2014年数学建模A题

合集下载

2014美赛数学建模A题翻译

2014美赛数学建模A题翻译

在规定靠右侧驾驶的国家(比如美国、中国还有许多国家除了英国、澳大利亚和早期英国殖民国家),多车道高速公路通常规定驾驶员在最右侧的车道驾驶,除了要超过另一辆车的情况(此时,他们移动到左侧车道,超车,然后回到先前的驾驶车道。


建立并分析一个数学模型来分析这一规定在轻型(顺畅)和重型(拥挤)交通下的表现。

你可能需要权衡交通流量和交通安全,关于低于限速或超速驾驶部分(即限速过低或过高),还有其他没有在问题陈述中提到的方面。

这个规则能有效地提高车流量吗?如果没有,提出并分析可以提高车流量,交通安全,和其他你认为重要的因素的替代选项。

(也有可能包括完全没有规则这种情况)。

在规定靠左驾驶的国家,你的解决方案是否能够通过一个简单的方向改变来使用,还是有其他的要求。

最后,上述的规则是来自于人的判断。

如果在相同的道路上,运输车辆的完全受智能系统控制下(不管是道路网络或者是车辆对道路的使用设计)在多大程度上会改变你刚才的分析结果?。

2014全国大学生数学建模A题

2014全国大学生数学建模A题

1.2 问题重述
嫦娥三号在着陆准备轨道上的运行质量为 2.4t, 其安装在下部的主减速发动机能够产生 的推力可调节,变化范围为 1500N 到 7500N,其比冲为 2940m/s,可以满足调整速度的控制 要求。 在四周安装有姿态调整发动机, 能够自动通过多个发动机的脉冲组合实现各种姿态的 19.51W 调整控制。嫦娥三号的预定着陆点为 ,44.12N,海拔为-2641m。 嫦娥三号在高速飞行的情况下, 要保证准确地在月球预定区域内实现软着陆, 关键问题 是着陆轨道与控制策略的设计。 其着陆轨道设计的基本要求: 着陆准备轨道为近月点 15km, 远月点 100km 的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为 6 个阶 段,要求满足每个阶段在关键点所处的状态,尽量减少软着陆过程的燃料消耗。 根据上述的基本要求,建立数学模型解决下面的问题: (1) 确定着陆准备轨道近月点和远月点的位置, 以及嫦娥三号相应速度的大小与方向。 (2)确定嫦娥三号的着陆轨道和在 6 个阶段的最优控制策略。 (3)对设计的着陆轨道和控制策略做相应的误差分析和敏感性分析。
2.2 问题二
由问题一已经得出近月点,即开始降落点位置,也知道每一阶段的状态,因此,降落轨
2
道大致范围基本确定, 但六个过程的精确路径是要通过策略优化来控制的。 由于燃料消耗表 现在推力在时间上的积累量,即减小推力作用的冲量,即可优化燃料消耗。 对第一个过程, 由于推力很大且历时较长, 因此燃料消耗主要体现在这一阶段, 对应的, 优化策略也应重点体现,由于有二体模型,建立微分方程模型,并由初值条件以及阶段限定 条件,可以写出非线性约束条件,本问题及转化为轨道优化中的非线性规划问题,一般可通 过成熟的 SQP 算法可以得到全局最优解,但本题采用了更为常见也相对传统的遗传算法, 逼近全局最优解,得出最优方案。 对于第二阶段,仅仅是为了是水平速度将为 0,且推力迅速减小,由上一阶段的优化结 果,得出末速度水平分量,由于冲量可分解,则此阶段分为水平方向和竖直方向分别优化, 即分为了两个变速直线运动模型, 简化了优化模型, 可以由这两个局部最优解加和得到该阶 段的全局最优解。 第三个阶段水平速度初始为 0,经过对月面成像分析,制定平坦度评价体系,选择距离 中心点最近且满足平坦度要求的区域中心为粗调整目标降落点。 由于这一段终点悬停, 速度 减为 0,因此可以对该段推力进行优化,从而局部燃料最优。 第四阶段悬停, 精细成像并分析, 同样制定平坦度评价体系并选择距离中心点最近且满 足平坦度要求的区域中心作为最终目标降落点,修正轨道。结束时水平速度依然为 0,因此 同样存在优化过程。 第五阶段与第六阶段是减速至 0 然后自由落体的过程, 针对减速阶段也可考虑优化, 可 经过简单讨论得到结果。 最后根据各个阶段的最优方案,模拟出嫦娥三号着陆轨道即可。

