喷水灭火系统设计

喷水灭火系统设计
喷水灭火系统设计

课程设计说明书

课程名称:鞍钢股份炼铁总厂自动

喷水灭火系统设计

专业:安全工程

班级:

学号:

姓名:

摘要

“安全第一,预防为主,综合治理”是一项基本的政策方针,而灭火系统是建筑消防设施的重要组成部分。火灾事故近年来又是频发。自动喷水灭火系统可以在很大的程度上减少火灾造成的损失。本文选用鞍钢股份炼铁总厂某一车间为系统,进行设计自动喷水灭火系统。主要设计内容包括通过查表确定火灾危险等级、确定喷水强度、作用面积、喷头动作数、每只喷头保护面积等基本设计技术数据、从中央中心型、侧边中心型、中央末端型及侧边中心型选出系统类型、喷头和管网的选择和布置、并且根据具体设计绘制布置图等内容。保证鞍钢股份炼铁总厂的安全,有效避免因火灾造成的经济损失,保证工人的生命安全。

关键词:自动喷水灭火系统;鞍钢股份炼铁总厂;消防安全

Abstract

"Safety first, prevention first, comprehensive management" is a basic policy, Andrew extinguishing system is an important part of building fire protection facilities.Fire accidents in recent years and is a frequent. Automatic sprinkler system can largely reduce fire losses caused by. In this paper, the selection of Generational iron making plant of a workshop for the system, the design of automatic sprinkler system. The main design content includes through the look-up table to determine the fire danger rating, to determine the effect of spray intensity, area,number of nozzle moves, each spray head protection area of basic design technology of data, from the central type, the side central type, the central terminal and the side of central type selected type of spray nozzle and pipe network system, the selection and arrangement, and according to the specific design of drawing layout diagram etc.. Ensure that the iron and Steel generalship iron making plant safety, effectively avoid the fire caused economic losses, ensure the workers safety.

Keywords: automatic sprinkler system; An gang iron making plant; fire safety

目录

前言 (1)

1 工厂介绍 (2)

1.1 工厂基本情况介绍 (2)

1.2车间基本情况介绍 (2)

2 火灾简介 (4)

2.1 固体可燃物火灾 (4)

2.2 液体可燃物火灾 (4)

2.3 气体可燃物火灾 (4)

2.4 可燃金属的火灾 (4)

3 自动喷水灭火系统概述 (6)

3.1 闭式自动喷水灭火系统 (6)

3.1.1 湿式自动喷水灭火系统 (6)

3.1.2 干式自动喷水灭火系统 (7)

3.1.3 预作用自动喷水灭火系统 (7)

3.1.4 循环自动喷水灭火系统 (8)

3.2 开式自动喷水灭火系统 (8)

3.2.1 雨淋系统 (8)

3.2.2 水幕系统 (8)

4 设计自动喷水灭火系统 (9)

4.1 确定建筑物火灾危险等级 (9)

4.2 确定基本设计技术数据 (10)

4.3 系统类型的选择 (11)

4.4 选择和布置喷头和管网 (11)

4.4.1 喷头布置 (11)

4.4.1 管网布置 (13)

5 结论 (16)

参考文献 (17)

前言

火被人类掌握和使用以后,为人类的进步和社会的发展作出了巨大贡献。我们的祖先早在一百万年以前就已经利用火来取暖御寒,防御野兽,熏烤食物;利用火打制武器和工具,制作器皿,提高劳动生产效能。火给人类带来了进步,人类之所以区别于其他动物,就在于人类会使用火,火的使用是人类走向文明的重要标志。恩格斯指出:“只是人类学会了摩擦取火以后,人才第一次使无生命的自然力为自己服务。

自动喷水灭火系统是指由洒水喷头、报警阀组、水流报警装置(水流指示器或压力开关)等组件以及管道、供水设施组成的自动灭火系统。自动喷水灭火系统是一种在发生火灾时,能自动打开喷头喷水灭火并同时发出火警信号的消防灭火设施,系统在火灾发生后能通过各种方式自动启动,并能同时通过加压设备将水送入管网维持喷头洒水灭火一定时间。该系统是当今世界上公认的最为有效、应用最广泛的自救灭火设施,具有安全可靠、经济实用、灭火成功率高等优点。自动喷水灭火系统扑灭初期火灾的效率在96%以上。基于以上认识,作者选用鞍钢股份炼铁总厂某一车间为系统,根据实际情况计算并设计了其自动喷水灭火系统。

1 工厂介绍

1.1 工厂基本情况介绍

鞍山钢铁集团公司总部坐落在辽宁省鞍山市,鞍山地区铁矿石资源丰富,已探明的铁矿石储量约占全国储量的四分之一。周围还蕴藏着丰富的菱镁石矿、石灰石矿、粘土矿、锰矿等,为黑色冶金提供了难得的辅助原料。中长铁路和沈大高速公路穿过市区,大连港、营口港、鲅鱼圈港与海内外相通,交通运输条件便利。鞍钢始建于1916年,前身是日伪时期的鞍山制铁所和昭和制钢所。1948年鞍钢成立,是新中国第一个恢复建设的大型钢铁联合企业和最早建成的钢铁生产基地,被誉为“中国钢铁工业的摇篮”、“共和国钢铁工业的长子”。60年来,鞍钢为国家经济建设作出了巨大贡献,累计生产钢3.81亿吨、铁3.75亿吨、钢材2.77亿吨;上缴利税1245亿元,相当于国家对鞍钢投入的23倍。

控股子公司:鞍钢股份有限公司、大连华冶联自动化有限公司、鞍山冀东水泥有限责任公司、营口市鞍钢水业有限公司;全资子公司:矿业公司、国际经济贸易公司、财务有限责任公司、自动化公司、耐火材料公司、设计研究院、房产物业公司。

此次选用鞍钢股份炼铁总厂的某一车间为系统进行自动喷水灭火系统。鞍钢股份炼铁总厂是由始建于1917 年的原鞍钢烧结总厂和炼钢厂于2000 年7 月组建而成,是鞍钢股份下属的主体生产厂之一,占地面积尽240 万平方米,主体设备有烧结机9 台、总面积1906 平方米,带式焙烧机,面积为321.6 平方米,大、中型高炉九座,高炉有效容积20191 立方米; 在建一座2580 立方米高炉。

1.2车间基本情况介绍

高炉生产时从炉顶装入铁矿石、焦炭、造渣用熔剂(石灰石),从位于炉子下部沿炉周的风口吹入经预热的空气。在高温下焦炭(有的高炉也喷吹煤粉、重油、天然气等辅助燃料)中的碳同鼓入空气中的氧燃烧生成的一氧化碳,在炉内上升过程中除去铁矿石中的氧,从而还原得到铁。炼出的铁水从铁口放出。铁矿石中不还原的杂质和石灰石等熔剂结合生成炉渣,从渣口排出。产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。所以可能出现的火灾类型为固体火灾或可燃金属的火灾。

选择的车间是高炉炼铁部分,其面积为1064m2,其中长38m,宽28m,高10m。室内温度不超过35℃。

图1.1 车间立体图

图1.2 高炉炼铁车间示意图

2 火灾简介

火灾是指在时间和空间上失去控制的燃烧所造成的灾害。在各种灾害中,火灾是最经常、最普遍地威胁公众安全和社会发展的主要灾害之一。

2.1 固体可燃物火灾

普通固体可燃物燃烧引起的火灾,又称A类火灾。固体物质是火灾中最常见的燃烧对象,主要有木材及木制品、纸张、家具;棉花、布料|、服装、床上用品;粮食;合成橡胶、合成纤维、电工产品、化工原料、建筑材料、装饰材料等,种类及其繁多。

固体可燃物的燃烧方式有熔融蒸发式燃烧、升华式燃烧、热分解式燃烧和表面燃烧四种类型。大多数固体可燃物是热分解式燃烧。

2.2 液体可燃物火灾

油脂以及一切可燃液体引起的火灾,又称为B类火灾。油脂包括原油、汽油、煤油、柴油、重油、动植物油;可燃液液体主要有酒精、苯、乙醚、丙酮等各种有机溶剂。

液体燃烧是液体可燃物首先受热蒸发变成可燃蒸气,其后是可燃蒸气扩散,并与空气掺混形成预混可燃气,着火燃烧后在空间形成预混火焰或扩散火焰。轻质液体的蒸发属相变过程,重质液体蒸发时还伴随有热解过程。

2.3 气体可燃物火灾

可燃气体引起的火灾,又称为C类火灾。可燃气体的燃烧方式分为预混燃烧和扩散燃烧。可燃气体与空气预先混合好的燃烧成为预混燃烧,可燃气与空气边混合边燃烧成为扩散。失去控制的预混燃烧会产生爆炸,这是气体可燃物火灾中最危险的燃烧方式。

2.4 可燃金属的火灾

可燃金属燃烧引起的,又称为D类火灾。锂、钠、钾、钙、锌和釉,由于它们处于薄片状、颗粒状或熔融状态是很容易着火,称他们为可燃金属。可燃金属引起的火灾之所以

从A类火灾中分离出来,单独作为D火灾,是因为这些金属在燃烧时,燃烧热很大,为普通燃料的5到10倍,火焰温度较高,有的甚至高达3000度以上;并且在高温下金属活波,能与水、二氧化碳、氮、卤素以及含卤化物发生化学反应,使常用灭火剂失去作用,必须采用特殊的灭火剂灭火。

