U7试题鲁教版六年级下册
达标测试鲁教版(五四)六年级数学下册第七章相交线与平行线综合训练试卷(含答案详解)

六年级数学下册第七章相交线与平行线综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在所标识的角中,下列说法不正确的是( )A .1∠和2∠互为补角B .1∠和4∠是同位角C .2∠和4∠是内错角D .2∠和3∠是对顶角2、如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为PA =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离可能为( )A .2cmB .3cmC .5cmD .7cm3、下面四个图形中,1∠与2∠是对顶角的是()A.B.C.D.4、如图,将军要从村庄A去村外的河边饮马,有三条路AB、AC、AD可走,将军沿着AB路线到的河边,他这样做的道理是()A.两点之间,线段最短B.两点之间,直线最短C.两点确定一条直线D.直线外一点与直线上各点连接的所有线段中,垂线段最短5、如图,直线a,b被直线c所截,则下列符合题意的结论是()A .13∠=∠B .14∠=∠C .24∠∠=D .34180∠+∠=︒6、体育课上老师按照如图所示的方式测量同学的跳远成绩,这里面蕴含的数学原理是( )A .垂线段最短B .两点之间,线段最短C .平面内,过一点有且只有一条直线与已知直线垂直D .两点确定一条直线7、过点A 画线段BC 所在直线的垂线段,其中正确的是( )A .B .C .D .8、如图,直线被所截,下列说法,正确的有( )①1∠与2∠是同旁内角;②1∠与ACE ∠是内错角;③B与4∠是同位角;∠是内错角.④1∠与3A.①③④B.③④C.①②④D.①②③④9、如图,点O在CD上,OC平分∠AOB,射线OE经过点O且∠AOE=90°,若∠BOD=153°,则∠DOE的度数是()A.27°B.33°C.28°D.63°10、如图,直线b、c被直线a所截,则1∠与2∠是()A.对顶角B.同位角C.内错角D.同旁内角第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线AB和CD交于O点,OD平分∠BOF,OE⊥CD于点O,∠AOC=40,则∠EOF=_______.2、如图,点O 在直线AB 上,射线OC 平分DOB ∠.若3415COB ︒'∠=,则AOD ∠等于___.3、如果两个角有一条公共边,它们的另一边互为____________,那么这两个角互为邻补角.图中∠1的邻补角有___________.4、(1)如图1,若直线m 、n 相交于点O ,∠1=90°,则a ______b ;(2)若直线AB 、CD 相交于点O ,且AB ⊥CD ,则∠BOD =______;(3)如图2,BO ⊥AO ,∠BOC 与∠BOA 的度数之比为1∶3,那么∠COA =___ ,∠BOC 的补角为______.5、如图,直线AB 与CD 被直线AC 所截得的内错角是 ___.三、解答题(5小题,每小题10分,共计50分)1、如图,已知点O 是直线AB 上一点,射线OM 平分AOC ∠.(1)若70AOC ∠=︒,则BOC ∠=______度;(2)若90BOC AOM ∠-∠=︒,求BOC ∠的度数.2、如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,OF 平分COE ∠,:2:1∠∠=AOD BOD .(1)求DOE ∠的度数;(2)求BOF ∠的度数.3、已知:如图,直线,AB CD 相交于点O ,OA 平分EOC ∠,若:2:3EOC EOD ∠∠=,求BOD ∠的度数.4、如图,已知EF ∥AD ,1 2.∠=∠试说明180.DGA BAC ∠+∠=︒请将下面的说明过程填写完整.解:EF∥AD,(已知)∴∠=______.(______).2又12∠=∠,(已知)13∴∠=∠,(______).∴∥______,(______)AB∴∠+∠=︒______)180.(DGA BAC5、如图,直线AB、CD相交于点O,∠EOC=90°,OF是∠AOE的角平分线,∠COF=34°,求∠BOD 的度数.-参考答案-一、单选题1、C【解析】【分析】根据同位角、内错角、邻补角、对顶角的定义求解判断即可.解:A、1∠和2∠是邻补角,故此选项不符合题意;B、1∠和4∠是同位角,故此选项不符合题意;C、2∠不是内错角,故此选项符合题意;∠和4∠是对顶角,故此选项不符合题意.D、2∠和3故选:C.【点睛】此题考查了同位角、内错角、对顶角以及邻补角的定义,熟记同位角、内错角、邻补角、对顶角的定义是解题的关键.三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.2、A【解析】【分析】点P到直线m的距离即为点P到直线m的垂线段的长度,据此解答即可.