA 的面积为1S ,梯形ABCD 的面积为2S ,那么1S 与2S 的关系为.例3如图19-126所示,ABCD 是正方形,G 是BC 上一点,DEAG ⊥于点E ,BF AG ⊥于点F .〔1〕求证△ABF ≌△DAE ;〔2〕求证DE EF FB =+.专题2平行四边形〔含特殊的平行四边形〕的断定与性质之间的区别与联络【专题解读】例4如图19-127所示,将一张矩形纸片ABCD 沿着GF 折叠〔F 在BC 边上,不与B ,C 重合〕,使得C 点落在矩形ABCD 的内部点E 处,FH 平分BFE ∠,那么GFH ∠的度数a 满足〔〕°<a <180°B.a =90°°<a <90°D.a 随关折痕位置的变化而变化例5假设菱形的一条对角线长是12㎝,面积是302cm ,那么这个菱形的另一条对角线长为㎝.例6如图19-128所示,ABCD 的周长为16㎝,AC ,BD 相交于点O ,OE AC ⊥,交AD 于点E ,那么的△DCE 周长为〔〕A.4㎝B.6㎝C.8㎝D.10㎝二、规律方法专题 专题3构造中位线解决线段的倍分关系【专题解读】题目中涉及12或者2倍关系时,常常考虑构造中位线. 例7四边形ABCD 为平行四边形,,AD a BE =∥AC ,DE 交AC 的延长线于F 点,交BE 于E 点. 〔1〕求证;DF FE =〔2〕假设2,60,,AC FC ADC AC DC =∠=⊥求BE 的长;〔3〕在〔2〕的条件下,求四边形ABED 的面积.专题4构造平行四边形解决线段相等、角相等的问题【专题解读】利用平行四边形边、角的性质可以解决有关线段相等、角相等的问题.例8如图19-130所示,在ABCD 中,2,AB BC M =是DC 的中点,,BE AD ⊥E 是垂足,求证3EMC DEM ∠=∠.专题5有关四边形的性质与断定的开方探究题【专题解读】这类题分为条件开放、结论开放、条件和结论双开放三种类型.例9如图19-131所示,在ABCD 中,E ,F 分别是边AD ,BC 的中点,AC 分别交BE ,DF 于点M ,N .给出以下结论:①△ABM ≌△CDN ;②1;3AMAC =③2;DN NF =④S △AMB 12=S △ABC .其中正确的结论是.〔只填序号〕 专题6动手操作题【专题解读】这类题的特点是根据给出的图形,需要通过裁剪、平移、旋转等方法才能得到题中要求的图形和结论.例10某要在一块块形状为平行四边形ABCD的空地上建造一个四边形花园,要求花园所占面积是ABCD面积的一半,并且四边形花园的四个顶点作为出入口,要求其分别在ABCD的四条边上,请你设计两种方案.方案〔一〕:如图19-132〔1〕所示,两个出入口E,F已确定,请在图〔1〕上画出符合要求的四边形花园,并简要说明画法.方案〔二〕:如图19-132〔2〕所示,一个出入口M已确定,请在图〔2〕上画出符合要求的梯形花园,并简要说明画法.三、思想方法专题专题7转化思想【专题解读】本章中转化思想主要是将梯形问题转化为三角形和平行四边形问题来处理.例11如图19-134所示,在梯形ABCD中,AB∥CD,C AB BC∠===将该梯形折叠,点A恰好与点D重合,90,25,24,BE为折痕,那么AD的长度为专题8方程思想【专题解读】本章主要表达在通过方程〔组〕、不等式〔组〕恒等变形等式代数方法解决有关图形计算的问题.例12两个多边形的内角和为1440°,且两多边形的边数之比为1:3,求它们的边数分别是多少.中考真题精选 1.如图,在梯形ABCD 中,AD ∥BC ,AB=DC ,过点D 作DE ⊥BC ,垂足为E ,并延长DE 至F ,使EF=DE .连接BF 、CD 、AC .〔1〕求证:四边形ABFC 是平行四边形;〔2〕假设DE 2=BE•CE,求证四边形ABFC 是矩形. 2.如图5所示,在菱形ABCD 中,∠ABC =60°,DE ∥AC 交BC 的延长线于点E .求证:DE =12BE . EDC B A3.如图,梯形ABCD 中,AD ∥BC ,∠DCB =45°,CD =2,BD ⊥CD .过点C 作CE ⊥AB 于E ,交对角线BD 于F ,点G 为BC 中点,连接EG 、AF .〔1〕求EG 的长;〔2〕求证:CF =AB +AF .4.如图,四边形ABCD 是矩形,直线l 垂直平分线段AC ,垂足为O ,直线l 分别与线段AD 、CB 的延长线交于点E 、F .〔1〕△ABC 与△FOA 相似吗?为什么?AB E GC DF 24题图 图5〔2〕试断定四边形AFCE 的形状,并说明理由.5.如图,矩形ABCD 中,AB =6,BCO 是AB 的中点,点P 在AB 的延长线上,且BP =3.一动点E 从O 点出发,以每秒1个单位长度的速度沿OA 匀速运动,到达A 点后,立即以原速度沿AO 返回;另一动点F 从P 点发发,以每秒1个单位长度的速度沿射线PA 匀速运动,点E 、F 同时出发,当两点相遇时停顿运动,在点E 、F 的运动过程中,以EF 为边作等边△EFG ,使△EFG 和矩形ABCD 在射线PA 的同侧.设运动的时间是为t 秒〔t ≥0〕.〔1〕当等边△EFG 的边FG 恰好经过点C 时,求运动时间是t 的值;〔2〕在整个运动过程中,设等边△EFG 和矩形ABCD 重叠局部的面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;〔3〕设EG 与矩形ABCD 的对角线AC 的交点为H ,是否存在这样的t ,使△AOH 是等腰三角形?假设存大,求出对应的t 的值;假设不存在,请说明理由.6.〔1〕如图①,在正方形ABCD 中,△AEF 的顶点E ,F 分别在BC ,CD 边上,高AG 与正方形的边长相等,求∠EAF 的度数.〔2〕如图②,在Rt △ABD 中,∠BAD =90°,AB =AD ,点M ,N 是BD 边上的任意两点,且∠MAN =45°,将△ABM 绕点A 逆时针旋转90°至△ADH 位置,连接NH ,试判断MN ,ND ,DH 之间的数量关系,并说明理由.〔3〕在图①中,连接BD 分别交AE ,AF 于点M ,N ,假设EG =4,GF =6,BM =3,求AG ,MN 的长.7.如下列图,在梯形ABCD 中,AD∥BC,AB=AD ,∠BAD 的平分线AE 交BC 于点E ,连接DE .〔1〕求证:四边形ABED 是菱形;A DOP F 26题图〔2〕假设∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.8.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.〔1〕说明四边形ACEF是平行四边形;〔2〕当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.9.如图,矩形ABCD的两条对角线相交于O,∠ACB=30°,AB=2.〔1〕求AC的长.〔2〕求∠AOB的度数.〔3〕以OB、OC为邻边作菱形OBEC,求菱形OBEC的面积.11.如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.〔1〕求证:DE∥BF;〔2〕假设∠G=90°,求证:四边形DEBF是菱形.12.以四边形ABCD的边AB.BC.CD.DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E.F.G.H,顺次连接这四个点,得四边形EFGH.〔1〕如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状〔不要求证明〕;〔2〕如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α〔0°<α<90°〕,①试用含α的代数式表示∠HAE;②求证:HE=HG;③四边形EFGH是什么四边形?并说明理由.13.如图,在▱ABCD中,E为BC的中点,连接DE.延长DE交AB的延长线于点F.求证:AB=BF.14.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB 和GD相交于点H.〔1〕求证:EB=GD;〔2〕判断EB与GD的位置关系,并说明理由;〔3〕假设AB=2,AG=2,求EB的长.15.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.〔1〕说明四边形ACEF是平行四边形;〔2〕当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.16.如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.〔1〕求证:△BDQ≌△ADP;〔2〕AD=3,AP=2,求cos∠BPQ的值〔结果保存根号〕.17.〔2021,23,6分〕如图,四边形ABCD是平行四边形,AC是对角线,BE⊥AC,垂足为E,DF⊥AC,垂足为F.求证:DF=BE.综合验收评估测试题(时间是:120分钟总分值是:120分)一、选择题1.假设四边形的两条对角线互相垂直,那么这个四边形()A.一定是矩形B.一定是菱形C.一定是正方形D.形状不确定交AB的延长线2.如图19-135所示,设F为正方形ABCD上一点,CE CF于点E,假设正方形ABCD的面积为64,△CEF的面积为50,那么△CBE的面积为〔〕A .20B .24C .25D .263.四边形ABCD 是平行四边形,以下结论不一定正确的选项是〔〕A .AB CD = B .AC BD =C .当AC BD ⊥时,它是菱形 D .当90ABC ∠=时,它是矩形4.如图19-136所示,AB ∥CD ,AE CD ⊥交CD 于点E ,12,15,20AE BD AC ===.那么梯形ABCD 的面积为〔〕A .130B .140C .150D .160()A .平行四边形的对角相等B .等腰梯形的对角线相等C .两条对角线相等的平行四边形是矩形D .对角线互相垂直的四边形是菱形6.在矩形ABCD 中,2,AB AD E =是CD 上一点,且,AE AB =那么CBE ∠的度数是〔〕A .30°°C .15°D .以上都不对7.菱形的周长为20㎝,两邻角的角度之比为1:2,那么较长的对角线的长为〔〕A .㎝B .4㎝C .53㎝D .43㎝8.顺次连接等腰梯形的四边中点,得到一个四边形,再顺次连接所得四边形四边的中点,得到的图形是〔〕A .等腰梯形B .直角梯形C .菱形D .矩形,,,E F G H 分别是四边形ABCD 各边的中点,其中阴影局部用甲布料,其余局部用乙布料〔裁剪两种布料时,均不计余料〕.假设消费这批风筝需要甲布料30匹,那么需要乙布料〔〕A .15匹B .20匹C .30匹D .60匹10.如图19-138所示,在ABCD 中,8AD =㎝,6AB =㎝,DE 平分ADC ∠,交BC 边于点E ,那么BE 等于〔〕 A .2㎝B .4㎝C .6㎝D .8㎝二、填空题11.顺次连接对角线相等的四边形的各边中点,所得的四边形是.12.矩形的周长为48㎝,长比宽多2㎝,那么矩形的面积为2cm .13.如图19-139所示,在ABCD 中,AC 与BD 交于点O ,点E 是BC边的中点,OE =1,那么AB 的长是.14.如图19-140所示,在ABCD 中,AE BC ⊥于点E ,AF CD ⊥于点F ,75ABC ∠=,那么EAF ∠=.15.如图19-141所示,在等腰梯形ABCD 中,AD ∥BC ,60,4,7BAD BC ∠===,那么梯形ABCD的周长是. 16.如图19-142所示,在ABCD 中,BD 为对角线,E ,F 分别是AD ,BD 的中点,连接EF ,假设EF =3,那么CD 的长为. 17.假设矩形的一条短边的长为5㎝,两条对角线的夹角为60°,那么它的一条较长的边为㎝.18.如图19-143所示,折叠矩形纸片ABCD ,先折出折痕BD 再折叠,使AD 落在对角线BD 上,得折痕DG ,假设AB =2,BC =1,那么AG =.19.假设菱形的两条对角线长分别为16㎝和12㎝,那么它的边长为㎝,面积为2cm20.等边三角形ABE 在正方形ABCD 内,DE 的延长线交CB 于G ,那么BEG∠=.三、解答题 21.如图19-144所示,在ABCD 中,点E 是AD 的中点,连接CE 并延长,交BA 的延长线于点F .求证FA AB =.22.如图19-145所示,四边形ABCD 是正方形,点G 是BC 上的任意一点,DEAG ⊥于点E ,BF ∥DE ,交AG 于点F ,求证AFBF EF =+. 23.如图19-146所示,ABCD 的对角线AC ,BD 相交于点O ,EF BD ⊥于点O ,分别交AD ,BC 于点E ,F ,且12AE EO BF ==.求证四边形ABCD 为矩形. 24.在等腰梯形ABCD 中,AB ∥CD ,AD=BC ,AC 为对角线,且AC 平分,DAB ACBC ∠⊥. 〔1〕求梯形各内角的度数;〔2〕当梯形的周长为30时,求各边的长;〔3〕求梯形的面积.25.某生活小区的居民筹集资金1600元,方案在一块上、下底分别为10m,20m的梯形空地上种植花木〔如图19-147〔1〕所示〕.〔1〕他们在△AMD和△BMC地带上种植太阳花,单价为8元/㎡,当△AMD△BMC地带所需的费用;〔2〕假设其余地带要种的有玫瑰和茉莉花两种花木可供选择,单价分别为12元/㎡和10元/㎡.应选择哪能种花木种植,可以刚好用完所筹集的资金?〔3〕假设梯形ABCD为等腰梯形,面积不变〔如图19-147〔2〕所示〕,请设计一种花坛图案,即在梯形内找一点P,使△APB≌△DPC得,且S△APD=S△PBC,并说出理由.26.如图19-148所示,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E,F两点在边BC上,且四边形AEFD是平行四边形.〔1〕AD与BC有何数量关系?请说明理由;〔2〕当AB=DC时,求证四边形AEFD是矩形.。