A类火灾普通固体可燃物燃烧引起的火灾及D类火灾可燃金属火灾可能发生在高炉炼铁工厂,根据该情况设计决定高炉炼铁车间的自动喷淋灭火系统。

3 自动喷水灭火系统概述

自动喷水灭火系统,自动喷水灭火系统由洒水喷头、报警阀组、水流报警装置(水流指示器或压力开关)等组件,以及管道、供水设施组成,并能在发生火灾时喷水的自动灭火系统。简单地说,就是在火灾情况下,能自动喷水灭火,以保障人身和财产安全的一种灭火系统。其特征是:通过加压设备将水送入官网至带有热敏元件的喷头处,喷头在火灾的热环境中自动开启喷水灭火。

根据系统中所使用的喷头形式的不同,分为闭式自动喷水灭火系统和开式自动喷水灭火系统两大类。开式自动喷水灭火系统采用的是开式喷头,开式喷头不带感温闭锁装置,处于常开状态。发生火灾时,火灾所处的系统保护区域内的所有开式喷头一起喷水灭火。

3.1 闭式自动喷水灭火系统

闭式自动喷水灭火系统采用闭式喷头,它是一种常闭喷头,喷头的感温闭锁装置只有在预定的温度环境下才会脱落,开启喷头。因此,这种喷头灭火系统只有处于火焰之中或临近火源的喷头才会开启灭火。

3.1.1 湿式自动喷水灭火系统

由湿式报警阀组、闭式喷头、水流指示器、控制阀门、末端试水装置、管道和供水设施等组成。系统的管道内充满有压水,一旦发生火灾,喷头动作后立即喷水。

1. 工作原理:

火灾发生的初期,建筑物的温度随之不断上升,当温度上升到以闭式喷头温感元件爆破或熔化脱落时,喷头即自动喷水灭火。该系统结构简单,使用方便、可靠,便于施工,容易管理,灭火速度快,控火效率高,比较经济,适用范围广,占整个自动喷水灭火系统的75%以上,适合安装在能用水灭火的建筑物、构筑物内。

2. 湿式系统使用范围:

在环境温度不低于4℃、不高于70℃的建筑物和场所(不能用水扑救的建筑物和场所除外)都可以采用湿式系统。该系统局部应用时,适用于室内最大净空高度不超过8m、总建筑面积不超过1000㎡的民用建筑中的轻危险级或中危险级Ⅰ级需要局部保护的区域。

3. 湿式系统特点:

结构简单,使用可靠、系统施工简单、灵活方便、灭火速度快、控火效率高、系统投资省,比较经济、适用范围广。

3.1.2 干式自动喷水灭火系统

准工作状态时配水管道内充满用于启动系统的有压气体的闭式系统。

1. 工作原理

干式系统与湿式类似只是控制信号阀的结构和作用原理不同,配水管网与供水管间设置干式控制信号阀将它们隔开,而在配水管网中平时充满着有压力气体用于系统的启动。发生火灾时,喷头首先喷出气体,致使管网中压力降低,供水管道中的压力水打开控制信号阀而进入配水管网,接着从喷头喷出灭火。不过该系统需要多增设一套充气设备,一次性投资高、平时管理较复杂、灭火速度较慢。

2. 干式系统适用范围

干式系统适用于环境温度低于低于4℃和高于70℃的建筑物和场所,如不采暖的地下车库、冷库等。

3. 干式系统特点

①. 干式系统,在报警阀后的管网内无水,故可避免冻结和水汽化的危险,不受环境温度的制约,可用于一些无法使用湿式系统的场所。

②. 比湿式系统投资高。因需充气,增加了一套充气设备而提高了系统造价。

③. 干式系统的施工和维护管理较复杂,对管道的气密性有较严格的要求,管道平时的气压应保持在一定的范围,当气压下降到一定值时,就需进行充气。

④. 比湿式系统喷水灭火速度慢,因为喷头受热开启后,首先要排出管道中的气体,然后再出水,这就延误了时机。

3.1.3 预作用自动喷水灭火系统

准工作状态时配水管道内不充水,由火灾自动报警系统自动开启雨淋报警阀后,转换为湿式系统的闭式系统。适于如下场所:系统处于准工作状态是严禁管道漏水;严禁系统误喷;替代干式系统。

3.1.4 循环自动喷水灭火系统

能在扑灭火灾后自动关阀、复燃时再次开阀喷水的预作用系统。适用于灭火后必须及时停止喷水的场所。目前这种系统有两种形式:一种是喷头具有自动重复启闭的功能,另一种是系统通过烟、温感传感器控制系统的控制阀来实现系统的重复启闭功能。

3.2 开式自动喷水灭火系统

采用开式洒水喷头的自动喷水灭火系统,包括:雨淋系统、水喷雾系统、水幕系统3.2.1 雨淋系统

由火灾自动报警系统或传动管控制,自动开启雨淋报警阀和启动供水泵后,向开式洒水喷头供水的自动喷水灭火系统。亦称开式系统。应采用雨淋系统的场所详见《自动喷水灭火系统设计规范》(GB 50084-2001)4.2.5条。

1. 特点及适用范围

雨淋喷水灭火系统采用开式喷头。只要雨淋阀启动后,就可以它的保护区内迅速地、大面积地喷水灭火,因此降温顺灭火效果均十分明显;但其自动控制部分需有很高的可靠性,不答应误动作或不动作。

2. 工作原理

发生火灾时,探测器启动,并向控制箱发出报警信号。报警箱接到信号后,经过确认,发出指令,打开雨淋阀,使整个保护区内的开式喷头喷水冷却或灭火;同时,压力开关和水力警铃以声光警报作反馈指示。

3.2.2 水幕系统

由开式洒水喷头或水幕喷头、雨淋报警阀组或感温雨淋阀,以及水流报警装置(水流指示器或压力开关)等组成,用于档烟阻火和冷却分隔物的喷水系统。

综上自动喷水灭火系统的类型,雨淋系统更加适合高炉炼铁车间。

4 设计自动喷水灭火系统

设计自动喷水灭火系统,首先应根据不同用途的建筑物判断其发生火灾时的燃烧特性,确定其火灾危险等级,再根据基本设计技术数据、建筑物的重要性、环境影响因素等选择系统类型,最后选择和布置喷头和管网。

4.1 确定建筑物火灾危险等级

设置自动喷水灭火系统场所的火灾危险等级,应根据其用途、容纳物品的火灾载荷及室内条件等因素,在分析火灾特点和热气流驱动喷头开放及喷水到位的难易程度后确定。火灾危险等级可以分为轻危险级,中危险级(Ⅰ级、Ⅱ级),严重危险级(Ⅰ级、Ⅱ级)和仓库危险级(Ⅰ级、Ⅱ级、Ⅲ级)。

表4.1 设置场所火灾危险等级举例

火灾危险等级设置场所举例

轻危险级建筑高度为24m及以下的旅馆、办公楼;仅在走道设置闭式系统的建筑等

中危险级Ⅰ级

l)高层民用建筑:旅馆、办公楼、综合楼、邮政楼、金融电信楼、指挥调度楼、

广播电视楼(塔)等;

2)公共建筑(含单、多高层):医院、疗养院;图书馆(书库除外)、档案馆、

展览馆(厅);影剧院、音乐厅和礼堂(舞台除外)及其他娱乐场所;火车站和

飞机场及码头的建筑;总建筑面积小于5000㎡的商场、总建筑面积小于1000

㎡的地下商场等;

3)文化遗产建筑:木结构古建筑、国家文物保护单位等;

4)工业建筑:食品、家用电器、玻璃制品等工厂的备料与生产车间等;冷藏库、

钢屋架等建筑构件。

Ⅱ级

1)民用建筑:书库、舞台(葡萄架除外)、汽车停车场、总建筑面积5000㎡及

以上的商场、总建筑面积1000㎡及以上的地下商场等;

2)工业建筑:棉毛麻丝及化纤的纺织、织物及制品、木材木器及胶合板、谷物

加工、烟草及制品、饮用酒(啤酒除外)、皮革及制品、造纸及纸制品、制药等

工厂的备料与生产车间。

严 重 危险级

Ⅰ级 印刷厂、酒精制品、可燃液体制品等工厂的备料与车间等

Ⅱ级 易燃液体喷雾操作区域、固体易燃物品、可燃的气溶胶制品、溶剂、油漆、沥青制品等工厂的备料及生产车间、摄影棚、舞台“葡萄架”下部 仓 库 危险级

Ⅰ级

食品、烟酒;木箱、纸箱包装的不燃难燃物品、仓储式商场的货架区等 Ⅱ级

木材、纸、皮革、谷物及制品、棉毛麻丝化纤及制品、家用电器、电缆、B 组塑

料与橡胶及其制品、钢塑混合材料制品、各种塑料瓶盒包装的不燃物品及各类物品混杂储存的仓库等

Ⅲ级

A 组塑料与橡胶及其制品;沥青制品等

据设置场所火灾危险等级举例得知,高炉炼铁车间的火灾危险等级为中危险级Ⅱ级。

4.2 确定基本设计技术数据

建筑物的火灾危险等级划分确定后,就要确定该类型建筑物喷水灭火系统的基本设计数据。基本设计数据通常包括喷水强度、作用面积、喷头动作数、每只喷头保护面积、最不利点处喷头压力以及理论供水量等。