【详解】解:由图可知,PC长度为3cm,是最小的,则点P到直线m的距离小于3cm,可以是2cm,故选:A.【点睛】本题考查了点到直线的距离.直线外一点到直线上各点的连线段中,垂线段最短;直线外一点到直线的垂线段的长度,叫做点到直线的距离.3、C【解析】根据对顶角的定义,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,分别判断即可.【详解】解:A、两角两边没有互为反向延长线,选项错误;B、两角两边没有互为反向延长线,选项错误;C、有公共顶点,且两角两边互为反向延长线,选项正确.D、没有公共顶点,两角没有互为反向延长线,选项错误.故选:C.【点睛】本题考查对顶角的定义,根据定义解题是关键.4、D【解析】【分析】根据垂线段最短即可完成.【详解】根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确故选:D【点睛】本题考查了垂线的性质的简单应用,直线外一点与直线上各点连接的所有线段中,垂线段最短,掌握垂线段最短的性质并能运用于实际生活中是关键.5、A【解析】利用对顶角、同位角、同旁内角定义解答即可.【详解】解:A、∠1与∠3是对顶角,故原题说法正确,符合题意;B、由条件不能得出∠1=∠4,故原题说法错误,不符合题意;C、∠2与∠4是同位角,只有a//b时,∠2=∠4,故原题说法错误,不符合题意;D、∠3与∠4是同旁内角,只有a//b时,∠3+∠4=180°故原题说法错误,不符合题意;故选:A.【点睛】此题主要考查了对顶角、同位角、同旁内角,关键是掌握各种角的定义.6、A【解析】【分析】由实际出发,老师测量跳远成绩的依据是垂线段最短.【详解】解:体育课上,老师测量跳远成绩的依据是垂线段最短.故选:A.【点睛】此题考查知识点垂线段最短,关键是掌握垂线段的性质:垂线段最短.7、D【解析】【分析】根据垂线段的定义依次判断每个选项.【详解】解:A、图上BD为过点B画线段AC所在直线的垂线段,不符合题意;B、图上AD为过点D画线段AC所在直线的垂线段,不符合题意;C、图上BD为过点B画线段BC的垂线交AC于点D,不符合题意;D、图上AD为过点A画线段BC所在直线的垂线段,符合题意;故选:D.【点睛】本题主要考查过直线外一点作已知直线的垂线段,解题的关键是熟练掌握过直线外一点作已知直线的垂线段的作法.8、D【解析】【分析】根据同位角、内错角、同旁内角的定义可直接得到答案.【详解】解:①1∠与2∠是同旁内角,说法正确;∠是内错角,说法正确;②1∠与ACE③B与4∠是同位角,说法正确;∠是内错角,说法正确,④1∠与3故选:D.【点睛】此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.9、D【解析】【分析】先根据补角的定义求出∠BOC的度数,再利用角平分线定义即可求解.【详解】解:∵∠BOD=153°,∴∠BOC=180°-153°=27°,∵CD为∠AOB的角平分线,∴∠AOC=∠BOC=27°,∵∠AOE=90°,∴∠DOE=90°-∠AOC=63°.故选:D.【点睛】本题考查了平角的定义,余角和补角,角平分线定义,求出∠BOC的度数是解题的关键.10、B【解析】【分析】根据对顶角、同位角、内错角、同旁内角的特征去判断即可.【详解】∠1与∠2是同位角故选:B【点睛】本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.二、填空题1、130°【解析】【分析】根据对顶角性质可得∠BOD=∠AOC=40°.根据OD平分∠BOF,可得∠DOF=∠BOD=40°,根据OE⊥CD,得出∠EOD=90°,利用两角和得出∠EOF=∠EOD+∠DOF=130°即可.【详解】解:∵AB、CD相交于点O,∴∠BOD=∠AOC=40°.∵OD平分∠BOF,∴∠DOF=∠BOD=40°,∵OE⊥CD,∴∠EOD=90°,∴∠EOF=∠EOD+∠DOF=130°.故答案为130°.【点睛】本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.︒'2、11130【解析】【分析】首先根据角平分线定义可得∠BOD =2∠BOC ,再根据邻补角的性质可得∠AOD 的度数.【详解】∵射线OC 平分∠DOB .∴∠BOD =2∠BOC ,∵3415COB ︒'∠=,∴6830BOD ︒'∠=,∴∠AOD =180°683011130︒︒''-=,故答案为:11130︒'.【点睛】此题主要考查了角平分线定义和邻补角的定义,关键是掌握角平分线把角分成相等的两部分.需要注意角度度分秒的计算.3、 反向延长线 ∠2,∠3【解析】略4、 ⊥ 90° 60° 150°【解析】略5、∠2与∠4【解析】【分析】根据内错角的特点即可求解.【详解】由图可得直线AB 与CD 被直线AC 所截得的内错角是∠2与∠4故答案为:∠2与∠4.【点睛】此题主要考查内错角的识别,解题的关键是熟知内错角的特点.