中考数学复习考点题型专题练习21 与三角形、四边形相关的压轴题

中考数学复习考点题型专题练习21 与三角形、四边形相关的压轴题

中考数学复习考点题型专题练习 专题21 与三角形、四边形相关的压轴题解答题1.(2022·黑龙江)如图,在平面直角坐标系中,平行四边形ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,M 为BC 的中点,OA 、OB 的长分别是一元二次方程27120x x -+=的两个根()OA OB <,4tan 3DAB ∠=,动点P 从点D 出发以每秒1个单位长度的速度沿折线DC CB -向点B 运动,到达B 点停止.设运动时间为t 秒,APC △的面积为S .(1)求点C的坐标;(2)求S 关于t 的函数关系式,并写出自变量t 的取值范围;(3)在点P 的运动过程中,是否存在点P ,使CMP 是等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2.(2022·贵州黔东南)阅读材料:小明喜欢探究数学问题,一天杨老师给他这样一个几何问题:如图,ABC 和BDE 都是等边三角形,点A 在DE 上.求证:以AE 、AD 、AC 为边的三角形是钝角三角形.(1)【探究发现】小明通过探究发现:连接DC ,根据已知条件,可以证明DC AE =,120ADC =∠︒,从而得出ADC 为钝角三角形,故以AE 、AD 、AC 为边的三角形是钝角三角形.请你根据小明的思路,写出完整的证明过程.(2)【拓展迁移】如图,四边形ABCD 和四边形BGFE 都是正方形,点A 在EG 上.①试猜想:以AE 、AG 、AC 为边的三角形的形状,并说明理由. ②若2210AE AG +=,试求出正方形ABCD 的面积.3.(2022·海南)如图1,矩形ABCD 中,6,8AB AD ==,点P 在边BC 上,且不与点B 、C重合,直线AP 与DC 的延长线交于点E .(1)当点P 是BC 的中点时,求证:ABP ECP △≌△;(2)将APB △沿直线AP 折叠得到APB ',点B '落在矩形ABCD 的内部,延长PB '交直线AD 于点F .①证明FA FP =,并求出在(1)条件下AF 的值;②连接B C ',求PCB '△周长的最小值;③如图2,BB '交AE 于点H ,点G 是AE 的中点,当2EAB AEB ∠=∠''时,请判断AB 与HG 的数量关系,并说明理由.4.(2022·吉林)如图,在ABC 中,90ACB ∠=︒,30A ∠=︒,6cm =AB .动点P 从点A 出发,以2cm/s 的速度沿边AB 向终点B 匀速运动.以PA 为一边作120APQ ∠=︒,另一边PQ 与折线AC CB -相交于点Q ,以PQ 为边作菱形PQMN ,点N 在线段PB 上.设点P 的运动时间为(s)x ,菱形PQMN 与ABC 重叠部分图形的面积为2()cm y .(1)当点Q 在边AC 上时,PQ 的长为cm ;(用含x 的代数式表示)(2)当点M 落在边BC 上时,求x 的值;(3)求y 关于x 的函数解析式,并写出自变量x 的取值范围.5.(2022·黑龙江牡丹江)在菱形ABCD和正三角形BGF中,60∠=︒,P是DF的中ABC点,连接PG、PC.(1)如图1,当点G在BC边上时,写出PG与PC的数量关系.(不必证明)(2)如图2,当点F在AB的延长线上时,线段PC、PG有怎样的数量关系,写出你的猜想,并给予证明;(3)如图3,当点F 在CB 的延长线上时,线段PC 、PG 又有怎样的数量关系,写出你的猜想(不必证明).6.(2022·内蒙古呼和浩特)下面图片是八年级教科书中的一道题:如图,四边形ABCD 是正方形,点E 是边BC 的中点,90AEF ∠=︒,且EF 交正方形外角的平分线CF 于点F .求证AE EF =.(提示:取AB 的中点G ,连接EG .)(1)请你思考题中“提示”,这样添加辅助线的意图是得到条件:;(2)如图1,若点E 是BC 边上任意一点(不与B 、C 重合),其他条件不变.求证:AE EF =;(3)在(2)的条件下,连接AC ,过点E 作EP ⊥AC ,垂足为P .设=BEk BC,当k 为何值时,四边形ECFP 是平行四边形,并给予证明.7.(2022·福建)已知ABC DEC ≌△△,AB =AC ,AB >BC .(1)如图1,CB 平分∠ACD ,求证:四边形ABDC 是菱形;(2)如图2,将(1)中的△CDE 绕点C 逆时针旋转(旋转角小于∠BAC ),BC ,DE 的延长线相交于点F ,用等式表示∠ACE 与∠EFC 之间的数量关系,并证明;(3)如图3,将(1)中的△CDE 绕点C 顺时针旋转(旋转角小于∠ABC ),若BAD BCD ∠=∠,求∠ADB 的度数.8.(2022·湖南衡阳)如图,在菱形ABCD 中,4AB =,60BAD ∠=︒,点P 从点A 出发,沿线段AD 以每秒1个单位长度的速度向终点D 运动,过点P 作PQ AB ⊥于点Q ,作PM AD ⊥交直线AB 于点M ,交直线BC 于点F ,设PQM 与菱形ABCD 重叠部分图形的面积为S (平方单位),点P 运动时间为t (秒).(1)当点M 与点B 重合时,求t 的值;(2)当t 为何值时,APQ 与BMF 全等;(3)求S 与t 的函数关系式;(4)以线段PQ 为边,在PQ 右侧作等边三角形PQE ,当24t ≤≤时,求点E 运动路径的长.9.(2022·浙江金华)如图,在菱形ABCD中,310,sin5AB B==,点E从点B出发沿折线B C D--向终点D运动.过点E作点E所在的边(BC或CD)的垂线,交菱形其它的边于点F,在EF的右侧作矩形EFGH.(1)如图1,点G在AC上.求证:FA FG=.(2)若EF FG=,当EF过AC中点时,求AG的长.(3)已知8FG=,设点E的运动路程为s.当s满足什么条件时,以G,C,H为顶点的三角形与BEF相似(包括全等)?10.(2022·四川南充)如图,在矩形ABCD 中,点O 是AB 的中点,点M 是射线DC 上动点,点P 在线段AM 上(不与点A 重合),12OP AB =.(1)判断ABP △的形状,并说明理由.(2)当点M 为边DC 中点时,连接CP 并延长交AD 于点N .求证:PN AN =.(3)点Q 在边AD 上,85,4,5AB AD DQ ===,当90CPQ ∠=︒时,求DM 的长.11.(2022·湖北武汉)已知CD 是ABC 的角平分线,点E ,F 分别在边AC ,BC 上,AD m =,BD n =,ADE 与BDF 的面积之和为S .(1)填空:当90ACB ∠=︒,DE AC ⊥,DF BC ⊥时,①如图1,若45B ∠=︒,m =n =_____________,S =_____________;②如图2,若60∠=︒,m=n=_____________,S=_____________;B(2)如图3,当90∠=∠=︒时,探究S与m、n的数量关系,并说明理由:ACB EDF(3)如图4,当60n=时,请直接写出S的大小.ACB∠=︒,120∠=︒,6EDFm=,412.(2022·山东临沂)已知ABC是等边三角形,点B,D关于直线AC对称,连接AD,CD.(1)求证:四边形ABCD是菱形;(2)在线段AC上任取一点Р(端点除外),连接PD.将线段PD绕点Р逆时针旋转,使点D落在BA延长线上的点Q处.请探究:当点Р在线∠的大小是否发生变化?说明理由.(3)在满足(2)的段AC上的位置发生变化时,DPQ条件下,探究线段AQ与CP之间的数量关系,并加以证明.13.