圆锥曲线的对称问题

合集下载

圆锥曲线解题技巧和方法综合全

圆锥曲线解题技巧和方法综合全

圆锥曲线的解题技巧一、常规七大题型:〔1〕中点弦问题具有斜率的弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式〔当然在这里也要注意斜率不存在的请款讨论〕,消去四个参数。

如:〔1〕)0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(*0,y 0),则有0220=+k b y a x 。

〔2〕)0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(*0,y 0)则有02020=-k by a x 〔3〕y 2=2p*〔p>0〕与直线l 相交于A 、B 设弦AB 中点为M(*0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。

过A 〔2,1〕的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。

〔2〕焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(*,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。

〔1〕求证离心率βαβαsin sin )sin(++=e ;〔2〕求|||PF PF 1323+的最值。

〔3〕直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的根本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。

y p x p x y t x 210=+>+=()()〔1〕求证:直线与抛物线总有两个不同交点〔2〕设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

圆锥曲线解题技巧归纳

圆锥曲线解题技巧归纳

圆锥曲线解题技巧归纳圆锥曲线是数学中的重要主题之一、它涉及到许多重要的概念和技巧,可以用于解决各种问题。

本文将归纳总结圆锥曲线解题的一些常用技巧,帮助读者更好地理解和应用这一主题。

1.判别式法:对于给定的二次方程,可以根据判别式的符号来判断它表示的曲线类型。

当判别式大于零时,曲线是一个椭圆;当判别式小于零时,曲线是一个双曲线;当判别式等于零时,曲线是一个抛物线。

2.参数方程法:对于给定的圆锥曲线,可以使用参数方程来表示。

通过选取合适的参数,可以将曲线表示为一系列点的集合。

这种方法可以简化问题,使得求解过程更加直观和方便。

3.极坐标方程法:对于给定的圆锥曲线,可以使用极坐标方程来表示。

通过将直角坐标系转换为极坐标系,可以更好地描述和分析曲线的特性。

这种方法在求解对称性等问题时非常有用。

4.曲线拟合法:对于给定的一组数据点,可以使用曲线拟合的方法来找到一个最适合的圆锥曲线。

通过将数据点与曲线进行比较,可以得出曲线的参数和特性。

这种方法在实际应用中非常常见,例如地图估算、经济预测等领域。

5.曲线平移法:对于给定的圆锥曲线,可以通过平移坐标系来使其简化。

通过选取合适的平移距离,可以将曲线的对称轴对准到坐标原点,从而更方便地进行分析和求解。

6.曲线旋转法:对于给定的圆锥曲线,可以通过旋转坐标系来改变其方向和形状。

通过选取合适的旋转角度,可以使曲线变得更简单和易于处理。

这种方法在求解对称性、求交点等问题时非常有用。

7.曲线对称性法:对于给定的圆锥曲线,可以通过研究其对称性来简化问题。

根据曲线的对称轴、对称中心等特性,可以快速得到曲线的一些重要参数和结论。

8.曲线的几何性质法:对于给定的圆锥曲线,可以通过研究其几何性质来解决问题。

例如,对于椭圆可以利用焦点、半长轴、半短轴等参数来求解问题;对于双曲线可以利用渐近线、渐近点等参数来求解问题。

9.曲线的微积分法:对于给定的圆锥曲线,可以通过微积分的方法来求解其一些重要特性。

圆锥曲线的对称中心

圆锥曲线的对称中心

4
与椭圆 C 相交于 A, B 两点,若 OA ⋅ OB = 0,则 m =


:由
ìx2
ï í
4
+
y2
=
1得
( my
+
1 )2
+
4y2
=
4, 即
( m2
+
4)
y2
+
îïx = my + 1
2my - 3 = 0

A( x1, y1 ), B ( x2, y2 ),则
ìïïy1 +
í
ïïy î
1
y
2
y2
=
- 2m m2 +
=- 3 m2 + 4
4 ,因