2014数学建模国赛A题教程

2014数学建模国赛A题教程
2014 高教社杯全国大学生数学建模竞赛
承诺书
我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参 赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下 载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网 上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
在模型优化中,我们考虑了在桌面上均匀分布的力的情况,通过建立空间力系的平
衡模型,在临界条件下(桌子支撑腿受到指向桌内的摩擦力取最大值),由理论力学知
识推导出桌面上均匀分布的力 F 与 角、钢筋位置之间的函数式。计算得出桌子的稳定
性与钢筋位置无关,桌子在这种受力情况下的稳定性只与支撑腿与竖直方向的夹角有
2. 提出问题
(1). 给定长方形平板尺寸为 120 cm × 50 cm × 3 cm,每根木条宽 2.5 cm, 连接桌腿木条的钢筋固定在桌腿最外侧木条的中心位置,折叠后桌子的高度为 53 cm。 试建立模型描述此折叠桌的动态变化过程,在此基础上给出此折叠桌的设计加工参数 (例如,桌腿木条开槽的长度等)和桌脚边缘线的数学描述。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展 示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从 A/B/C/D 中选择一项填写):
B
我们的报名参赛队号为(8 位数字组成的编号):
27006025
所属学校(请填写完整的全名):
长安大学
二、 问题分析
(1).折叠桌以铰链连接,外形由直纹曲面构成。通过反复研究折叠桌的动态视频, 分析出折叠桌的运动特性,我们采用几何投影法,化三维运动为二维运动,简化模型。 同时,为了便于分析几何关系,我们仅对单组木条中最长与最短两根木条进行探究。并 通过 Solidwoks 软件绘画其几何关系图。根据各木条之间的连动原理推导出所有木条间 的关系,建立曲线参数方程表示折叠桌整体的动态变化过程。最后计算出折叠桌的设计 加工参数,并通过函数式和三维曲线图描述桌角边缘线。

2014年全国数学建模a题解析

2014年全国数学建模a题解析

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要嫦娥三号卫星着陆器实现了我国首次地外天体软着陆任务。

要保证准确的在月球预定区域内实现软着陆轨道与控制策略的设计。

问题一运用活力公式[1]来建立速度模型,利用matlab软件代入数值计算出。

所求速度33⨯⨯(=1.692210m/s,=1.613910m/s)v v远近采用轨道六根数[2]来建立近月点,远月点位置的模型。

轨道根数是六个确定椭圆轨道的物理量,也是联系赤道直角坐标与轨道极坐标重要夹角的关系。

通过着陆点的位置求出轨道根数各个值的数据,从而确定近月点,远月点的位置,坐标分别为(19.51W 27.88N 15KM),(160.49 27.885S 100KM)E。

2013-2014年全国数模竞赛a题讲解

2013-2014年全国数模竞赛a题讲解

2013-2014年全国数模竞赛a题讲解2013-2014年全国数模竞赛A题是一道涉及建模和优化等数学概念的综合性问题。

本文将对该题进行详细的解析和讲解,帮助读者理解题目的要求,并提供一些解题思路和方法。

第一部分:理解题目该题目的题面由多个部分组成,涉及到原问题、目标、约束条件等内容。

在进行解题之前,我们首先需要完全理解题目的要求。

原问题是一个货车经过N个城市,每个城市都有相应的货物量,目标是使得货车的路径长度最短。

同时,题目要求我们设计一个数据模型,来描述这个问题。

第二部分:建立数学模型为了更好地解决问题,我们需要建立一个数学模型来描述货车的路径以及货物量的分配。

在本部分,我们将详细讲解如何建立这个模型。

假设有N个城市,每个城市的货物量分别为w1, w2, ..., wN。

我们可以将货车的路径表示为一个N*N的矩阵D,其中D[i][j]表示从第i个城市到第j个城市的距离。

同时,我们引入一个N维的向量x,其中x[i]表示从第i个城市运送的货物量。

我们的目标是最小化路径长度,即最小化下式:Minimize ∑∑D[i][j]*x[i]*x[j] (i从1到N, j从1到N)同时,我们有一些约束条件需要满足:1. 每个城市必须运送货物:∑x[i] = W,其中W是总的货物量。