(2022·江西)问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板()90,60PEF P F ∠=︒∠=︒的一个顶点放在正方形中心O 处,并绕点O 逆时针旋转,探究直角三角板PEF 与正方形ABCD 重叠部分的面积变化情况(已知正方形边长为2).(1)操作发现:如图1,若将三角板的顶点P 放在点O 处,在旋转过程中,当OF 与OB 重合时,重叠部分的面积为__________;当OF 与BC 垂直时,重叠部分的面积为__________;一般地,若正方形面积为S ,在旋转过程中,重叠部分的面积1S 与S 的关系为__________; (2)类比探究:若将三角板的顶点F 放在点O 处,在旋转过程中,,OE OP 分别与正方形的边相交于点M ,N .①如图2,当BM CN =时,试判断重叠部分OMN 的形状,并说明理由; ②如图3,当CM CN =时,求重叠部分四边形OMCN 的面积(结果保留根号); (3)拓展应用:若将任意一个锐角的顶点放在正方形中心O 处,该锐角记为GOH ∠(设GOH α∠=),将GOH ∠绕点O 逆时针旋转,在旋转过程中,GOH ∠的两边与正方形ABCD的边所围成的图形的面积为2S ,请直接写出2S 的最小值与最大值(分别用含α的式子表示),(参考数据:sin15tan152︒=︒=︒=-14.(2022·贵州贵阳)小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.如图,在ABCD □中,AN 为BC 边上的高,AD m AN=,点M 在AD 边上,且BA BM =,点E 是线段AM 上任意一点,连接BE ,将ABE △沿BE 翻折得FBE .(1)问题解决:如图①,当60BAD ∠=︒,将ABE △沿BE 翻折后,使点F 与点M 重合,则AM AN=______;(2)问题探究:如图②,当45BAD ∠=︒,将ABE △沿BE 翻折后,使EF BM ∥,求ABE ∠的度数,并求出此时m 的最小值;(3)拓展延伸:当30BAD ∠=︒,将ABE △沿BE 翻折后,若EF AD ⊥,且AE MD =,根据题意在备用图中画出图形,并求出m 的值.15.(2022·吉林长春)【探索发现】在一次折纸活动中,小亮同学选用了常见的A 4纸,如图①,矩形ABCD 为它的示意图.他查找了A 4纸的相关资料,根据资料显示得出图①中AD =.他先将A 4纸沿过点A 的直线折叠,使点B 落在AD 上,点B 的对应点为点E ,折痕为AF ;再沿过点F 的直线折叠,使点C 落在EF 上,点C 的对应点为点H ,折痕为FG ;然后连结AG ,沿AG 所在的直线再次折叠,发现点D 与点F 重合,进而猜想ADG AFG △≌△.【问题解决】(1)小亮对上面ADG AFG △≌△的猜想进行了证明,下面是部分证明过程: 证明:四边形ABCD 是矩形,∴90BAD B C D ∠=∠=∠=∠=︒. 由折叠可知,1452BAF BAD ∠=∠=︒,BFA EFA ∠=∠.∴45EFA BFA ∠=∠=︒. ∴AF AD ==.请你补全余下的证明过程.【结论应用】(2)DAG ∠的度数为________度,FG AF的值为_________; (3)在图①的条件下,点P 在线段AF 上,且12AP AB =,点Q 在线段AG 上,连结FQ 、PQ ,如图②,设AB a ,则FQ PQ +的最小值为_________.(用含a 的代数式表示)16.(2022·广东深圳)(1)【探究发现】如图①所示,在正方形ABCD 中,E 为AD 边上一点,将AEB △沿BE 翻折到BEF 处,延长EF 交CD 边于G 点.求证:BFG BCG △≌△(2)【类比迁移】如图②,在矩形ABCD 中,E 为AD 边上一点,且8,6,AD AB ==将AEB △沿BE 翻折到BEF 处,延长EF 交BC 边于点,G 延长BF 交CD 边于点,H 且,FH CH =求AE 的长.(3)【拓展应用】如图③,在菱形ABCD 中,E 为CD 边上的三等分点,60,D ∠=︒将ADE 沿AE 翻折得到AFE △,直线EF 交BC 于点,P 求CP 的长.17.(2022·黑龙江)ABC和ADE都是等边三角形.(1)将ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有PA PB PC+=)成立;请证明.(2)将ADE绕点A旋转到图②的位+=(或PA PC PB置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;(3)将ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.18.(2022·辽宁锦州)在ABC中,AC BC=,点D在线段AB上,连接CD并延长至点E,使DE CD=,过点E作EF AB⊥,交直线AB于点F.(1)如图1,若120ACB ∠=︒,请用等式表示AC 与EF 的数量关系:____________.(2)如图2.若90ACB ∠=︒,完成以下问题:①当点D ,点F 位于点A 的异侧时,请用等式表示,,AC AD DF 之间的数量关系,并说明理由;②当点D ,点F 位于点A 的同侧时,若1,3DF AD ==,请直接写出AC 的长.19.(2022·广西)已知MON α∠=,点A ,B 分别在射线,OM ON 上运动,6AB =.(1)如图①,若90α=︒,取AB 中点D ,点A ,B 运动时,点D 也随之运动,点A ,B ,D 的对应点分别为,,A B D ''',连接,OD OD '.判断OD 与OD '有什么数量关系?证明你的结论:(2)如图②,若60α=︒,以AB 为斜边在其右侧作等腰直角三角形ABC ,求点O 与点C 的最大距离:(3)如图③,若45α=︒,当点A ,B 运动到什么位置时,AOB 的面积最大?请说明理由,并求出AOB 面积的最大值.20.(2022·湖北十堰)【阅读材料】如图①,四边形ABCD 中,AB AD =,180B D ∠+∠=︒,点E ,F 分别在BC ,CD 上,若2BAD EAF ∠∠=,则EF BE DF =+.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD .已知100m CD CB ==,60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,道路AD ,AB 上分别有景点M ,N ,且100m DM =,)501m BN =,若在M ,N 之间修一条直路,则路线M N →的长比路线M A N →→的长少_________m 1.7≈).21.(2022·陕西)问题提出(1)如图1,AD 是等边ABC 的中线,点P 在AD 的延长线上,且AP AC =,则APC ∠的度数为__________. 问题探究(2)如图2,在ABC 中,6,120CA CB C ==∠=︒.过点A 作AP BC ∥,且AP BC =,过点P 作直线l BC ⊥,分别交AB BC 、于点O 、E ,求四边形OECA 的面积. 问题解决(3)如图3,现有一块ABC 型板材,ACB ∠为钝角,45BAC ∠=︒.工人师傅想用这块板材裁出一个ABP △型部件,并要求15,BAP AP AC ∠=︒=.工人师傅在这块板材上的作法如下:①以点C 为圆心,以CA 长为半径画弧,交AB 于点D ,连接CD ; ②作CD 的垂直平分线l ,与CD 于点E ; ③以点A 为圆心,以AC 长为半径画弧,交直线l 于点P ,连接AP BP 、,得ABP △. 请问,若按上述作法,裁得的ABP △型部件是否符合要求?请证明你的结论.。