表4.2 民用建筑和工业厂房的系统设计基本参数

火灾危险等级 喷水强度/L ·min -1·m -2

作用面积/m 2

喷头工作压力/MPa

轻危险级

4 160

0.10

中危险级

Ⅰ级

6

Ⅱ级 8 严重危险级

Ⅰ级

12

260

Ⅱ级

16 表3.3 仓库的系统设计基本参数

仓库等级

最大净空高度

/m

货品最大堆积 高度/m

喷水强度 /L ·min -1·m -2

作用面积 /m 2 喷头工作压力

/MPa

Ⅰ级 9.0 4.5 12 200 0.10 Ⅱ级 16 300 Ⅲ级

6.5

3.5 20

260

高炉炼铁车间是中危险级Ⅱ级,查表可知,中危险级Ⅱ级建筑物的喷水强度为8L (min·m2),作用面积为160m2,喷头工作压力为0.1MPa。

4.3 系统类型的选择

高炉生产的主要原料是铁矿石及其代用品、锰矿石、燃料和溶剂。铁矿石包括天然矿和人造富矿。一般含铁量超过50%的天然富矿,可以直接入炉;而含铁量低于30—45%的矿石直接入炉不经济,须经选矿和造块加工成人造富矿后入炉。炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。

雨淋喷水灭火系统采用开式喷头。只要雨淋阀启动后,就可以它的保护区内迅速地、大面积地喷水灭火,因此降温顺灭火效果均十分明显;但其自动控制部分需有很高的可靠性,不答应误动作或不动作。根据高炉炼铁的实际情况,选择雨淋系统,本设计选择中央末端型系统。

4.4 选择和布置喷头和管网

喷头的布置应满足《自动水喷水灭火系统规范》GB50084—2001第7.1和7.2节中的有关规定。

4.4.1 喷头布置

喷头应布置在顶板或吊顶下易于接触到火灾热气流并有利于均匀布水的位置,并使得房间内任何部位都能受到喷水保护,还要满足喷水强度的要求,喷头布置方式有正方形、

长方形和平行四边形。直立型、下垂型喷头的布置,包括同一根配水支管上喷头的间距及相邻配水支管的间距,应根据系统的喷水强度、喷头的流量系数和工作压力确定,并不应大于表4.4的规定,且不宜小于2.4m。设计时必须根据工程实际情况,按设计选定的喷水强度、喷头的流量系数、工作压力确定,并考虑喷头的受热条件和开放时间,在满足规范要求的喷头强度条件下,按喷头的实际工作压力,结合建筑分隔与结构柱网灵活布置。在布置中,喷头间距不应是个定数,应根据所在位置的条件来定,最终目的还是保证喷水强度和喷水的均匀性及适时开放。

表4.4 同一根配水支管上喷头的间距及相邻配水支管的间距

喷水强度/L·min-1·m-2正方形布置的边长

/m

矩形或平行四边形

布置的长边边长/m

一只喷头的最大

保护面积/m2

喷头与端墙的

最大距离/m

4 4.4 4.

5 20.0 2.2

6 3.6 4.0 12.5 1.8

8 3.4 3.6 11.5 1.7

12~20 3.0 3.6 9.0 1.5 注:①仅在走道设置单排喷头的闭式系统,其喷头间距应按走道地面不留漏喷空白点确定。

②货架内喷头的间距不应小于2m,并不应大于3m。

表4.5各种喷头类型适用场所

闭式喷头

由于中危险级Ⅱ级的喷水强度为8L(min·m2),所以查表而知,其正方形布置边长为3.4m,矩形或平行四边形的长边边长为3.6m,一只喷头的最大保护面积为11.5m2,喷头与端墙的最大距离为1.7m。而且选择适用于外观要求不高,腐蚀性不大的工厂,仓库和民用建筑的易熔合金洒水喷头。

4.4.1 管网布置

喷水灭火系统的管网,由直接安装喷头的配水支管、向配水支管供水的配水管、向配水管供水的配水干管以及总控制阀向上(或向下)的垂直立管组成。立管主要用来连接楼层间管网和配水管与配水支管。立管与配水管之间的连接方式有四种:即中央中心型给水,侧边中心型给水,中央末端型给水和侧边末端型给水。本文设计选用中央末端型给水。

管网布置的要求如下:

1)每根配水支管或配水管的直径均不应小于25mm;

2)每根配水干管一端所负担分布支管的数量不应多于6根,以免水量分布不均匀;

3)每根配水支管或配水管上的喷头数应符合下列规定:①轻危险建筑物不应超过8个;②普通危险建筑物不应超过8个;③严重危险建筑物不应超过6个;

图4.1 图a为中央中心型;图b为侧边中心型;图c为中央中心型;图d为侧边末端型

图4.2 高炉炼铁车间雨淋系统管网轴测图、

高炉炼铁车间面积为1064m2,其中长38m,宽28m,高10m。室内温度不超过35℃。根据车间的实际情况,绘制雨淋系统管网平面布置图。

喷头采用正方形布置,在1#节点处平衡于配水支管划定矩形作用面积,(见图4.2)其长边长度为:

L=

?

2.1

?

=m

=

2.

15

160

2.1

A

每边支管上最多动作喷头数:

'

n≈

=

15

=

÷

47

5

.4

4.3

2.

已知高炉炼铁车间面积为1064m2,其中长38m,宽28m,高10m,正方形的作用面积为160m2。5个喷头的间距为4个,喷头与端墙的最大距离为1.7m。

?

?m

4=

+

4.3

2

17

7.1

÷m

160=

17

9

=

÷

9≈

3

4.3

6.2

剩余面积一边边长:4

38=

?

-

4.3

10

可设置喷头数6.0

4=,

-

4.3

所以剩余面积一边可设置2个喷头。在作用面积160m2内,共布置3排喷头,最大动作喷头个

?,在高炉炼铁车间可设置6个这样的作用面积。剩余面积可设置3排喷5=

15

3

头,动作喷头个

?。所以系统一共可设置108个喷头。

18

2=

9

图4.3 管网布置图

验算:

长边:7.1

38<

?

-

=

6.0

4.3

11

短边:8.0

?<1.7 所以设计的自动喷水灭火系统符合规范。

28=

8-

4.3

5 结 论

本次设计以鞍钢股份炼铁总厂某一车间为系统,结合消防工程相关知识设计其自动喷水灭火系统。下面结合全文内容,得出以下总结:

1.确定高炉炼铁车间的火灾危险等级为中危险级Ⅱ级。

2.高炉炼铁车间是中危险级Ⅱ级,查表可知,中危险级Ⅱ级建筑物的喷水强度为8L (min ·m2),作用面积为160m 2,喷头工作压力为0.1MPa 。

3.根据高炉炼铁车间的实际情况,设计使用中央末端型系统及开式自动喷水灭火系统的雨淋系统。

4.喷头选用正方形布置,其正方形布置边长为3.4m ,一只喷头的最大保护面积为11.5m 2,喷头与端墙的最大距离为1.7m 。而且选择适用于外观要求不高,腐蚀性不大的工厂,仓库和民用建筑的易熔合金洒水喷头。

5.高炉炼铁车间面积为1064m 2,其中长38m ,宽28m ,高10m 。在作用面积160m 2内,共布置3排喷头,最大动作喷头个1535=?,在高炉炼铁车间可设置6个这样的作用面积。剩余面积可设置3排喷头,动作喷头个1892=?。所以系统一共可设置108个喷头。

6.经验算本设计符合设计规范。

自动喷水灭火系统设计流量的计算与分析

1前言 自动喷水灭火系统,是当今世界上公认的最为有效的自救灭火设施,是应用最广泛、用量最大的自动灭火系统。其自动化程度高、能够及时扑灭初期火灾,在国内外都被普遍采用。应用实践证明:该系统具有安全可靠、经济实用、灭火成功率高等优点。 国外应用自动喷水灭火系统已有一百多年的历史。在长达一个多世纪的时间内,一些经济发达的国家,从研究到应用,从局部应用到普遍推广使用,有过许许多多成功和失败的教训。自动喷水灭火系统不仅已经在高层建筑、公共建工业厂房和仓库中推广应用,而且发达国家已在住宅建筑中开始安装使用[1]。因此对自动喷淋系统进行研究分析显得尤为重要。 《自动喷水灭火系统设计规范》GB50084-2001( 2005年版)中系统的设计流量中规定了设计流量的计算方法,但设计人员在计算喷淋系统的流量时,通常先确定设置喷淋系统的场所的火灾危险等级,然后将该等 级对应的喷水强度与作用面积相乘,即得到喷淋系统的设计流量,该设计流量是假定作用面积内所有喷头的工作压力和流量都等于最不利点喷头的工作压力和流量,忽略了管道阻力损失对喷头工作压力的影响,使设计流量有时就偏离于实际系统流量,有时会对系统的灭火效果产生一定的影响。因此,设计流量应按自动喷水灭火系统设计规范中规定的计算方法进行详细的计算,与估算值进行比对,选择合理的喷淋泵,才能满足火灾情况下喷淋系统的实际需水量,达到灭火效果。 2研究对象 笔者对四个不同功能、不同危险等级的自动喷淋系统进行流量计算,并将计算结果与平时估算值相比较,进行分析与探讨。其中,进行水力计算时,选定的最不利点处作用面积均为矩形,其长边应平行于配水支管,其长度不宜小于作用面积平方根的倍。 选取计算分析的四个自动喷淋系统概况如下: (1)建筑名称:齐鲁软件大厦B座敞开式办公楼;危险等级:中危险I级;喷水强度:6L/ ;末端最不利作用面积:160平方米;末端压力:、;选取喷头数量:18个k80喷头。 (2)建筑名称:齐鲁外包城奥盛大厦办公楼;危险等级:中危险I级;喷水强度:6L/ ;末端最不利作用面积:160平方米;末端压力:、;选取喷头数量:21个k80喷头。 (3)建筑名称:济南齐源大厦地下二层车库;危险等级:中危险II级;喷水强度:8L/;末端最不利作用面积:160平方米;末端压力:、;选取喷头数量:17个k80喷头。 (4)建筑名称:莱芜银座超市商场;危险等级:中危险II级;喷水强度:8L/;末端最不利作用面积:160平方米;末端压力:、;选取喷头数量:19个k80喷头。—— 3计算方法 根据《自动喷水灭火系统设计规范》GB50084-2001(2005年版)第条规定:自动喷水灭火系统的设计流量,应按最不利点处作用面积内喷头同时喷水的总流量确定。 自动喷水灭火系统流量计算公式如下所示: (1)Q=d v (2)(V≥s) (3) 其中,i—管道单位长度的水头损失(MPa/m) Q—管道内的平均流量(m3/s);