三、解答题1、(1)110,(2)120BOC ∠=︒【解析】【分析】(1)根据平角的定义可求110BOC ∠=°;(2)根据180BOC AOC ∠=︒-∠和12AOM AOC ∠=∠,代入解方程求出AOC ∠即可.【详解】解:(1)∵70AOC ∠=︒,∴180********BOC AOC ∠=︒-∠=︒-︒=︒,故答案为:110.(2)∵OM 平分AOC ∠, ∴12AOM AOC ∠=∠,∵90BOC AOM ∠-∠=︒, ∴1180902AOC AOC ︒-∠-∠=︒,∴60AOC ∠=︒,∴180********BOC AOC ∠=︒-∠=︒-︒=︒.【点睛】本题考查了角平分线的有关计算,解题关键是准确识图,弄清角之间的数量关系.2、 (1)30(2)45︒【解析】【分析】(1)∠AOD :∠BOD =2:1结合直线AB ,可推导出∠BOD ;再根据OE 平分∠BOD ,即可完成求解;(2)根据∠DOE =30°推导出∠COE ;再由OF 平分∠COE ,得到∠COF ,从而完成求解.(1)(1)∵:2:1∠∠=AOD BOD ,180AOD BOD ∠+∠=︒, ∴1180603BOD ∠︒=⨯=︒,又∵为OE 平分BOD ∠, ∴11603022DOE BOE BOD ∠=∠=∠=⨯︒=︒;(2) 18030150COE COD DOE ∠=∠-∠=︒-︒=︒,∵OF 平分COE ∠, ∴111507522EOF COE ∠=∠==︒⨯︒, ∴753045BOF EOF BOE ∠=∠-∠=︒-=︒︒.【点睛】本题考查了角平分线、补角、对顶角的知识;解题的关键是熟练掌握角平分线、补角、对顶角的性质,从而完成求解.3、36︒【解析】【分析】先根据平角的定义和:2:3EOC EOD ∠∠=可得72EOC ∠=︒,再根据角平分线的定义可得1362AOC EOC ∠=∠=︒,然后根据对顶角相等即可得. 【详解】解:180,:2:3EOC EOD EOC EOD ∠+∠=︒∠∠=,2180725EOC ∴∠=⨯︒=︒, OA 平分EOC ∠,1362AOC EOC ∠=∠=∴︒, 由对顶角相等得:36BOD AOC ∠=∠=︒.【点睛】本题考查了对顶角相等、角平分线的定义等知识点,熟练掌握角平分线的定义是解题关键.4、3∠ ;两直线平行,同位角相等 ;等量代换;DG ;内错角相等,两直线平行;两直线平行,同旁内角互补【解析】【分析】根据平行线的判定和性质解答即可.【详解】 解:EF ∥AD ,(已知)23∴∠=∠(两直线平行,同位角相等)又12∠=∠,(已知)13∠∠∴=,(等量代换)AB DG ∴∥,(内错角相等,两直线平行)180DGA BAC ∴∠+∠=︒(两直线平行,同旁内角互补)故答案为:3∠ ;两直线平行,同位角相等 ;等量代换;DG ;内错角相等,两直线平行;两直线平行,同旁内角互补【点睛】本题考查平行线的判定与性质,熟记判定定理和性质定理是解题的关键.5、22︒【解析】【分析】根据90EOC ∠=︒、34COF ∠=︒可得56EOF ∠=︒,OF 是∠AOE 的角平分线,可得56AOF EOF ∠=∠=︒,所以22AOC AOF COF ∠=∠-∠=︒,再根据对顶角相等,即可求解.【详解】解:∵90EOC ∠=︒、34COF ∠=︒,∴56EOF ∠=︒,∵OF 是∠AOE 的角平分线,∴56AOF EOF ∠=∠=︒,∴22AOC AOF COF ∠=∠-∠=︒,∴22BOD AOC ∠=∠=︒,【点睛】此题考查了角平分线的有关计算,解题的关键是掌握角平分线的定义以及角之间的和差关系.。
精品试题鲁教版(五四)六年级数学下册第七章相交线与平行线同步测试试题(含答案解析)

六年级数学下册第七章相交线与平行线同步测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将军要从村庄A去村外的河边饮马,有三条路AB、AC、AD可走,将军沿着AB路线到的河边,他这样做的道理是()A.两点之间,线段最短B.两点之间,直线最短C.两点确定一条直线D.直线外一点与直线上各点连接的所有线段中,垂线段最短2、如图,直线a∥b,直线AB⊥AC,若∠1=52°,则∠2的度数是()A.38°B.42°C.48°D.52°3、下列四幅图中,1∠和2∠是同位角的是()A.(1)(2)B.(3)(4)C.(1)(2)(3)D.(1)(3)(4)4、下列图形中,∠1与∠2不是对顶角的有()A.1个B.2个C.3个D.0个5、如图,A∠是()∠与1A.同位角B.内错角C.同旁内角D.对顶角6、下列语句中:①有公共顶点且相等的角是对顶角;②直线外一点到这条直线的垂线段,叫做点到直线的距离;③互为邻补角的两个角的平分线互相垂直;④经过一点有且只有一条直线与已知直线垂直;其中正确的个数有( )A .1个B .2个C .3个D .4个7、∠A 两边分别垂直于∠B 的两边,∠A 与∠B 的关系是( )A .相等B .互补C .相等或互补D .