中考数学专题复习:四边形综合

中考数学专题复习:四边形综合

中考数学专题复习:四边形综合1.如图,四边形ABCD中,AD∥BC,∠A=∠D=90°,点E是AD的中点,连接BE,将△ABE沿BE折叠后得到△GBE,且点G在四边形ABCD内部,延长BG交DC于点F,连接EF.(1)求证:△EGF≌△EDF;(2)求证:BG=CD;(3)若点F是CD的中点,BC=8,求CD的长.2.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF∥AE 交AD延长线于点F.(1)求证:四边形AECF为矩形;(2)连接OE,若AE=4,AD=5,求tan∠OEC的值.3.在矩形ABCD中,AB=3,BC=4,E、F是对角线AC上的两个动点,分别从A、C同时出发相向而行,速度均为每秒1个单位长度,运动时间为t秒,其中0≤t≤5.(1)若G,H分别是AB,DC中点,则四边形EGFH是______________(E、F相遇时除外,写出图形名称);(2)在(1)条件下,若四边形EGFH为矩形,求t的值;(3)若G,H分别是折线A﹣B﹣C,C﹣D﹣A上的动点,与E,F相同的速度同时出发,若四边形EGFH为菱形,求t的值.4.如图,已知正方形ABCD,AB=8,点M为射线DC上的动点,射线AM交BD于E,交射线BC于F,过点C作CQ⊥CE,交AF于点Q.(1)当BE=2DE时,求DM的长.(2)当M在线段CD上时,若CQ=3,求MF的长.(3)①当DM=2CM时,作点D关于AM的对称点N,求tan∠NAB的值.②若BE=4DE,直接写出△CQE与△CMF的面积比_________________.5.阅读材料:平面直角坐标系中点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的折线距离,记为[P],即[P]=|x|+|y|,其中的“+”是四则运算中的加法,例如点P(1,2)的折线距离[P]=|1|+|2|=3.【解决问题】(1)已知点A(﹣2,4),B(+,﹣),直接写出A、B的折线距离[A],[B];(2)若点M满足[M]=2,①当点M在x轴的上方时,且横坐标为整数,求点M的坐标;②正方形EFGH的两个顶点坐标分别为E(t,0),F(t﹣1,0),当正方形EFGH上存在点M时,直接写出t的取值范围.6.如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC,BD的交点,连接CE,DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,且∠OMD =75°,求CE的长;(3)在(2)的条件下,把正方形OEFG绕点O旋转,直接写出点B到点F的最短距离.7.如图,在Rt△ABC中,∠C=90°,AC=10,∠A=60°.点P从点B出发沿BA方向以每秒2个单位长度的速度向点A匀速运动,同时点Q从点A出发沿AC方向以每秒1个单位长度的速度向点C匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点P、Q运动的时间是t秒.过点P作PM⊥BC于点M,连接PQ、QM.(1)请用含有t的式子填空:AQ=,AP=,PM=;(2)是否存在某一时刻使四边形AQMP为菱形?如果存在,求出相应的t值;如果不存在,说明理由;(3)当t为何值时,△PQM为直角三角形?请说明理由.8.【基础巩固】(1)如图1,在△ABC 中,M 是AB 的中点,过B 作BD ∥AC ,交CM 的延长线于点D .求证:AC =BD ;【尝试应用】(2)在(1)的情况下,在线段CM 上取点E (如图2),已知BE =AC =,CE =2,EM =4,求tan D ;【拓展提高】(3)如图3,菱形ABCD 中,点P 在对角线AC 上,且CP =2AP ,点E 为线段DP 上一点,BE =BC .若PE =2,PD =3,求菱形ABCD 的边长.9.如下图所示,解答问题.例1:求证:三角形的一条中位线与第三边上的中线互相平分. 已知:如图,在△ABC 中,AD =DB ,BE =EC ,AF =FC . 求证:AE 、DF 互相平分. 证明:连接DE 、EF .请写出完整的解题过程.【拓展】如图②,设图①中的AE 与DF 的交点为G ,连接CD ,分别交AE 、EF 于点H 、K . (1)=__________.(2)若四边形FGHK 的面积为3,则四边形ADEF 的面积为__________.10.如图1,四边形ABCD是矩形,点P是对角线AC上的一个动点(不与A、C重合),过点P作PE⊥CD于点E,连接PB,已知AD=3,AB=4,设AP=m.(1)当m=1时,求PE的长;(2)连接BE,试问点P在运动的过程中,能否使得△PAB≌△PEB?请说明理由;(3)如图2,过点P作PF⊥PB交CD边于点F,设CF=n,试判断5m+4n的值是否发生变化,若不变,请求出它的值;若变化,请说明理由.11.如图1,在矩形ABCD中,点E是边CD的中点,点F在边AD上,EF⊥BD,垂足为G.(1)如图2,当矩形ABCD为正方形时,求的值;(2)如果=,AF=x,AB=y,求y与x的函数关系式,并写出函数定义域;(3)如果AB=4cm,以点A为圆心,3cm长为半径的⊙A与以点B为圆心的⊙B外切.以点F为圆心的⊙F与⊙A、⊙B都内切.求的值.12.如图1,正方形ABCD和正方形AEFG,连接DG,BE.(1)[发现]:当正方形AEFG绕点A旋转,如图2,线段DG与BE之间的数量关系是_______;位置关系是__________;(2)[探究]:如图3,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE,猜想DG与BE的数量关系与位置关系,并说明理由;(3)[应用]:在(2)情况下,连接GE(点E在AB上方),若GE∥AB,且AB=,AE=1,求线段DG的长.13.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E.(1)如图,当α=60°时,连接BD、BE,并延长BE交AD于点F,则BE=__________;(2)当α=90°时,请画出图形并求出BE的长;(3)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE.当∠DAG =∠ACB,且线段DG与线段AE无公共点时,请猜想四边形AEBC的形状并说明理由.14.(1)如图1,正方形ABCD和正方形DEFG(其中AB>DE),连接CE,AG交于点H,请直接写出线段AG与CE的数量关系__________,位置关系__________;(2)如图2,矩形ABCD和矩形DEFG,AD=2DG,AB=2DE,AD=DE,将矩形DEFG 绕点D逆时针旋转α(0°<α<360°),连接AG,CE交于点H,(1)中线段关系还成立吗?若成立,请写出理由;若不成立,请写出线段AG,CE的数量关系和位置关系,并说明理由;(3)矩形ABCD和矩形DEFG,AD=2DG=6,AB=2DE=8,将矩形DEFG绕点D逆时针旋转α(0°<α<360°),直线AG,CE交于点H,当点E与点H重合时,请直接写出线段AE的长.15.定义:有一组对边相等且这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”.(1)如图①,四边形ABCD与四边形AEEG都是正方形,135°<∠AEB<180°,求证:四边形BEGD是“等垂四边形”;(2)如图②,四边形ABCD是“等垂四边形”,AD≠BC,连接BD,点E,F,G分别是AD,BC,BD的中点,连接EG,FG,EF.试判定△EFG的形状,并证明;(3)如图③,四边形ABCD是“等垂四边形”,AD=4,BC=6,试求边AB长的最小值.参考答案1.(1)证明:∵将△ABE沿BE折叠后得到△GBE,∴△ABE≌△GBE,∴∠BGE=∠A,AE=GE,∵∠A=∠D=90°,∴∠EGF=∠D=90°,∵EA=ED,∴EG=ED,在Rt△EGF和Rt△EDF中,,∴Rt△EGF≌Rt△EDF(HL);(2)证明:由折叠性质可得,AB=BG,∵AD∥BC,∠A=∠D=90°,∴四边形ABCD是矩形,∴AB=CD,∴BG=DC.(3)解:由折叠可知AB=GB,由(1)知Rt△EGF≌Rt△EDF,∴GF=DF,又∵∠C=90°,AB=CD,FD=CF,∴GB=2GF,BF+GF=3GF,∵BF2=BC2+CF2,∴(3GF)2=64+GF2,∴GF=2,∴CD=2GF=4.2.