气体灭火系统设计规范

气体灭火系统设计 规范

气体灭火系统设计规范 Code for design of gas fire extinguishing systems 标准号:GB 50370- 发布日期:年 03 月 02 日 实施日期:年 05 月 01 日 发布单位:中华人民共和国建设部 / 中华人民共和国国家质量监督检验检疫总局 出版单位:中国计划出版社 摘要:本规范是根据建设部建标 [ ]269 5- 文《——年度工程建设国家标准制定、修订计划》要求编制完成的。本规范共分六章内容包括 : 总则、术语和符号、设计要求、系统组件、操作与控制、安全要求等。 其中,第 3.1.4、3.1.5、3.1.15、3.1.16、3.2.7、3.2.9、3.3.1、3.3.7、3.3.16、3.4.1、 3.4.3、3.5.1、3.5.5、4.1.3、4.1.4、4.1.8、4.1.10、5.0.2、5.0.4、5.0.8 等条为强制性条文。 1 总则 1.0.1 为合理设计气体灭火系统,减少火灾危害,保护人身和财产的安全,制定本规范。 1.0.2 本规范适用于新建、改建、扩建的工业和民用建筑中设置的七氟丙烷、 IG541 混合气体和热气溶胶全淹没灭火系统的设计。 1.0.3 气体灭火系统的设计,应遵循国家有关方针和政策,做到安全可靠、技术先进、经济合理 1.0.4 设计采用的系统产品及组件,必须符合国家有关标准和规定的要求。 1.0.5 气体灭火系统设计,除应符合本规范外,还应符合国家现行有关标准的规定。 2 术语和符号 2.1 术语 2.1.1 防护区 protected area 满足全淹没灭火系统要求的有限封闭空间。 2.1.2 全淹没灭火系统 total flooding extinguishing system 在规定的时间内,向防护区喷放设计规定用量的灭火剂,并使其均匀地充满整个防护区的灭火系统。

仓库泡沫-水雨淋灭火系统设计探讨

仓库泡沫-水雨淋灭火系统设计探讨 摘要:通过优化泡沫-水雨淋系统中每个雨淋阀控制面积大小及喷淋区域分割,满足使用功能、安全要求。本文以丙类可燃液体仓库设计平面为例,比较了不同喷淋分割的设计流量、消防水量及消防水池容积,推荐采用增加雨淋阀组合理分割各组阀门控制区域,减小雨淋系统设计流量、消防水量及消防水池容积。 关键词:泡沫-水雨淋系统雨淋阀丙类可燃液体仓库消防水池泡沫罐 Design Research of Warehouse Foam - Water Deluge System Chen Qi Shanghai Youwei Engineering Design Co., Ltd, Shanghai 200333 Abstract: The area and spray region segmentation of foam-water deluge system deluge valve were be optimized to ensure the function and safety in use. C class combustible liquid warehouse design was taken as an example to compare the design flow, firefighting water amount and firefighting water pool capacity of different spray segmentation. Deluge valve should be increased to reasonably segment the value control area, which will help to decrease the the design flow, firefighting water amount and firefighting water pool capacity of deluge system. Keywords: Foam - Water Deluge System, Deluge valve, C class combustible liquid warehouse, Fire pool, Foam tank 随着工业飞速发展,集中存储化工物料仓库也越来越多,安全隐患频发,泡沫-水雨淋系统的规范为此类仓库消防设计提供的有效支持,极大的降低了此类仓库火灾危害。 笔者有幸参加某大型化工企业丙类仓库项目设计,项目设计期间新版《建筑设计防火规范》未发布实施,送审过程中新版发布,突增8.3.2条第7款,本文将结合笔者设计经历,以丙类可燃液体仓库为例,着重分析、探讨泡沫-雨淋系统设计。 2丙类可燃液体仓库工程实例 2.1工程概况 某丙类可燃液体物质存储仓库占地面积1863.85m2,建筑面积6136.81m2,体积为48386m3,钢筋混凝土结构,耐火等级二级,层高7.8m,储物高度6m,共3层,每层2个防火分区。 2.2项目执行的主要规范条款 2.2.1按照《建筑设计防火规范》(GB50016-2014,下称“建规”)8. 3.2条第7款“每座占地面积大于1500m2或总建筑面积大于3000m2的其它单层或多层丙类物品仓库”应设置自动喷水灭火设施【2】。 2.2.2依据《自动喷水系统灭火系统设计规范》(GB50081-2001,2005年版,下称“喷规”)4.2.7条规定此仓库应设置喷水—泡沫联用系统,火灾危险等级为仓库危险Ⅱ级。 2.2.3喷规第4.2.7条规定“存在较多易燃液体的场所,宜按下列方式之一采用自动喷水—泡沫联用系统【1】: (1)采用泡沫灭火剂强化闭式系统性能; (2)雨淋系统前期喷水控火,后期喷泡沫强化灭火效能; (3)雨淋系统前期喷泡沫灭火,后期喷水冷却防止复燃;系统中泡沫灭火剂的选型、储存及相关设备的配置,应符合现行国家标准《泡沫灭火系统设计规范》(GB 50151-2010,下称“泡沫规“)的规定。

自动喷水灭火系统施工的方案.doc

三、施工方法 (一)、自动喷水灭火系统 施工流程 安装准备(实物模型安装验收)→干管安装→立管安装→喷洒支干管安装→水流指示器、消防水泵及报警阀安装→管道试压→管道冲冼→喷淋头支管安装→报警阀配件、喷洒头安装→系统通水试验 1、安装准备 a、 认真熟悉图纸,核对有关专业图纸,查看各管道的坐标、标高是否有交叉或排列位置不当,及时与设计人员研究解决;编制安装分项工艺卡,下达给班组进行技术与安全交底; b、检查预埋和预留孔洞是否准确; c、检查管材、管件、阀门、设备及组件等是否符合设计要求和质量标准; d、安排合理的施工顺序,避免工种交叉作业的干扰影响施工。 2、管道安装 a、喷淋管道使用热镀锌钢管,大于DN150消防喷淋管道采用热镀锌无缝钢管《输送流体用无缝钢管》GBT/T8163-2008,小于等于DN150消防喷淋管道采用热镀锌焊接钢管《低压流体输送用镀锌钢管》GB/T3091-2001中加厚型热镀锌钢管。当主、干管管径大于DN65时采用卡箍连接,管径小于或等于DN65时可采用螺纹连接。每根配管长度不宜超过6m。连接后,均不得减少管道的通水横断面面积。 b、先了解和确定干管的标高、位置、坡度、管径等,预先对管段长度进行测量时,应计算出管子加工时下料的尺寸。计算管子的下料度时,应考虑扣除阀件、管件长度,然后架设连接管道。对所安装的干管要拔正调直后,卡固管道,防止局部有“塌”、“拱”现象。 c、在长度大于6英尺(1.8米)立管的顶部和底部24英寸(0.6米)范围内,设置柔性卡箍。 d、管道连接紧固卡箍时,检查卡箍端面是否干净,法兰螺栓的规格应符合规定。紧固螺栓应先紧最不利点,然后依次对称紧固(卡箍接口应安装在易拆装的位置)。 e、管网安装前应校直管子,并应清除管子内部的杂物;安装时应随时清除已安装管道内部的杂物。 f、在具有腐蚀性的场所,安装管网前,应按设计要求对管子、管件以及支架吊架等进行防腐处理(抗腐蚀涂料一次和环氧树脂两次)。 g、螺纹连接应符合下列要求: 管子宜采用机械切割,切割面不得有飞边、毛刺;管子螺纹密封面应符合现行国家标准《普通螺纹其本尺寸要求》、《普通螺纹公差与配合》、《管路旋入端螺纹尺寸系列》的有关规定; h、沟槽式连接应符合下列要求: 安装前准备:安装机械滚槽机、开孔机、钢管切割机、滚槽机尾架; 材料准备:待安装管子(符合国家标准)、扳手、游标卡尺、水平仪、润滑剂(肥皂水