2. 每个城市的货物量不能超过其容量:x[i] <= C,其中C是城市i的容量。

第三部分:优化求解在第二部分中,我们已经建立了数学模型,现在我们需要找到一种优化方法来求解这个模型。

在现实生活中,这类问题通常是NP难问题,因此我们需要采用一些启发式搜索算法。

在本部分,我们将介绍一种常用的优化方法,即遗传算法。

遗传算法模拟了自然界中的进化过程,通过不断筛选和演化来得到最优解。

遗传算法的优化步骤如下:1. 初始化种群:随机生成一组初始解,也就是一组路径和货物分配方案。

2. 评估适应度:根据路径长度和货物量是否满足约束条件,计算每个解的适应度。

2014美国数学建模A题解题思路大全

2014美国数学建模A题解题思路大全

美国高速公路限速是多少?美国高速公路的限速一般在60至75英里之间,多数州规定不能超过限速100英里。

也就是说,你在限速75英里的美国高速公路上跑到85英里,一般不会遭到警察追击。

但再高上去,麻烦就来了,警车往往是在你毫无戒备的情况下出现的,那时候你根本不知道自己已经超速,更不知道自己已经成了某个警察的猎物。

1英里(mi.)=1760码=5280英尺=1.6093公里=3.2187市里=3.2187华里=1609.3米中国最高车速不得超过每小时120公里<<中华人民共和国道路交通安全法实施条例>> 第七十八条高速公路应当标明车道的行驶速度,最高车速不得超过每小时120公里,最低车速不得低于每小时60公里。

在高速公路上行驶的小型载客汽车最高车速不得超过每小时120公里,其他机动车不得超过每小时100公里,摩托车不得超过每小时80公里。

同方向有2条车道的,左侧车道的最低车速为每小时100公里;同方向有3条以上车道的,最左侧车道的最低车速为每小时110公里,中间车道的最低车速为每小时90公里。

道路限速标志标明的车速与上述车道行驶车速的规定不一致的,按照道路限速标志标明的车速行驶。

提出交通流模型前,应当将实际的涉及到车道数目、最高时速限制、交通路口、机械故障、驾驶员反应能力等多种因素的实际问题理想化,以便于应用数学方法进行分析讨论。

此处所做的假设包括:a.车辆沿一条无限长单向车道运动;b.车辆在单向车道内只能朝一个方向运动;c.单向车道是全封闭的,即没有供车辆驶入或者驶出的岔路口;d.车辆相对于此序列中的其他车辆位置不发生改变,即没有抛锚或超车的情况。

基于上述的假设,对作匀速运动的恒定密度车流而言,交通流变量的函数关系为:q=P0 0 (4)式中,P。

为车辆运动时的恒定密度;。

为车辆做匀速运动的速度。

实际的非恒定密度和非匀速运动的交通流仍然满足上述关系,其函数表达式为:g( ,t)=P( ,£)口( ,£车辆守恒方程由基本的交通流变量中所做的假设可知车辆的总体数目不会因观测点、观测时间的变化而变化。

2014高教社杯全国大学生数学建模竞赛A题


三、问题假设
1. 2. 3. 4. 假设忽略月球自转与公转的对嫦娥三号探月器位置的影响。 假设在嫦娥三号探月器在软着陆过程中,忽略一切阻力的影响。 假设在嫦娥三号探月器软着陆主减速阶段结束后其位置就处于着陆点竖直上方 假设将嫦娥三号当做一个质点来进行研究
1
5. 假设在精避障过程中,忽略水平移动的能耗 6. 假设嫦娥三号在转换形态的过程,发动机的推力变化是突变的 7. 假设嫦娥三号在悬停的过程中,不考虑其能耗(本文未研究此阶段)
2
m/s2 m m/s2
vy1
m/s2
θ V0 t1 F1 Vm t2
m/s s N m/s s
F2 t3 F3 t01 F01 Vm t02 F02 t03 F03
粗避障匀速阶段推力 粗避障减速阶段时间 粗避障减速阶段推力 精避障加速阶段时间 精避障加速阶段推力 精避障匀速阶段速度 精避障匀速阶段时间 精避障匀速阶段推力 精避障减速阶段时间 精避障减速阶段推力
我们参赛选择的题号是(从 A/B/C/D 中选择一项填写): 我们的报名参赛队号为(8 位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 2. 3. 指导教师或指导教师组负责人 (打印并签名):
A
中国石油大学(北京) 刘学 王小龙 崔航 数学建模指导老师组
(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容 请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期:2016 年 7 月 8 日
2014 高教社杯全国大学生数学建模竞赛
承 诺 书
我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参 赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下 载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网 上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或 其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文 引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有 违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展 示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