(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∵CF∥AE,∴四边形AECF是平行四边形,∵AE⊥BC,∴四边形AECF是矩形;(2)连接OE,∵在菱形ABCD中,AD=AB=BC=5,AO=CO,∴∠OEC=∠OCE,由(1)知,四边形AECF为矩形;∴∠AEC=90°,∵AE=4,∴BE==3,∴CE=3+5=8,∴tan∠OEC=tan∠ACE===.3.解:(1)∵矩形ABCD,∴AB∥CD,AB=CD,∴∠GAE=∠HCF,∵G,H分别是AB,DC中点,∴AG=CH,∵E、F分别从A、C同时出发相向而行,速度均为每秒1个单位长度,∴AE=CF,∴△AGE≌△CHF(SAS),∴GE=FH,∠AEG=∠CFH,∴∠GEF=∠EFH,∴GE∥FH,∴四边形EGFH是平行四边形,故答案为:平行四边形;(2)连接GH,如图:∵矩形ABCD,G,H分别是AB,DC中点,∴四边形GBCH是矩形,∵矩形ABCD中,AB=3,BC=4,∴GH=BC=4,AC==5,由①知四边形EGFH是平行四边形,当EF=GH=4时,四边形EGFH是矩形,∴5﹣2t=4,解得t=,∴四边形EGFH为矩形,则t=;(3)∵E、F分别从A、C同时出发相向而行,速度均为每秒1个单位长度,∴AE=CF,∴四边形EGFH的对角线EF的中点即是AC中点,若四边形EGFH为菱形,则对角线垂直,且GH必经过AC中点,过AC的中点O作GH⊥AC交BC于G,交AD于H,如图:∵AB+GB=AE=CF=CD+DH=t,∴CG=AH,而由矩形ABCD可得AD∥BC,∴∠FAH=∠ECG,∵AE=CF,∴AF=CE,∴△AHF≌△CGE(SAS),∴GE=FH,∠AFH=∠CEG,∴∠HFE=∠FEG,∴GE∥FH,∴四边形EGFH为平行四边形,又GH⊥AC,∴四边形EGFH为菱形,此时,以B为原点,BC所在直线为x轴,建直角坐标系,则A(0,3),C(4,0),∴直线AC解析式为y=﹣x+3,线段AC的中点O(2,),∵GH⊥AC,且GH过O(2,),∴GH解析式为y=x﹣,令y=0得x=,∴G(,0),∴AB+BG=,∴t=.4.解:(1)∵四边形ABCD是正方形,∴AB∥CD,∴△ABE∽△MDE,∴=,∵BE=2DE,AB=8,∴==2,∴DM=AB=4;(2)∵四边形ABCD是正方形,∴AD=CD=AB=8,∠ADC=∠BCD=90°,∠ADE=∠CDE=45°,AD∥BC,∴∠EAD=∠F,又∵DE=DE,∴△ADE≌△CDE(SAS),∴∠EAD=∠ECM,∵CQ⊥CE,∴∠ECQ=90°=∠BCD,∴∠ECM=∠QCF,∴∠F=∠QCF,∴CQ=FQ,又∵∠F+∠CMQ=∠QCF+∠MCQ=90°,∴∠CMQ=∠MCQ,∴CQ=MQ,∴CQ=MQ=FQ=MF=3,∴MF=6;(3)①a、当点N在正方形内部时,延长AN交BC于点G,如图1所示:∵DM=2CM,CD=8,∴CM=CD=,∵四边形ABCD是正方形,∴BC=AB=8,AB∥CD,AD∥BC,∴∠DAF=∠F,△MCF∽△ABF,∴==,∴CF=BF,∴CF=AB=4,∴BF=AB+CF=12,由对称的性质得:∠GAF=∠DAF,∴∠GAF=∠F,∴AG=FG,设BG=x,则AG=FG=12﹣x,在Rt△ABG中,由勾股定理得:AB2+BG2=AG2,即82+x2=(12﹣x)2,解得:x=,∴BG=,∴tan∠NAB===;b、当点N在正方形外部时,连接AN、MN,延长AB交MN于点G,如图2所示:由得出的性质得:∠N=∠ADC=90°,AN=AD=8,∠AMN=∠AMD,同上得:∠BAM=∠AMD=∠NMA,∴AG=MG,设NG=x,则AG=MG=16﹣x,在Rt△ANG中,由勾股定理得:AN2+NG2=AG2,即82+x2=(16﹣x)2,解得:x=6,∴NG=6,∴tan∠NAB===;综上所述,tan∠NAB的值为或;②过E作EP⊥CD于P,如图3所示:则EP∥BC,∴△DEP∽△DBC,∴==,∵BE=4DE,∴BD=5DE,∴===,∴DP=EP=BC=,∵AB∥CD,∴△MDE∽△ABE,∴===,∴DM=AB=2,=,∴CM=CD﹣DM=8﹣2=6,AM===2,∴EM=AM=,∵AB∥CD,∴△MCF∽△ABF,∴===,∴MF=3AM=6,同(2)得:CQ=MQ=FQ=MF=3,∴EQ=EM+MQ=+3=,∴△CQE与△CMF的面积比===,故答案为:.5.解:(1)∵点A(﹣2,4),B(+,﹣),∴[A]=|﹣2|+|4|=2+4=6,[B]=|+|+|﹣|=++﹣=2;(2)①∵点M在x轴的上方,其横坐标为整数,且[M]=2,∴x=±1时,y=1或x=0时,y=2,∴点M的坐标为(﹣1,1)或(1,1)或(0,2);②∵正方形EFGH的两个顶点坐标分别为E(t,0),F(t﹣1,0),∴EF=1,若M(﹣1,1)在正方形EFGH上时,∴t﹣1≤﹣1≤t,∴﹣1≤t≤0,若M(1,1)在正方形EFGH上时,∴t﹣1≤1≤t,∴1≤t≤2,若M(2,0)在正方形EFGH上时,∴t﹣1≤2≤t,∴2≤t≤3,若M(﹣2,0)在正方形EFGH上时,∴t﹣1≤﹣2≤t,∴﹣2≤t≤﹣1,综上所述:t的取值范围为﹣2≤t≤0或1≤t≤3.6.解:(1)∵正方形ABCD与正方形OEFG,对角线为AC、BD,∴DO=OC,∵DB⊥AC,∴∠DOA=∠DOC=90°,∵∠GOE=90°,∴∠GOD+∠DOE=∠DOE+∠COE=90°,∴∠GOD=∠COE,∵GO=OE,∴在△DOG和△COE中,DO=CO,∠GOD=∠COE,GD=OE,∴△DOG≌△COE(SAS);(2)∵四边形ABCD为正方形,故∠ODM=45°,故OD=,∵∠OMD=75°,∴∠DOG=60°,∵DG⊥BD,故∠ODG=90°,∴∠OGD=30°,∴OG=2OD=2,∴DG===,∵△DOG≌△COE(SAS),∴CE=DG=;(3)正方形OEFG绕点O旋转,当点O、B、F共线且点B在OF之间时,点B到点F 的距离最短,由(2)知,在正方形OEFG中,OG=2,则OF=OG=4,而OB=OD=,故OF﹣OB=4﹣.故B到点F的最短距离为4﹣.7.解:(1)∵点Q从点A出发沿AC方向以每秒1个单位长度的速度向点C匀速运动,∴AQ=t,∵∠C=90°,AC=10,∠A=60°,∴∠B=30°,∴AB=2AC=20,∴AP=AB﹣BP=20﹣2t,∵PM⊥BC,∴∠PMB=90°,∴PM==t.故答案为:t,20﹣2t,t;(2)存在,理由如下:由(1)知:AQ=PM,∵AC⊥BC,PM⊥BC,∴AQ∥PM,∴四边形AQMP是平行四边形,当AP=AQ时,平行四边形AQMP是菱形,即20﹣2t=t,解得t=,则存在t=,使得平行四边形AQMP成为菱形.(3)当△PQM为直角三角形时,有三种可能:①当∠MPQ=90°时,此时四边形CMPQ为矩形,在Rt△PAQ中,∠A=60°,∴∠APQ=90°﹣∠A=30°,∴AP=2AQ,即20﹣2t=2t,解得:t=5;②当∠MQP=90°时,由(2)知MQ∥AP,∴∠APQ=∠MQP=90°,∵∠A=60°,∴∠AQP=90°﹣∠A=30°,∴AQ=2AP,即t=2(20﹣2t),解得:t=8.③当∠PMQ=90°时,此种情况不存在.综上所述:当t为5或8时,△PQM为直角三角形.8.解:(1)∵M是AB的中点,则AM=BM,∵BD∥AC,∴∠ABD=∠A,∵∠AMC=∠BMD,∴△AMC≌△BMD(AAS),∴AC=BD;(2)过点B作BH⊥CD于点H,由(1)得,CM=DM=CE+EM=6,∴BE=AC=BD=,则EH=HD=5,在Rt△BDH中,BH===3,∴tan D=;(3)连接CE,延长DP交CB的延长线于点F,交AB于点G,∵AG∥CD,∴△CPD∽△APG,∴,即AG=CD=AB,即点G是AB的中点,由(1)知,△AGD≌△BGF(AAS),∴AD=BF,PD=2PG=1+2=3,GD=GF,∴BE=BF=BC,∴∠CEF=90°,设菱形ABCD的边长为x,在Rt△DEC中,CE2=CD2﹣ED2=x2﹣1,∵PD=2PG=1+2=3,则PG=1.5,则DG=PD+PG=4.5,则DF=2DG=9,∴EF=PD﹣DE=9﹣1=8,在Rt△CEF中,CE2=CF2﹣EF2,即x2﹣1=4x2﹣82,解得x=(负值已舍去),故菱形ABCD的边长为:.9.