泡沫灭火系统设计规范

规范明细 第一章总则 第1.0.1条为了合理地设计低倍数空气泡沫灭火系统(以下简称泡沫灭火系统),减少火灾损失,保障人身和财产安全,制订本规范。 第l.0.2条泡沫灭火系统的设计,必须遵循国家的有关方针、政策,做到安全可靠,技术先进,经济合理,管理方便。 第l.0.3条本规范适用于加工、储存、装卸、使用甲(液化烃除外)、乙、丙类液体场所的泡沫灭火系统设计。 本规范不适用于船舶、海上石油平台等的泡沫灭火系统设计。 第1.0.4条泡沫灭火系统的设计,除执行本规范的规定外,尚应符合国家现行的有关标准、规范的要求。 第二章泡沫液和系统型式的选择 第一节泡沫液的选择、储存和配制 第2.1.1条对非水溶性甲、乙、丙类液体,当采用液上喷射泡沫灭火时,宜选用蛋白泡沫液、氟蛋白泡沫液或水成膜泡沫液;当采用液下喷射泡沫灭火时,必须选用氟蛋白泡沫液或水成膜泡沫液。 第2.1.2条对水溶性甲、乙、丙类液体,必须选用抗溶性泡沫液。 第2.1.3条泡沫液的储存温度,应为0-40℃,且宜储存在通风干燥的房间或敞棚内。 第2.1.4条泡沫液配制成泡沫混合液,应符合下列要求: 一、蛋白、氟蛋白、抗溶氟蛋白型泡沫液,配制成泡沫混合液,可使用淡水或海水; 二、凝胶型、金属皂型泡沫液,配制成泡沫混合液,应使用淡水; 三、所有类型的泡沫液,配制成泡沫混合液,严禁使用影响泡沫灭火性能的水; 四、泡沫液配制成泡沫混合液用水的温度宜为4~35℃。 第二节系统型式的选择

第2.2.1条系统型式的选择,应根据保护对象的规模、火灾危险性、总体布置、扑救难易程度、消防站的设置情况等因素综合确定。 第2.2.2条下列场所之一,宜选用固定式泡沫灭火系统: 一、总储量大于、等于500m^3独立的非水溶性甲、乙、丙类液体储罐区; 二、总储量大于、等于200m^3水溶性甲、乙、丙类液体立式储罐区。 三、机动消防设施不足的企业附属非水溶性甲、乙、丙类液体储罐区。 第2.2.3条下列场所之一,宜选用半固定式泡沫灭火系统: 一、机动消防设施较强的企业附属甲、乙、丙类液体储罐区; 二、石油化工生产装置区火灾危险性大的场所。 第2.2.4条下列场所之一,宜选用移动式泡沫灭火系统: 一、总储量不大于500ms、单罐容量不大于200m^3,且罐壁高度不大于7m的地上非水溶性甲、乙、丙类液体立式储罐; 二、总储备小于200m^3、单罐容量不大100m^3,且罐壁高度不大于5m的地上水熔性甲、乙、丙类液体立式储罐; 三、卧式储罐; 四、甲、乙、丙类液体装卸区易泄漏的场所。 第三章系统设计 第一节储罐区泡沫灭火系统设计的一般规定 第3.1.1条储罐区泡沫灭火系统设计,其泡沫混合液量,应满足扑救储罐区内泡沫混合液最大用量的单罐火灾和扑救该储罐流散液体火灾所设辅助泡沫枪混合液用量之和的要求。 第3.1.2条储罐区泡沫液的总储量除按规定的泡沫混合液供给强度、泡沫枪数量和连续供给时间计算外,应增加充满管道的需要量。 第3.1.3条采用固定式泡沫灭火系统时,除设置固定式泡沫灭火设备外,同时还应设置泡沫钩管、泡沫枪和泡沫消防车等移动泡沫灭火设备。

简易喷淋施工方案设计

喷淋专业施工方案 编制人: 审核人: 审批人:

一、主要施工技术措施 (一)自动喷淋灭火系统 1、本次工程中的系统介绍:本工程中的自动喷淋灭火系统分布在地下室。其中主要由地下水泵房湿式报警阀组,系统管线、吊顶型及非吊顶型喷头、供水水箱及系统稳压装置组成,系统采用湿式报警方式,其共设置1套湿式报警阀组,分别与相应系统管线相连,本工程中设二台自动喷洒给水加压泵,自动喷洒系统平时由本建筑物屋顶消防水箱设专用水管至报警阀前,保证系统压力。发生火灾时由自动喷洒给水加压泵从消防水池取水加压供水。 2、施工准备 (1)设备、材料选用应符合设计标准、规的要求,必须有三证,国名牌产品。 系统包括的主要设备:水泵接合器、报警阀及组件,信号控制阀、水流指示器、喷洒头、气压给水装置、稳压泵等。其中主要组件应有国家消防产品质量监督检验中心出具的检测报告。 工程所用的主要材料: 热镀锌钢管1"-5"、丝扣管件、沟槽件、型钢。 (2)主要机具:套丝机、沟槽机、开孔器、砂轮锯、台钻、电锤、手砂轮、手电钻、电焊机、电动试压泵等机械,另外还有套丝扳、管钳子、压力钳子、链钳、手锤、扳手、导链、电气焊等工具,钢卷尺、水平尺、角尺、游标卡尺、线坠、直尺等量具。 3、作业条件 (1)施工图纸及有关技术文件应齐全,现场水、电应满足连续施工要求,系统设备材料应能保证正常施工。 (2)须预留及预埋的应随结构完成,管道安装所需要的基准线应测定并标明,设备安装前基础应检验合格,喷洒头及支管安装应配合吊顶装修进行(无吊顶处喷头的安装应随管线安装进度进行)。 4、操作工艺

5、安装准备 (1)熟悉图纸并对照现场复核管路,设备位置及标高是否有交叉,或排列不当,如果有应及时与设计人员研究解决并办理相关手续,检查预埋或预留洞是否正确,需临时剔凿的应与设计及土建方协商解决。 (2)进场设备材料规格、型号应满足设计要求,必须由专职检验员检查,并报工程监理,设备材料外观应整洁、无缺损、变形及锈蚀,镀锌及涂漆应均匀无脱落,法兰密封面应完整光洁,无毛刺及径向沟槽,丝扣应完好无损伤,水泵盘车应灵活无阻滞及异常声响,设备配件应齐全,报警阀应逐个进行渗漏试验,阀门及喷头应抽样进行强度、严密性试验。上述工作必须由专职工程师完成,并报工程监理审核。 6、管网安装 (1)自动喷水灭火系统管材应根据设计要求选用,本工程中管材选用热镀锌钢管管件,选用镀锌管件,当管子公称直径小于100mm时,应采用螺纹连接,当管子公称直径大于或等于100mm时,采用法兰及沟槽连接。 (2)管道安装前应校直管子,并清除部杂物,停止安装时应对已安装的管道敞口应进行封堵,如需在镀锌管上开孔焊接时应提前预制,必要时管道两端采用法兰连接,焊接并做防腐处理后再进行安装,严禁在已安装好的镀锌管道上开孔施焊。 (3)管道穿过伸缩缝时应设置柔性短管,管道水平安装宜设2‰-5‰的坡度,坡向泄水装置。 (4)自动喷水灭火系统管道支、吊架选材及做法应满足要求,支吊架最大间距应符合下表: (5)干管安装 喷淋干管用沟槽件、法兰、管件连接,每根配管长度不宜超过6米,直管段处可把几根连接在一起,应使用导链安装,但不宜过长,也可调直后编号依顺序安装,吊装时应先吊起管道的一端,待稳定后再吊起另一端。 A、管道采用沟槽件连接的措施: 钢管滚槽:钢管定尺切断去毛刺后把钢管调平放入滚轮之间,下压手动液压

泡沫灭火系统设计规范-GB50151-2010要点

前言 Code of design for foam extinguishing systems GB50151-2010 中华人民共和国住房和城乡建设部公告第737 号 关于发布国家标准 《泡沫灭火系统设计规范》的公告 现批准《泡沫灭火系统设计规范》为国家标准,编号为GB50151-2010,自2011年6月1日起实施。其中,第3.1.1、3.2.1、3.2.2(2)、3.2.3、3.2.5、3.2.6、3.3.2(1、2、3、4)、3.7.1、3.7.6、3.7.7、4.1.2、4.1.3、4.1.4、4.1.10、4.2.1、4.2.2(1、2)、4.2.6(1、2)、4.3.2、4.4.2(1、2、3、5)、6.1.2(1、2、3)、6.2.2(1、2、3)、6.2.3、6.2.5、6.2.7、6.3.3、6.3.4、7.1.3、7.2.1、7.2.2、7.3.5、7.3.6、8.1.5、8.1.6、8.2.3、9.1.1、9.1.3条(款)为强制性条文,必须严格执行。原《低倍数泡沫灭火系统设计规范》GB50151-92(2000年版)和《高倍数、中倍数泡沫灭火系统设计规范》GB50196-93(2002年版)同时废止。 本规范由我部标准定额研究所组织中国计划出版社出版发行。 中华人民共和国住房和城乡建设部 二0一0年八月八日