OA ⋅
OB = 0,
所 以 x1 x2 + y1 y2 = 0, 则 ( my1 + 1 )( my2 + 1 ) + y1 y2 = 0,( m2 + 1 ) y1 y2 + m ( y1 + y2 ) + 1 = 0


(
m2
+
1
)(
课改探微
36
圆锥曲线的对称中心
■林贵谋
摘 要:为了提高学生的数学学习能力,教师要引导学生
主动地进行逻辑思考和推理判断,并且在分析中形成自己的认
识和理解。通过学生的思考和总结,学生就会对知识形成理性
的认识,在分析中活跃思维,在探究中理解知识,使学生掌握学
习方法,养成良好的学习习惯,促进学生综合素质的提高。本
而 OA ⊥ OB 即 x1 x2 + y1 y2 = 0,利用点在直线上消去 y1, y2,整理

圆锥曲线解题技巧和方法综合(全)

圆锥曲线解题技巧和方法综合(全)

圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为,,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。

如:(1)与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有。

(2)与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线。

过A (2,1)的直线与双曲线交于两点 及,求线段的中点P 的轨迹方程。

(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点、构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(x,y)为椭圆上任一点,,为焦点,,。

(1)求证离心率;(2)求的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

(,)x y 11(,)x y 22)0(12222>>=+b a b y a x 02020=+k b y a x )0,0(12222>>=-b a b y a x 02020=-k b y a x x y 2221-=P 1P 2P 1P 2F 1F 2x a y b 22221+=F c 10(,)-F c 20(,)∠=PF F 12α∠=PF F 21ββαβαsin sin )sin(++=e |||PF PF 1323+抛物线方程,直线与轴的交点在抛物线准线的右边。

圆锥曲线解题技巧和方法综合方法

圆锥曲线解题技巧和方法综合方法

圆锥曲线的解题技巧一、常规七大题型:(1) 中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两 点为(X i ,yJ , (x 2 ,y 2),代入方程,然后两方程相减,再应用中点关系 及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参 数。

2 2X 7 如:(1) r T =1(ab 0)与直线相交于A 、B ,设弦AB 中点为a b M(x o ,y o ),则有畤 2k = O 。

a b 2 2 (2) 笃-% fa 0,b 0)与直线I 相交于A 、B ,设弦AB 中点为 a b(3) y 2=2px (p>o )与直线I 相交于A 、B 设弦AB 中点为M(x °,y o ),则有 2y o k=2p,即 y o k=p.2典型例题 给定双曲线X 2 -亍=1。

过A (2,1)的直线与双曲线交于 两点P i 及P 2,求线段P i P 2的中点P 的轨迹方程。

(2) 焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F i 、F 2构成的三角形问题,常用 正、余弦定理搭桥。

2 2典型例题 设P(x,y)为椭圆 J 七二1上任一点,F i (-c ,o), F 2(c,o )a b 为焦点,• PF/?二〉,PF 2F 1 二。

sin (口 + P )(1) 求证离心率e 二sina + sin P M(x o ,y o)则有 直 Yoa 2b 2(2)求IPF J PF2|3的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题抛物线方程2=p(x 1)(p 0),直线y = t与轴的交点在抛物线准线的右边。

(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A、B,且0A丄OB,求p关于t的函数f(t)的表达式。

圆锥曲线解答题12大题型解题套路归纳

圆锥曲线解答题12大题型解题套路归纳

【高考数学中最具震撼力的一个解答题!】注:【求解完第一问以后,】圆锥曲线题10大题型:(1)弦长问题(2)中点问题(3)垂直问题(4)斜率问题(5)对称问题(6)向量问题(7)切线问题(8)面积问题(9)最值问题(10)焦点三角形问题。