证明:连接DE、EF,则DE是△ABC的中位线,故DE∥AC,且DE=AC=AF,故四边形DAFE为平行四边形,∴AE、DF互相平分;【拓展】(1)解:同理可得,四边形DFCE为平行四边形,则KD=KC,DF=EC=BE,∵DG=BE,FG=EC,∴DG=FG=EC,∵DF∥BC,∴△DHG∽△CHE,∴=,即DH=HC,设DH=x,则HC=2x,CD=DH+HC=3x,则CK=CD=x,故=,故答案为;(2)解:设△HKE的面积为a,∵DH=x,HK=x,则△DHE的面积为2a,∵G是DF的中点,+S△EHK,∴S△DHE+S△DHG=S四边形GFKH即2a+S△DHG=3+a,故S△DHG=3﹣a,∵K是平行四边形DFCE的对角线的交点,故K是EF的中点,+S△DGH,同理S△DHE+S△EHK=S四边形GFKH即3a=6﹣a,解得a=,故S△EFG=a+3=,∵四边形ADEF为平行四边形,故四边形ADEF的面积=4S△EFG=18,故答案为18.10.解:(1)连接BE,由已知:在Rt△ADC中,AC=,当AP=m=1时,PC=AC﹣AP=5﹣1=4,∵PE⊥CD,∴∠PEC=∠ADC=90°,∵∠ACD=∠PCE,∴△ACD∽△PCE,∴,即,∴PE=;(2)如图1,当△PAB≌△PEB时,∴PA=PE,∵AP=m,则PC=5﹣m,由(1)得:△ACD∽△PCE,∴,∴PE=,由PA=PE,即,解得:m=,∴EC=,∴BE=,∴△PAB与△PEB不全等,∴不能使得△PAB≌△PEB;(3)如图2,延长EP交AB于G,∵BP⊥PF,∴∠BPF=90°,∴∠EPF+∠BPG=90°,∵EG⊥AB,∴∠PGB=90°,∴∠BPG+∠PBG=90°,∴∠PBG=∠EPF,∵∠PEF=∠PGB=90°,∴△BPG∽△PFE,∴,由(1)得:△PCE∽△ACD,PE=,∴,即,∴EC=,∴BG=EC=,∴,∴5m+4n=16.11.解:(1)如图,延长FE交BC的延长线于点M,设正方形ABCD的边长为k,则AB=BC=CD=AD=k,∵E为CD中点,∴DE=CE=,∵正方形ABCD中,∠ADC=90°,∠BDC=∠ADC,∴∠BDC=45°,∵EF⊥BD,∴∠DEF=45°,∴∠DFE=45°,∴DF=DE=k,∵正方形ABCD中,AD∥BC,∴,∴,∵AD∥BC,∴;(2)如图,延长FE交BC的延长线于M,设DF=a,则CM=a,∵,,∴BM=5a,BC=4a,∴AF=x=3a,∴a=,∴DF=,∵AB=y,∴DE=,∵∠ADC=90°,EF⊥BD,∴∠ADB=∠DEF,∴tan∠ADB=tan∠DEF,∴,∴,∴,∵x>0,y>0,∴y与x的函数关系式为,函数定义域为:x>0;(3)设⊙F的半径为rcm,则根据题意得:⊙B的半径为1cm,AF=cm,BF=cm,∵矩形ABCD中,∠A=90°,∴AF2+AB2=BF2,∴(r﹣3)2+42=(r﹣1)2,∴r=6,即⊙F的半径为6cm,∴AF=3cm,∵tan∠ADB=tan∠DEF,∴,∴AD2﹣3AD﹣8=0,∴或(舍去),∴=.12.解:(1)DG=BE,DG⊥BE,理由如下:∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,∴△ABE≌△ADG(SAS),∴BE=DG;如图2,延长BE交AD于Q,交DG于H,∵△ABE≌△DAG,∴∠ABE=∠ADG,∵∠AQB+∠ABE=90°,∴∠AQB+∠ADG=90°,∵∠AQB=∠DQH,∴∠DQH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:DG=BE,DG⊥BE;(2)DG=2BE,BE⊥DG,理由如下:如图3,延长BE交AD于K,交DG于H,∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴==,∠ABE=∠ADG,∴DG=2BE,∵∠AKB+∠ABE=90°,∴∠AKB+∠ADG=90°,∵∠AKB=∠DKH,∴∠DKH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图4,(为了说明点B,E,F在同一条线上,特意画的图形)设EG与AD的交点为M,∵EG∥AB,∴∠DME=∠DAB=90°,在Rt△AEG中,AE=1,∴AG=2AE=2,根据勾股定理得:EG==,∵AB=,∴EG=AB,∵EG∥AB,∴四边形ABEG是平行四边形,∴AG∥BE,∵AG∥EF,∴点B,E,F在同一条直线上,如图5,∴∠AEB=90°,在Rt△ABE中,根据勾股定理得,BE===2,由(2)知,△ABE∽△ADG,∴==,即=,∴DG=4.13.解:(1)∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AB=AD,∠BAD=60°.∴△ABD是等边三角形,∴AB=BD.∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE.又∵AC=BC,∴EA=ED.∴点B、E在AD的中垂线上.∴BE是AD的中垂线.∵点F在BE的延长线上,∴BF⊥AD,AF=DF;∴AF=DF=3,∵AE=AC=5,∴EF===4,在等边三角形ABD中,BF=AB•sin∠BAF=6×=3,∴BE=BF﹣EF=3﹣4,故答案为:3﹣4;(2)依据题意画图如图1,过点E作EG⊥AB于点G,过点C作CH⊥AB于点H,∵CA=CB,CH⊥AB,∴AH=AB=6=3,在Rt△ACH中,∵AC=5,AH=3,∴CH===4,∵∠CAE=90°,∴∠CAH+∠EAG=90°,∵CH⊥AB,∴∠CAH+∠ACH=90°,∴∠EAG=∠ACH,∵△ABC围绕点A顺时针方向旋转得到△ADE,∴AC=AE,∵EG⊥AB,CH⊥AB,∴∠EGA=∠AHC=90°,在△AHC和△EGA中,,∴△AHC≌△EGA(AAS),∴GA=CH=4,EG=AH=3,∴BG=AB﹣AG=6﹣4=2,∵BG=2,EG=3,则BE===;(3)如图2所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=CE,∵AC=BC,∴AH=BH=AB,∵CH=HE,AH=BH,∴四边形AEBC为平行四边形,∵AC=BC,∴四边形AEBC为菱形.14.解:(1)如图1,在正方形ABCD和正方形DEFG中,∠ADC=∠EDG=90°,∴∠ADE+∠EDG=∠ADC+∠ADE,即∠ADG=∠CDE,∵DG=DE,DA=DC,∴△GDA≌△EDC(SAS),∴AG=CE,∠GAD=∠ECD,∵∠COD=∠AOH,∴∠AHO=∠CDO=90°,∴AG⊥CE,故答案为:相等,垂直;(2)不成立,CE=2AG,AG⊥CE,理由如下:如图2,由(1)知,∠EDC=∠ADG,∵AD=2DG,AB=2DE,AD=DE,∴,==,∴=,∴△GDA∽△EDC,∴=,即CE=2AG,∵△GDA∽△EDC,∴∠ECD=∠GAD,∵∠COD=∠AOH,∴∠AHO=∠CDO=90°,∴AG⊥CE;(3)①当点E在线段AG上时,如图3,在Rt△EGD中,DG=3,ED=4,则EG=5,过点D作DP⊥AG于点P,∵∠DPG=∠EDG=90°,∠DGP=∠EGD,∴△DGP∽△EGD,∴=,即,∴PD=,PG=,则AP===,则AE=AG﹣GE=AP+GP﹣GE=+﹣5=;②当点G在线段AE上时,如图4,过点D作DP⊥AG于点P,∵∠DPG=∠EDG=90°,∠DGP=∠EGD,同理得:PD=,AP=,由勾股定理得:PE==,则AE=AP+PE=+=;综上,AE的长为.15.解:(1)如图①,延长BE,DG交于点H,∵四边形ABCD与四边形AEFG都为正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°.∴∠BAE=∠DAG.∴△ABE≌△ADG(SAS).∴BE=DG,∠ABE=∠ADG.∵∠ABD+∠ADB=90°,∴∠ABE+∠EBD+∠ADB=∠DBE+∠ADB+∠ADG=90°,即∠EBD+∠BDG=90°,∴∠BHD=90°.∴BE⊥DG.又∵BE=DG,∴四边形BEGD是“等垂四边形”.(2)△EFG是等腰直角三角形.理由如下:如图②,延长BA,CD交于点H,∵四边形ABCD是“等垂四边形”,AD≠BC,∴AB⊥CD,AB=CD,∴∠HBC+∠HCB=90°∵点E,F,G分别是AD,BC,BD的中点,∴,,EG∥AB,GF∥DC,∴∠BFG=∠C,∠EGD=∠HBD,EG=GF.