本规范是根据原建设部《关于印发<2006 年工程建设标准规范制订、修订计划(第一批)>的通知》(建标[2006]77 号)和《关于同意调整国家标准< 低倍数泡沫灭火系统设计规范>修订计划的复函》(建标标函[2006]50 号)的要求,由公安部天津消防研究所会同有关单位,在《低倍数泡沫灭火系统设计规范》GB50151-92 (2000 年版)和《高倍数、中倍数泡沫灭火系统设计规范》GB50196- 93 (2002 年版)的基础上,通过合并,并进行修订而成。 本规范在编制过程中,编制组遵照国家有关基本建设的方针、政策,以及“预防为主、防消结合”的消防工作方针,以科学严谨的态度,与有关单位合作先后开展了泡沫喷雾系统灭油浸变压器火灾、公路隧道泡沫消火栓箱灭轿车火、凝析轻烃低倍数泡沫灭火、环氧丙烷储罐抗溶泡沫灭火等大型试验研究;深入相关单位调研,总结国内外近年来的科研成果、工程设计、火灾扑救案例等实践经验;借鉴国内外有关标准、规范的新成果,开展了必要的专题研究和技术研讨;广泛征求了国内有关设计、研究、制造、消防监督、高等院校等部门和单位的意见,最后经审查定稿。 本规范共分9 章1个附录。主要内容有:总则、术语、泡沫液和系统组件、低倍数泡沫灭火系统、中倍数泡沫灭火系统、高倍数泡沫灭火系统、泡沫—水喷淋系统与泡沫喷雾系统、泡沫消防泵站及供水、水力计算等。 与原国家标准《低倍数泡沫灭火系统设计规范》GB50151-92 (2000 年版)和《高倍数、中倍数泡沫灭火系统设计规范》GB50196-93 (2002 年版)相比,本规范主要有下列变化: 1、合并了《低倍数泡沫灭火系统设计规范》与《高倍数、中倍数泡沫灭火系统设计规范》;

自动喷淋灭火系统施工方案

目录 1、工程概况 (1) 2、编制说明 (2) 2、1编制目的 (2) 2、2重要承诺 (2) 2、3实施保证 (2) 3、编制依据 (3) 4、施工前准备 (3) 4、1、组织机构 (3) 4、2、施工现场平面布置 (4) 4、3、技术准备 (4) 5、施工部署 (4) 5.1、施工人员组织 (4) 5.2、施工组织顺序 (4) 5.3、主要机具计划 (5) 5.4、施工标准 (5) 6、主要施工方法及技术要求 (5) 6.1、施工准备 (5) 6.2、预留预埋 (6) 7.工程质量保证措施 (8) 7.1.工程质量目标 (8) 7.2.工程施工要求 (8) 7.3.工程技术管理 (8) 7.4.加强现场施工组织管理和技术管理 (8) 7.5.工程材料管理 (9) 7.6.计量检测管理 (9) 7.7.设备及成品保护 (9) 8.安全生产管理措施 (10) 8.1领导和组织机构 (10) 8.2现场安全管理措施 (10) 8.3施工用电安全管理措施 (10) 8.4消防安全 (11) 9.现场标准化及文明施工措施 (11) 10、系统验收方案 (11)

1、工程概况 工程名称:海珠生态城复建安置房项目地下室及主体土建工程施工总承包(标段二)工程地点:广州市海珠区官洲街,属于海珠生态城规划范围内 建设单位:广州市海珠区重点工程项目建设中心 设计单位:广州中恒信德建筑设计院有限公司 监理单位:广州建筑工程监理有限公司 施工单位:广州工程总承包集团有限公司 本工程为广州市海珠区生态城复建安置房,位于广州市海珠区官洲街,属于海珠生态城规划范围内。 1.2、主要任务:自动喷淋灭火系统施工方案。 1.3、本工程设有自动喷淋灭火系统 1.3.1、消防系统 (1)、消防水源: 从市政给水环网引入一条DN300的市政给水管,在建筑物周边形成室外消火栓环状逛网,直接供给室外消火栓用水,管线沿道路或绿化带敷设。 (2)、室外消火栓系统 室外消火栓沿消防车道、主要车道,并且靠近主路口设置,其间距不超过120米,距道路边沿不超过2米,距建筑物外墙不小于5米,且不大于40米,消火栓有一个直径为150mm(或100mm)和两个直径65mm的栓口,管网最不利点消火栓口的供水压力不下于0.10Mpa;室外消防水池(有效容积为432立方)设置在地下一层,在室外的绿化带设置了供消防车取水的取水口,水深满足消防车的消防水泵溪水高度不超过6米的要求,取水口于建筑物外墙距离不小于5米,不大于100米。 (3)、室内消火栓系统: 室内消火栓供水采用临时高压给水系统,同一时间内只考虑一次火灾的高层建筑。 消火栓箱布置与配置:应保证同一平面有两支消防水枪的两股充实水柱同时到达任何部位。消火栓的间距不超过30米,水枪的充实长度不小于13米。大空间场所的室内消火栓设置在疏散门附近便于取水和火灾扑救的位置。车库的消火栓设置在不影响汽车通行的主车道和车位。屋顶设置带有压力表的实验消火栓一个,供消防系统压力测试;塔楼、裙楼的消火栓采用带灭火器的组合箱,尺寸为700(长)×240(宽)×1800(高)mm,箱内配置:室内消火栓一个,栓口直径DN65,消防水带采用衬胶水带,长度25m;消防卷盘一套,栓口直径DN25,配备胶带内径19mm,长度30m;手提式灭火器两个。地下室车库的消火栓箱:尺寸为510(长)

自动喷水灭火系统设计规范标准

自动喷水灭火系统设计规范 第一章总则 第1.0.1 条为了保卫社会主义建设和公民生命财产的安全,贯彻"预防为主,防消结合"的方针,合理设计自动喷水灭火系统,减少火灾危害,特制定本规范。第1.0.2 条自动喷水灭火系统设计,应根据建筑物、构筑物的功能,火灾危险性以及当地气候条件等特点,合理选择喷水灭火系统类型,做到保障安全、经济合理、技术先进。 第1.0.3 条本规范适用于建筑物、构筑物中设置的自动喷水灭火系统。本规范不适用于火药、炸药、弹药、火工品工厂等有特殊要求的建筑物、构筑物中设置的自动喷水灭火系统。 第1.0.4 条自动喷水灭火系统的设计,除执行本规范的规定外,尚应符合国家现行的有关设计标准和规范的要求。 第二章建筑物、构筑物危险等级和 自动喷水灭火系统设计数据的基本规定 第2.0.1 条设有自动喷水灭火系统的建筑物、构筑物,其危险等级应根据火灾危险性大小、可燃物数量、单位时间内放出的热量、火灾蔓延速度以及扑救难易程序等因素,划分以下三级: 一、严重危险级:火灾危险性大,可燃物多、发热量大、燃烧猛烈和蔓延迅速的建筑物、构筑物; 二、中危险级:火灾危险性较大,可燃物较多、发热量中等、火灾初期不会引起

迅速燃烧的建筑物、构筑物; 三、轻危险级:火灾危险性较小,可燃物量少、发热量较小的建筑物、构筑物。危险等级举例见附录二。 第2.0.2 条各危险等级的建筑物、构筑物其自动喷水灭火系统的设计喷水强度、作用 面积和喷头工作压力等应符合下规定: 湿式喷水灭火系统、干式喷水灭火系统和预作用喷水灭火系统设计的基本数据不应小于 表2.0.2 的规定。三种自动喷水灭火系统设计的基本数据表03.2.0.2 第2.0.3 条水幕系统的用水量,宜符合下列要求: 一、当水幕作为保护作用或配合防火幕和防火卷帘进行防火隔断时,其用水量不应小于0.5 升/秒。 二、舞台口、面积超过3 平方米的洞口以及防火水幕用水量不宜小于2 升/秒。第三章消防给水 第一节一般规定 第3.1.1 条自动喷水灭火系统的用水,可由室外给水管网、消防水池或天然水

泡沫灭火系统-计算实例

一、设计依据: 1.业主提供的石油库设计图纸 2.《石油库设计规范》GB50074-2002 3.《建筑设计防火规范》GBJ16-87 4.《低倍数泡沫灭火系统设计规范》GB50151-92 及2000年局部修订条文 二、设计内容: 保护对象:500M3立式固定拱顶钢制保温储罐2座[D=9M,H=10M)。 灭火方式:采用固定式液上喷射泡沫灭火系统,并移动泡沫枪辅助灭火 灭火剂:6%氟蛋白泡沫液,其混合比为6% 冷却方式:采用移动式水冷却 (一)、泡沫用量 1.储罐的保护面积(A1) 根据规范第3.1.2条一款规定: A1=3.14D2=3.14x92/4=63.585m2 2.根据规范第 3.2.1条一款规定:泡沫混合液供给强度 q=6.0L/min.m2 连续供给时间t1 :不小于30min(注:闪点为60°C的轻柴油为丙类液体)3.计算泡沫混合液流量(Q) Q=q.A1=6×63.585=381.51L/min 4.根据规范第3.2.4条规定:泡沫产生器数量及流量(Q产)PC8泡沫产生器2个,Q产为480L/min 注:泡沫产生器工作压力按0.5MPa计 5.泡沫枪数量及连续供给时间、流量Q枪 根据规范第3.1.4条,用于扑救防火堤内流散液体火灾的泡沫枪数量为1