中的2-----4类;分门别类按套路求解;1.(总与三个问题有关):(1)———————;(2)——————————;(3)—————————;2.圆锥曲线题,直线代入圆锥曲线的:---------------------------------------------------; ——————————————————————————————————————;3.-------------------;---------------------------------------------;————————————;—————————;——————————;—————————————————;———————————;——————————————;4.STEP1:首先看是否属于3种特殊弦长:(1)圆的弦长问题;(2)中点弦长问题(3)焦点弦长问题;→(1)圆的弦长问题:(2法)首选方法:垂径定理+勾股定理:图示:--------------------------------;公式为:-------------------------;其中求“点线距”的方法:———————;次选:弦长公式;→(2)中点弦长问题:(2法)首选方法:“点差法”(公式一)--------------------------------;(公式二)--------------------------------;副产品:两直线永远不可能垂直!原因:___________;【两直线夹角的求法:(夹角公式)___________;】双曲线(公式一)--------------------------------;(公式二)--------------------------------;抛物线:形式一:___________;(公式一)--------------------------------;(公式二)--------------------------------;形式2:___________;(公式一)--------------------------------;(公式二)--------------------------------;附:“点差法”步骤:椭圆:“点”_______________________;___________________________;“差”__________________________________;“设而不求法”_______________________________;“斜率公式”+“中点公式”_____________________;___________;___________;→得公式:(公式一)-------------------;(公式二)---------------------;附:“点差法”步骤:抛物线;形式一___________;:“点”_______________________;_____________________;“差”_________________________;“设而不求法”___________________;“斜率公式”+“中点公式”_____________;___________;___________;→得公式:(公式一)---------------------;(公式二)--------------------;附:“点差法”步骤:抛物线:形式二:____________;“点”_______________________;_________________;“差”__________________________________;“设而不求法”______________________;“斜率公式”+“中点公式”_____________;___________;___________;→得公式:(公式一)-------------------;(公式二)--------------------------------;法二次选:中点公式;→(2)焦点弦长问题:(2(公式一)左焦点弦长:--------------------------------;图示:__________________;右焦点弦长:--------------------------------;图示:__________________;公式一适用于:__________________________;(公式二)--------------------------------;其中:________________;适用于:__________________________; 形式一:________;公式一:__________________;图示:_____________________;公式一适用于:__________________________;焦点弦公式二:____________________;公式2适用于:__________________________;→STEP2:除了这三种特殊弦长以外,其余弦长求解都用【弦长公式】(保底方法);【弦长公式】3类型:【类1】___________;___________;_______________;适用于:__________________________;【类2】___________;____________;_______________;适用于:__________________________;【类3】___________;____________;_______________;适用于:__________________________;5.【2-------------------------;--------------------------;--------------------------;---------;6. 2种特殊的垂直问题:(1)涉【2法】:法一:“圆的直径式方程”____________________________________;法二:向量垂直法:____________________;____________________________________;→(2)“原点张角垂直问题”首选方法:向量垂直法+韦达定理【最快!】图示:_____________________;套路:___________________;_______________________________;7“结论法+代入法最快!”【2题型】(1【原点对称】_______________________________;结论二:【任意点对称】_______________________________;(2)结论一:【x轴对称】_______________________________;结论二:【y轴对称】_______________________________;结论三【x=a对称】------------------------------------------;结论四【y=b对称】:______________________;结论5【y=x对称】:__________________________;结论6【y=-x对称】:_______________________________;结论7【y=x+c对称】:___________________;结论8【y=-x+c对称】:_____________________;结论9【任意直线Ax+By+C=0对称】:_______________________________;8.【大纲内2题型】(1【3套路8结论】(1)“点线距等于半径”________________________;(2)斜率乘积等于-1;______________;(3)勾股定理:__________________;结论:(1)【切线长公式】_______________________;(2)【圆心在原点时】_______________________;(3)【切点弦直线方程】_______________________;(4)_______________________;(5)_______________________;(6)_______________________;(7)________________________;(2【导数法】(2形式)【形式一】________;____________________;【形式二】_________;__________________________;9.圆锥曲线题题型六:固定套路:_________+___________+_____________+___________+_____________+___________+____ _________;【相关结论】:【两焦半径】左焦半径_____________;右焦半径_____________;特别的,通径:______________;半通径:______________;【三边长】_____________;_____________;_____________;【周长】_____________;【两焦半径乘积】_____________;【焦点三角形面积】_____________;_____________;作用:_____________;_____________;【余弦定理式】_____________;_____________;_____________;【正弦定理式】________;【求解离心率】__________;_________;________;__________;_____;【焦点三角形中内心公式】_____________________;10.“向量法最快”!平解几中,向量问题均采用“坐标运算”最佳!】首先:坐标化→→【平面向量10公式】【向量平行】_____________________;【向量垂直】_____________________;【向量夹角公式】_____________________;【加减式】_____________________;【数乘式】_____________________;【向量数量积公式】_____________________;【向量模的公式】_____________________;【量模转化公式】_____________________;【向量平方差公式】_____________________;【向量完全平方公式】_____________________;11.【2类】(1】→→“成锐角时《=》向量数量积>0;”“成钝角时《=》向量数量积<0;”“成直角时《=》向量数量积=0;”(2【2法】(1)向量数量积公式_____________________;(2)两直线夹角公式_____________________;12.圆锥曲线题题型9:固定套路:方法基础:_____________________;_____________________;_____________________;【凡与中点相关【凡与垂直相关的斜率问题】首选:斜率乘积等于-1。