∴∠EGF=∠EGD+∠FGD=∠ABD+∠DBC+∠GFB=∠ABD+∠DBC+∠C=∠HBC+∠HCB=90°.∴△EFG是等腰直角三角形.(3)延长BA,CD交于点H,分别取AD,BC的中点E,F.连接HE,EF,HF,则,由(2)可知.∴AB最小值为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无棣县埕口中学中考数学专题复习对中点四边形的探究与延伸新人教版一、根本性质归纳:、、、刚好在其梯形院子例1.①〔2021·惠民二模〕杨伯家小院子的四棵小树E F G HABCD各边的中点上,假设在四边形EFGH种上小草,那么这块草地的形状是〔〕A.平行四边形B.矩形 C.正方形 D.菱形②〔2021·东城一摸〕顺次连接菱形各边的中点所得的四边形一定是〔〕A.等腰梯形B.正方形C.平行四边形D.矩形分析:这是对平行四边形的定义和断定定理的考察.解该题的思路是构造三角形及其中位线,这是数学中常用的“建模〞思想,把四边形两边的中点转化为三角形两边的中点,又表达出转化思想.我们可从四边形EHGF的四条边的数量关系和位置关系入手,由题设可知E、H分别为AB、AD的中点,符合三角形中位线定理的条件,可构造三角形的中位线.中E、H分别为AB、AD的中点∴EH 解:如下图:以梯形的中点四边形为例,在ABD平行且等于DB的一半,同理,FG平行且等于DB的一半,所以EH平行且等于FG,所以四边形EHGF为平行四边形,又因为菱形的两条对角线互相垂直,所以四边形邻边互相垂直,故菱形的中点四边形是矩形.所以①选A;②选D.温馨提示:断定中点四边形的形状要抓住两个关键点:一是三角形中位线定理的应用,二是原四边形两条对角线的数量关系和位置关系.为了便于同学们更好地理解和掌握,我们把常见的中点四边形形状归纳如下表.原四边形中点四边形任意四边形平行四边形平行四边形两条对角线相等的四边形〔包括矩形和等腰梯形〕菱形两条对角线互相垂直的四边形〔包括菱形〕矩形两条对角线相等且互相垂直的四边形〔包括正方形〕正方形二、新题探究:㈠条件开放性问题:例2.〔2021·〕在四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点,假如四边形EFGH为菱形,那么四边形ABCD是〔只要写出一种即可〕.解析:此题是一个开放性问题,结论不唯一:如图:四边形EFGH为一个中点四边形,其形状可以由原四边形的对角线来决定,因为任意四边形的中点四边形都是平行四边形,使四=,〔即四边相等的四边形EFGH为菱形,只要有原四边形的对角线相等即可,即AC BD边形为菱形〕;当然也可以从菱形的断定出发,因为四边形EFGH为平行四边形,所以对⊥〔即符合对角线相角线互相平分,只要再有对角线互相垂直即可,所以可以添加EG HF=〔即对边相等的平行四边形为菱形〕.等且互相平分的四边形为菱形〕;还可以添加EF FG温馨提示:中点四边形EFGH形状是由原四边形ABCD的两条对角线AC和BD的数量关系和位置关系来确定的,首先,不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形,其次,详细的中点四边形的形状还需需参考原四边形的具备的其他条件来决定.㈡问题延伸:例3.〔2021·〕在□ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连结EG、GF、FH、HE.〔1〕如图①,试判断四边形EGFH的形状,并说明理由;〔2〕如图②,当EF⊥GH时,四边形EGFH的形状是;〔3〕如图③,在〔2〕的条件下,假设AC=BD,四边形EGFH的形状是;〔4〕如图④,在〔3〕的条件下,假设AC⊥BD,试判断四边形EGFH的形状,并说明理由.解析:〔1〕根据题意容易得EO=FO,GO=HO,从而判断四边形EGFH为平行四边形;〔2〕根据对角线互相垂直的平行四边形是菱形可得答案;〔3〕从图形观察可知AC与BD的数量关系并不影响四边形EGFH的形状;〔4〕当AC=BD,AC⊥BD时,□ABCD为正方形,结合条件容易得△BOG≌△COF,所以有OG=OF,即EF=GH,结合EF⊥GH,可得□EGFH是正方形.解:〔1〕四边形EGFH是平行四边形.证明:∵□ABCD的对角线AC、BD交于点O.∴点O是□ABCD的对称中心.∴EO=FO,GO=HO.∴四边形EGFH是平行四边形.〔2〕菱形.〔3〕菱形.〔4〕四边形EGFH是正方形证明:∵AC=BD,∴□ABCD是矩形.又∵AC⊥BD,∴□ABCD是菱形.∴□ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°.OB=OC.∵EF⊥GH,∴∠GOF=90°.∴∠BOG=∠COF.∴△BOG≌△COF.∴OG=OF,∴GH=EF.由〔1〕知四边形EGFH是平行四边形,又∵EF⊥GH,EF=GH.∴四边形EGFH是正方形.温馨提示:此题是探究题属于思维创新型试题,也是课本习题的引申,表达了中考题与课本的严密联络,但又不拘泥于课本原题,做了一定的提炼,重点考察了特殊四边形的断定,所以在备考时抓住课本是中考复习的一个打破口.跟踪练习:1.〔2021·二模〕顺次连接等腰梯形各边的中点所得的四边形是〔〕A.菱形B.正方形C.矩形D.等腰梯形2.〔2021·〕如图,顺次连结四边形ABCD各中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是〔〕A.AB∥DC B.AB=DC C.AC⊥BD D.AC=BDF E HG DA B C3. 〔2021·一摸〕四边形ABCD 为边长等于1的菱形,顺次连结它的各边中点组成四边形EFGH 〔四边形EFGH 称为原四边形ABCD 的中点四边形〕,再顺次连结四边形EFGH 的各边中点组成第二个中点四边形,,那么按上述规律组成的第八个...中点四边形的边长等于 .4.〔2021·〕 观察探究,完成证明和填空. 如图,四边形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,顺次连接E 、F 、G 、H ,得到的四边形EFGH 叫中点四边形.〔1〕求证:四边形EFGH 是平行四边形;〔2〕如图,当四边形ABCD 变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:当四边形ABCD 变成平行四边形时,它的中点四边形是__________; 当四边形ABCD 变成矩形时,它的中点四边形是__________;当四边形ABCD 变成菱形时,它的中点四边形是__________;当四边形ABCD 变成正方形时,它的中点四边形是__________;〔3〕根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?参考答案:1.答案:A ,解析:因为等腰梯形的对角线相等,故此可推出等腰梯形中点四边形是菱形2.答案:C ,解析:连接BD ,由中位线的知识可知,顺次连结四边形ABCD 各中点得到的四边形EFGH 是平行四边形,要使它为矩形,那么有一个角为直角,由平行线的性质可知,原来的对角线一定是垂直的.3.答案:A ,解析:该题属探究型试题,当问题的条件发生变化时,探究的结论也发生改变,可以通过下列图观察会发现,第二个中点四边形〔即四边形A B C D ''''〕各边长为原四边长的一半,同理第四个中点四边形边长为第二个中点四边形边长的一半,即为原四边形边长的212,由此可以推的第六个中点四边形的边长为原四边形边长的312;第八个中点四边形的边长为原四边形边长的412;所以第八个中点四边形的边长等412=116. 4.解析:〔1〕利用三角形中位线推出所得四边形对边分别平行,故为平行四边形.〔2〕顺次连接对角线相等的四边形各边中点所得的四边形为菱形;顺次连接对角线互相垂直的四边形各边中点所得的四边形为矩形;顺次连接对角线相等且互相垂直的四边形各边中点所得的四边形为正方形.谨记以上原那么答复即可.〔3〕由以上法那么可知,中点四边形的形状由原四边形的对角线的关系来决定的.答案:〔1〕证明:连接BD∵E、H分别是AB、AD的中点,∴EH是△ABD的中位线∴EH=12BD,EH∥12BD同理得FG=12BD,FG∥12BD∴EH=FG,EH∥FG∴四边形EFGH是平行四边形〔2〕填空依次为平行四边形,菱形,矩形,正方形〔3〕中点四边形的形状由原四边形的对角线的关系来决定的.励志赠言经典语录精选句;挥动**,放飞梦想。