支,其泡沫枪的泡沫混合液流量不应小于240L/min,选Q枪=240L/min 即PQ4型泡沫枪:1支连续供给时间t2:不小于20min 6.泡沫混合液用量M混V (系统管道内泡沫混合液剩余量):考虑设DN100管道170.0m及DN65管道150.0m。管道容积为1823L M混=n产×Q产×t1+n枪×Q枪×t2+V(系统管道内泡沫混合液剩余量)=2×480×30+1×240×20+3800=28800+4800+1823 =35423L 7.泡沫液用量V=K.V混/1000=6%×35423/1000=2125L/1000=2.125M3则泡沫贮罐的容积为2.125m3 配制泡沫混合液所需的水量为:35423L×94%=33298L=33.298M3 泡沫比例混合器的流量为:8×2+4=20L/S 配制泡沫混合液的水流量:20L/S×94%=18.8L/S 8.根据规范第3.7.3条储罐区泡沫灭火系统管道内的泡沫混合液流速,不宜大于3m/s 主管初选管径DN100 流速S=4Qmax/3.14D2=(2×480+1×240) ×4/3.14×0.12×60×1000=2.265M/S 规范第3.7.3条泡沫灭火系统管道内的混合液流速不宜大于3M/S 故管径DN100选择合适 9.泡沫产生器下面混合液立管初选管径DN65 S=1×480×4/3.14×0.0652×60×1000=2.412m/s<3m/s 管径DN80合适 10.计算管道沿程压力损失h沿 根据第3.7.4条计算单位长度泡沫混合液管道压力损失 I=0.0000107V2/D 1.3 1)从泡沫产生器到防火堤外缘DN65管段,罐高10m,罐外壁至防火堤外缘 距离按32m计,总长45m 每m管道压力损失I=0.0000107V2/D 1.3

自动喷水灭火系统施工方案(2)

自动喷水灭火系统施工方案 一、自动喷水灭火系统施工内容如下: 1、各防火分区自动喷水信号蝶阀、水流指示器及喷头等的安装。 2、自动喷水灭火给水系统管网的水压试验及水严密性试验和管道水冲洗。 3、室外消防水泵结合器的安装。 4、消防增压给水设备的安装。 二、劳动力安排和施工工具 1、劳动力安排: 技术工人6 人,安装工人16 人 2、施工机具、设备需要量(主要机具、设备) 喷头安装专用工具8 套 液体流量计 1 台 电焊机 2 台 套丝机 1 台 打压泵 1 套 电锤 6 台 冲击钻 6 台 手动吊葫芦 1 台 无齿锯 1 台

三、施工方法 自动喷水灭火系统的给水管道安装,采用各层干、支管道集中预制,现场安装的施工方案。其主要施工内容有以下几点: 自动喷水灭火系统的施工程序为: (立管)干管——支管——试压——冲洗——喷头安装 1、安装工序 支吊架安装——干管安装——报警阀安装——立管安装——喷洒分层干支管安装水流指示器——信号蝶阀——水泵结合器安装——管道试压——管道冲洗——喷头支管安装(系统试压及冲洗)——喷头支管安装(系统试压及冲洗)报警阀配件、喷头安装——系统通水测试 2、喷淋系统管网安装,一般是在空调系统管道安装完毕后,方可进行管网安装。管网安装时可分两部分实施,自上而下,先垂直后水平的方法,并按分层、分区的施工程序,分段进行施工。 3、管材及管道连接方式: (1 )消火栓系统管材,选用热镀锌钢管。管道连接方式,当 DN v 100mm采用螺纹连接,DN >100mm 采用法兰连接和沟槽连 接,设备与管道连接采用法兰连接。管道与设备连接,采用丝接和法兰连接。 4、管道支吊架制作:

气体灭火系统设计规范

七氟丙烷(HFC-227ea)洁净气体灭火系 统设计规范 1 总则 第1.0.1条 为了合理设计七氟丙烷灭火系统,减少火灾危害,保护人身及财产的安全,制定本规范。 第1.0.2条 本规范适用于工业和民用建筑中新建、改建、扩建工程设置的七氟丙烷全淹没灭火系统。 第1.0.3条 七氟丙烷灭火系统的设计,应做到安全可靠、技术先进、经济合理. 第 1.0.4条 七氟丙烷灭火系统可用于扑救下列火灾: 1、电气火灾; 2、液体火灾或可熔化的固体火灾; 3、固体表面火灾; 4、灭火前应能切断气源的气体火灾。 第1.0.5条 七氟丙烷灭火系统不得用于扑救下列物质的火灾: 1、含氧化剂的化学制品及混合物,如硝化纤维、硝酸钠等; 2、活泼金属,如钾、钠、镁、钛、锆、铀等; 3、金属氢化物,如氢化钾、氢化钠等; 4、能自行分解的化学物质,如过氧化氢、联胺等。 第1.0.6条 灭火剂七氟丙烷HFC227ea的化学分子式为CF3CHFCF3 ,其质量应符合下列技术指标。 性能 技术指标 纯度 ≥99.6%(摩尔/摩尔) 酸度 ≤3ppm 水含量 ≤10ppm 不挥发残留物 ≤0.01% 悬浮或沉淀物 不可见 第1.0.7条 七氟丙烷灭火系统设计,除执行本规范外,尚应符合现行的有关国家标准的规定。 2 术语、符号 2.1术语 第 2.1.1条 防护区 能满足七氟丙烷全淹没灭火系统要求的有限封闭空间。 第 2.1.2条 全淹没灭火系统 在规定的时间内,向防护区喷射一定浓度的七氟丙烷,并使

其均匀地充满整个防护区的灭火系统。 第 2.1.3条 预制灭火装置 按一定的应用条件,将七氟丙烷储存装置和喷放喷头等部件预先组合成套的灭火装置。 第 2.1.4条 组合分配系统 用一套七氟丙烷储存装置保护两个或两个以上防护区的灭火系统 第 2.1.5条 灭火浓度 在101Kpa大气压和规定的温度条件下,扑灭某种火灾所需七氟丙烷在空气中的最小体积百分比。 第 2.1.6条 惰化浓度 当引火源加入时,在101Kpa大气压和规定的温度条件下,能抑制空气中任意浓度的可燃气体或可燃液体蒸汽的燃烧发生所需的七 氟丙烷在空气中的最小体积百分比。 第 2.1.7条 浸渍时间 在防护区内维持设计规定的七氟丙烷浓度,使火灾完全熄灭所需的时间。 第 2.1.8条 充装率 充装在储存容器中的七氟丙烷质量与容器的容积之比,单位为kg/m3。 第 2.1.9条 泄压口 七氟丙烷喷放时,防止防护区过压的开口。 2.2 符号 表2.2 编号 符号 单位 涵 义 2.2.1 C % 七氟丙烷灭火(或惰化)设计浓度 2.2.2 D mm 管道内径 2.2.3 Fc cm2 喷头孔口面积 2.2.4 Fx m2 泄压口面积 2.2.5 g m/s2 重力加速度 2.2.6 H m 喷头高度相对“过程中点”时储存容器液面的位差 2.2.7 K / 海拔高度修正系数 2.2.8 L m 计算管段的计算长度 2.2.9 n 个 储存容器的数量 2.2.10 nd 段 管网计算管段数量 2.2.11 Ng 个 安装在计算支管流程下游的喷头数量 2.2.12 P0 绝压MPa 储存容器额定增压压力

喷淋消火栓施工方案

消火栓、喷淋系统施工方法要求及调试1.施工顺序 (1)自动喷水灭火系统施工顺序: 施工准备检查预留孔洞管道支架制作现场检验材料、部件 系统调试联动试验设备检修、单体试运转 (2)消火栓系统施工顺序: 2.施工说明

室内消防水管道的施工及验收,将遵照全国通用的现行有关标准及规范的要求进行。 管道材料与连接:消防水系统管道采用镀锌钢管,DN<100采用丝扣连接,DN≥100采用沟槽连接。 3.施工前的准备工作 (1)施工图纸及有关技术文件应齐全。施工图纸应包括设备平面布置图、系统图、安装图、设备材料明细表等。技术文件应包括消防设计说明与安装技术要求、监督机关的审批文件及产品样本、使用说明等。 (2)设计单位应向施工单位进行技术交底; (3)系统组件、管件及其它设备、材料,应能保证正常施工; (4)施工现场及施工中使用的水、电、气应满足施工要求,并应保证连续施工。 4.管材、管件的检验 (1)系统管道、管件的材质等级应与管子一致。 (2)镀锌钢管表面应光滑无裂纹、缩孔、夹渣、折迭、重皮等缺陷。. (3)尺寸偏差要符合现行部颁标准和国标要求。 (4)螺纹密封面完整,无损伤毛刺等缺陷,精度及表面粗糙度应达到设计要求和制造标准。 (5)非金属密封垫片要求质地柔韧、无老化变质或分层现象,表面无损伤、皱纹等缺陷。 (6)法兰密封面应完整光洁,不得有毛刺及经向沟槽;螺纹法兰的螺纹应完整无损伤