圆锥曲线经典题型总结(含答案)

圆锥曲线经典题型总结(含答案)

圆锥曲线整理1.圆锥曲线的定义:(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|);(2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d .圆锥曲线的定义是本部分的一个重点内容,在解题中有广泛的应用,在理解时要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。

若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。

%(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222b x a y -=1(0,0a b >>)。

(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。

注意:1.圆锥曲线中求基本量,必须把圆锥曲线的方程化为标准方程。

2.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):椭圆:由x2,y 2分母的大小决定,焦点在分母大的坐标轴上。

(完整版)圆锥曲线常见题型及答案

(完整版)圆锥曲线常见题型及答案

圆锥曲线常见题型归纳一、基础题涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。

此类题在考试中最常见,解此类题应注意:(1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况;(3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=;例题:(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( )A .421=+PF PFB .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8=表示的曲线是_____ (答:双曲线的左支)(3)已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2)(4)已知方程12322=-++k y k x 表示椭圆,则k 的取值范围为____ (答:11(3,)(,2)22---); (5)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(答:2214x y -=);(6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)二、定义题对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。

此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙源期刊网
圆锥曲线的对称问题
作者:张文红
来源:《新课程研究·基础教育》2007年第09期
有关圆锥曲线的对称问题是高中数学的重点问题,是历届高考的热点问题之一。

试题可能是选择题也可能是填空题。

对称问题一般有两大类,一类是曲线本身的对称性,一类是求已知曲线关于某点或某直线对称的曲线。

高考中常见的是关于原点对称,关于x轴、y轴对称,关于直线y=+x对称的问题。

(一)熟记一些重要结论可很方便的解决曲线本身的对称性
结论1曲线C∶ F(x,y)=0关于原点0(0,0)对称 F(-x,-y)=0
结论2曲线C∶ F(x,y)=0关于原点0(a,b)对称 F(2a-x,2b-y)=0
结论3曲线C∶ F(x,y)=0关于y轴对称 F(-x,y)=0
结论4曲线C∶ F(x,y)=0关于x轴对称 F(x,-y)=0
结论5曲线C∶ F(x,y)=0关于直线y=x对称 F(x,y)=0
结论6曲线C∶ F(x,y)=0关于直线y=-x对称 F(-y,-x)=0
“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文”。

相关文档
最新文档