2014高教社杯全国大学生数学建模竞赛A题_共26页


2014 高教社杯全国大学生数学建模竞赛
编号专用页
赛区评阅编号(由赛区组委会评阅前进行编号):
赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注
全国统一编号(由赛区组委会送交全国前编号):
全国评阅编号(由全国组委会评阅前进行编号):
嫦娥三号软着陆轨道设计与控制策略 摘要
本文针对嫦娥三号软着陆轨道设计与控制策略问题,通过提取题目中的信 息,利用拱点的概念、B 样条函数逼近的统计定位方法、非线性规划问题及哈 密尔顿函数为理论基础进行了完整的建模工作。首先,通过建立坐标系结合物 理学运动公式求解出了近月点与远月点的位置及相应的速度;在此基础上,利 用 B 样条函数逼近的方法确定了嫦娥三号的着陆轨;最后通过分解着陆过程并 利用非线性规划问题及哈密尔顿函数确定着陆阶段的最优控制策。
参赛队员 (打印并签名) :1.
2.
3.
指导教师或指导教师组负责人 (打印并签名):
(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上
内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖
资格。)
日期: 2014 年 9 月 15 日
赛区评阅编号(由赛区组委会评阅前进行编号):
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开 展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从 A/B/C/D 中选择一项填写):
A
我们的报名参赛队号为(8 位数字组成的编号):
07033001
所属学校(请填写完整的全名):吉林师范大学博达学院
针对问题二,采用 B 样条函数逼近的运动学统计定位方法确定了在着陆弧 段上任意时刻的位置方程,从而刻画出了嫦娥三号的着陆轨道,并用 matlab 对轨 迹进行了模拟。在 6 个阶段的最优控制策略上,先通过直角坐标系得出质心的运 动方程,再通过对 6 个阶段初始条件和终端状态的分解,利用非线性规划问题 求解哈密尔顿函数,得出性能指标(耗燃量)的最小值为:382.6531kg,从而确 定了最优控制策略。

2014数学建模a题

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的报名参赛队号为(8位数字组成的编号):所属学校(请填写完整的全名):山东师范大学参赛队员(打印并签名) :1. 唐健2. 杨晓梅3. 王娜娜指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2014 年 9 月 15 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。

嫦娥三号在着陆准备轨道上的运行质量为2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。

2014数学建模A题资料

根据题目给出的已知量建立合适的模型求解分析下列几个问题:
(1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。
(2)确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略。
(3)对设计的着陆轨道和控制策略做相应的误差分析和敏感性分析。
二、
本问题的一个关键点在于求解出嫦娥三号卫星的绕月运行轨道。由于已知卫星的运行轨迹为近月点15km,远月点100km的椭圆形轨道。
嫦娥三号软着陆轨道设计与控制策略
摘要:
嫦娥三号卫星采用的是软着陆方式登陆月球,在卫星高速飞行的情况下,我们要精确地在月球预定区域内实现软着陆,需要对其运行轨道进行设计并制定相应控制策略。由于天体的运动均满足开普勒三大定律以及总能量守恒定律,我们据此建立一系列的方程,最终求得卫星在近月点处的速度大小
求得卫星在远月点处的速度大小 。其速度方向均为当前运动轨道的切方向。
我们将嫦娥三号卫星绕月运行的椭圆轨道抽象出如下图所示的一个简单的几何图形,月球的月心位于椭圆的一个焦点F上,椭圆的半长轴为 ,半短轴为 ,半焦距为 。A点为近月点,速度为 ,B点为远月点,速度为 。易知A、B两点距月心的距离 , 。在一个极小的时间段 内,卫星与月心连线扫过的面积分别为 , 。由开普勒第二定律可知,卫星与中心天体连线在单位时间内扫过的面积相等,所以 ,代入化简后可得公式(1) ;由于卫星运动的总机械能等于其动能和引力势能之和,所以在A点,卫星的总机械能 (公式2),同理B点的总机械能 (公式3)。卫星在运行过程中只有动能和引力势能之间的转化,机械能守恒,所以 (公式4)。[1]
对于第二问,要设计一种方案使得在软着陆的过程中耗能最少,并达到预设的各项指标。我们需要不断的去设计、计算、调整,在不断的尝试摸索中寻找出一个比较不错的软着陆方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档