5.喷头的检验 (1)喷头的型号、规格应符合设计要求;一般情况下,喷头的温级要和使用环境相协调,即闭式喷头的动作温度比使用环境温度高30℃左右; (2)喷头的商标、型号、公称动作温度、制造厂及生产年月等标志应齐全; (3)喷头外观应无加工缺陷和机械损伤; (4)喷头螺纹密封面应无伤痕、毛刺、缺丝或断丝的现象; (5)闭式喷头应进行密封性能试验,并以无渗漏、无损伤为合格。试验数量宜从每批中抽查1%,但不得少于5只,试验压力应为3.0MPa;试验保压时间不得少于3min。当有两只及以上不合格时,不得使用该批喷头。当仅有一只不合格时,应再抽查2%,但不得少于10只。重新进行密封性能试验,当仍有不合格时,亦不得使用该批喷头。6.阀组及其附件的检验 系统使用的阀门及其附件(包括控制阀、压力表、排水阀等)均应是全新的合格产品,安装前必须进行检查,并符合以下要求: (1)阀门的型号、规格应符合设计要求; (2)阀门及其附件完好齐全,且全部具有制造厂的合格证;无加工缺陷和机械损伤,有清晰的铭牌和标志。 (3)水流指示器除有商标、型号规格等标志外,还应有水流方向的永久性标志。 (4)控制阀的阀瓣及操作机构动作灵活,无卡涩现象,阀体内清洁,

自动喷水灭火系统的设计步骤

自动喷水灭火系统的设计步骤 一设计依据: 建筑图和相关设计规范及市政给水资料 二.设计步骤: 1.判断建筑物性质和火灾等级(轻危;中危;严危级). 2.>选择设计参数:喷水强度,作用面积,最小水压等. 3.确定喷头形式(垂直式;下垂式;装饰式;边墙式)和保护面积 4.在建筑图上布置喷头.包括喷头的形状(正方形;矩形;菱形)和间距(根据火灾等级确定). 5.在建筑图上布置立管,连接管和管网的布置(中分式;侧分式;环状式). 6.确定作用面积内的喷头数 n=A/Ac 确定作用面积的形状(正方形;矩形;多边形). 7.绘制系统图→根据系统图绘制计算简图(确定最不利点;确定计算管线、:最不利点→支管→横管→立管→报警阀→喷淋泵→吸水口). 8.水力计算: ①确定第一个喷头的压力(P1=10m)确定第一个喷头的流量:Q=qA或Q=K√10p ②计算第一个喷头到第二个喷头的水头损失:∑h=iL L=l1+l2 ( i:水力坡降;l1:管段长度;l2:附件及管件的长度<见表2-22>) ③确定第二个喷头压力P2=P1+∑h 1+2 确定第二个喷头的流量Q2=K√10p2 ④重复上述计算-算到第n个喷头( n个喷头流量=设计流量)其中Q不再增加,∑h-H 计算到水泵的吸水口处.。注意:确定第i支管的流量Qi=Q1√Hi/H1 (H1、Hi分别为第1和第i支管处水压。)至∑Q=系统设计流量止。 ⑤确定系统的总水压.H=△Z+∑h+P1 Q=1/60∑qi

⑥确定不计算管段的管径-按最小管径负担的喷头数(见表2-19). ⑦校核:H>120m;调整管径. 9.选择喷淋泵QP≥QX; HP≥HX. 选用多级泵,使泵N小;η大;HS大。 10.㈠确定高位水箱的容积,容积=10min消防水量;㈡确定高位水箱的高度(高度:最不 利点喷头出水口到水箱的出水口的高差.[高层建筑≥7m;超高层建筑≥15m].若不满足则要增设增压设备.〈增压设备的Q≤1L/S;H=保证最不利点喷头的出水水压〉)保证最不利点喷头的出水水压). 11.选择加压,稳压设备. 12.确定消防水池的容积.水池容积=火灾持续时间内的室内,室外消防水量=T*(Q1+Q2). 注:T=1h 13.进行水泵房工艺设计(①确定水泵的基础;②水泵基础的平面布置;③绘制水泵管路系统图;④材料表,控制(设计)说明. 14.将计算结果写到图纸上(管径,标高,间距). 15.编写设计说明,统计材料表. 16.整理设计计算说明书.包括:设计依据.参数来源;设计方案、计算书;成果评价等.

气体灭火系统设计

七氟丙烷等其他灭火系统设计 一、系统设计参数 气体灭火系统设计参数和设置要求 1、防护区的设置要求 (1)防护区的划分——防护区宜以单个封闭空间划分;同一区间的吊顶层和地板下需同时保护时,可合为一个防护区;采用管网灭火系统时,一个防护区的面积不宜大于800㎡,且容积不宜大于3600m3;采用预制灭火系统时,一个防护区的面积不宜大于500㎡,且容积不宜大于1600m3。 (2)耐火性能 防护区围护结构及门窗的耐火极限均不宜低于0.50h;吊顶的耐火极限不宜低于0.25h。 全淹没灭火系统防护区建筑物构件耐火时间(一般为30min)包括:探测火灾时间、延时时间、释放灭火剂时间及保持灭火剂设计浓度的浸渍时间。延时时间为30s、释放灭火剂时间对于扑救表面火灾应不大于1min;对于扑救固体深位火灾不应大于7min。 (3)环境温度——防护区的最低环境温度不应低于-10℃。 2、安全要求 设置气体灭火系统的防护区应设疏散通道和安全出口,保证防护区内所有人员在30s内撤离完毕。防护区内的疏散通道及出口,应设消防应急照明灯具和疏散指示标志灯。防护区内应设火灾声报警器,必要时,可增设闪光报警器。 通信机房、电子计算机房等场所的通风换气次数应不小于每小时5次。防护区内设置的预制灭火系统的充压压力不应大于2.5MPa。 3、二氧化碳灭火系统的设计 (1)全淹没灭火系统的设计 二氧化碳设计浓度不应小于灭火浓度的1.7倍,并不得低于34%。 当防护区的环境温度超过100℃时,二氧化碳的设计用量应在设计规范计算值的基础上每超过5℃增加2%。当防护区的环境温度低于-20℃时,二氧化碳的设计用量应在设计规范计算值的基础上每降低1℃增加2%。 全淹没灭火系统二氧化碳的喷放时间不应大于1min。当扑救固体深位火灾时,喷放时间不应大于7min,并应在前2min内使二氧化碳的浓度达到30%。 (2)局部应用系统的设计 局部应用灭火系统的二氧化碳喷射时间不应小于0.5min。对于燃点温度低于沸点温度的液体和可熔化固体的火灾,二氧化碳的喷射时间不应小于1.5min。 4、其他气体灭火系统的设计 (1)一般规定 两个或两个以上的防护区采用组合分配系统时,一个组合分配系统所保护的防护区不应超过8个。灭火系统的储存装置72小时内不能重新充装恢复工作的,应按系统原储存量的

泡沫灭火系统设计说明计算实例

电厂油库区消防系统计算书 京安工程有限公司二0一0年十一月

一、设计依据: 1.业主提供的石油库设计图纸 2.《石油库设计规范》GB50074-2002 3.《建筑设计防火规范》GBJ16-87 4.《低倍数泡沫灭火系统设计规范》GB50151-92 及2000年局部修订条文 二、设计内容: 保护对象:500M3立式固定拱顶钢制保温储罐2座[D=9M,H=10M)。 灭火方式:采用固定式液上喷射泡沫灭火系统,并移动泡沫枪辅助灭火 灭火剂:6%氟蛋白泡沫液,其混合比为6% 冷却方式:采用移动式水冷却 (一)、泡沫用量 1.储罐的保护面积(A1) 根据规范第3.1.2条一款规定: A1=3.14D2 /4=3.14×92/4=63.585m2 2.根据规范第3.2.1条一款规定:泡沫混合液供给强度q=6.0L/min.m2连续供给时间t1 :不小于30min(注:闪点为60°C的轻柴油为丙类液体) 3.计算泡沫混合液流量(Q) Q=q.A1=6×63.585=381.51L/min 4.根据规范第3.2.4条规定:泡沫产生器数量及流量(Q产)PC8泡沫产生器2个,Q产为480L/min 注:泡沫产生器工作压力按0.5MPa计 5.泡沫枪数量及连续供给时间、流量Q枪 根据规范第3.1.4条,用于扑救防火堤内流散液体火灾的泡沫枪数量为1支,其泡沫枪的泡沫混合液流量不应小于240L/min,选Q枪=240L/min 即PQ4型泡沫枪:1支 连续供给时间t2:不小于20min 6.泡沫混合液用量M混 V (系统管道内泡沫混合液剩余量):考虑设DN100管道170.0m及DN65管道150.0m。管道容积为1823L M混=n产×Q产×t1+n枪×Q枪×t2+V(系统管道内泡沫混合液剩余量)=2×480×30+1×240×20+3800=28800+4800+1823 =35423L 7.泡沫液用量 V=K.V混/1000=6%×35423/1000=2125L/1000=2.125M3 则泡沫贮罐的容积为2.125m3 配制泡沫混合液所需的水量为:35423L×94%=33298L=33.298M3 泡沫比例混合器的流量为:8×2+4=20L/S 配制泡沫混合液的水流量:20L/S×94%=18.8L/S 8.根据规范第3.7.3条储罐区泡沫灭火系统管道内的泡沫混合液流速,不宜大于3m/s 主管初选管径 DN100

相关文档
最新文档