厚积薄发,一鸣惊人。

关于努力学习的语录。

自古以来就有许多文人留下如头悬梁锥刺股的经典的,而近代又有哪些经典的高中励志赠言出现呢?小编筛选了高中励志赠言句经典语录,看看是否有些帮助吧。

好男儿踌躇满志,你将如愿;真巾帼灿烂扬眉,我要成功。

含泪播种的人一定能含笑收获。

贵在坚持、难在坚持、成在坚持。

功崇惟志,业广为勤。

耕耘今天,收获明天。

成功,要靠辛勤与汗水,也要靠技巧与方法。

常说口里顺,常做手不笨。

不要自卑,你不比别人笨。

不要自满,别人不比你笨。

高三某班,青春无限,超越梦想,勇于争先。

敢闯敢拼,**协力,争创佳绩。

丰富学校体育内涵,共建时代校园文化。

奋勇冲击,永争第一。

奋斗冲刺,誓要蟾宫折桂;全心拼搏,定能金榜题名。

放心去飞,勇敢去追,追一切我们为完成的梦。

翻手为云,覆手为雨。

二人同心,其利断金。

短暂辛苦,终身幸福。

东隅已逝,桑榆非晚。

登高山,以知天之高;临深溪,以明地之厚。

大智若愚,大巧若拙。

聪明出于勤奋,天才在于积累。

把握机遇,心想事成。

奥运精神,永驻我心。

“想”要壮志凌云,“干”要脚踏实地。

**燃烧希望,励志赢来成功。

楚汉名城,喜迎城运盛会,三湘四水,欢聚体坛精英。

乘风破浪会有时,直挂云帆济沧海。

不学习,如何养活你的众多女人。

不为失败找理由,要为成功想办法。

不勤于始,将悔于终。

不苦不累,高三无味;不拼不搏,高三白活。

不经三思不求教不动笔墨不读书,人生难得几回搏,此时不搏,何时搏。

不敢高声语,恐惊读书人。

不耻下问,学以致用,锲而不舍,孜孜不倦。

博学强识,时不我待,黑发勤学,自首不悔。

播下希望,充满**,勇往直前,永不言败。

保定宗旨,砥砺德行,远见卓识,创造辉煌。

百尺高梧,撑得起一轮月色;数椽矮屋,锁不住五夜书声。

相关文档
最新文档