不能确定8、下列图形中线段AD 的长表示点A 到直线BC 距离的是( )A .B .C .D .9、如图,某位同学将一副三角板随意摆放在桌上,则图中12∠+∠的度数是()A .70°B .80°C .90°D .100°10、如图,135AOC ∠=︒,则BOC ∠的度数为( )A .55︒B .45︒C.35︒D.25︒第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在四边形BCEF中,BF∥AD∥CE,S△ABC=3,则△DEF的面积是___.2、如图,P是直线a外一点,点A,B,C,D为直线a上的点,PA=5,PB=4,PC=2,PD=7,根据所给数据写出点P到直线a的距离l的取值范围是______3、如图,直线AB,CD相交于点O,过O点作EF⊥AB,若∠1=35º,则∠2=_____ º.4、如图,直线AB和直线CD相交于点O,且∠AOC=2∠BOC,则∠AOD的度数为____________.5、如图,和∠A是同位角的有___.三、解答题(5小题,每小题10分,共计50分)1、如果把图看成是直线AB ,EF 被直线CD 所截,那么(1)∠1与∠2是一对什么角?(2)∠3与∠4呢?∠2与∠4呢?2、任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?根据这种位置关系将它们分类.3、如图,已知CF AB ⊥于点F ,ED AB ⊥于点D ,12∠=∠,求证180BCA FGC ∠+∠=︒.4、如图,①过点Q 作QD ⊥AB ,垂足为点D ;②过点P 作PE ⊥AB ,垂足为点E ;③过点Q 作QF ⊥AC ,垂足为点F ;④连P,Q两点;⑤P,Q两点间的距离是线段______的长度;⑥点Q到直线AB的距离是线段______的长度;⑦点Q到直线AC的距离是线段______的长度;⑧点P到直线AB的距离是线段______的长度.5、已知:如图①,AB∥CD,点F在直线AB、CD之间,点E在直线AB上,点G在直线CD上,∠EFG =90°.(1)如图①,若∠BEF=130°,则∠FGC=度;(2)小明同学发现:如图②,无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值,并给出了一种证明该发现的辅助线作法:过点E作EM∥FG,交CD于点M.请你根据小明同学提供的辅助线方法,补全下面的证明过程;(3)拓展应用:如图③,如果把题干中的“∠EFG=90°”条件改为“∠EFG=110°”,其它条件不变,则∠FEB﹣∠FGC=度.解:如图②,过点E作EM∥FG,交CD于点M.∵AB∥CD(已知)∴∠BEM=∠EMC()又∵EM∥FG∴∠FGC=∠EMC()∠EFG+∠FEM=180°()即∠FGC=()(等量代换)∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=()又∵∠EFG=90°∴∠FEM=90°∴∠FEB﹣∠FGC=即:无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值.-参考答案-一、单选题1、D【解析】【分析】根据垂线段最短即可完成.【详解】根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确故选:D【点睛】本题考查了垂线的性质的简单应用,直线外一点与直线上各点连接的所有线段中,垂线段最短,掌握垂线段最短的性质并能运用于实际生活中是关键.2、A【解析】【分析】利用直角三角形的性质先求出∠B,再利用平行线的性质求出∠2.【详解】解:∵AB⊥AC,∠1=52°,∴∠B=90°﹣∠1=90°﹣52°=38°∵a∥b,∴∠2=∠B=38°.故选:A.【点睛】本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键.3、A【解析】【分析】互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.【详解】解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.【点睛】本题考查同位角的概念,是需要熟记的内容.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.4、C【解析】【分析】根据对顶角的定义:有公共顶点且两条边都互为反向延长线的两个角称为对顶角,逐一判断即可.【详解】解:①中∠1和∠2的两边不互为反向延长线,故①符合题意;②中∠1和∠2是对顶角,故②不符合题意;③中∠1和∠2的两边不互为反向延长线,故③符合题意;④中∠1和∠2没有公共点,故④符合题意.∴∠1 和∠2 不是对顶角的有3个,故选C.【点睛】此题考查的是对顶角的识别,掌握对顶角的定义是解决此题的关键.5、A【解析】【分析】先确定基本图形中的截线与被截线,进而确定这两个角的位置关系即可.【详解】解:根据图象,∠A与∠1是两直线被第三条直线所截得到的两角,因而∠A与∠1是同位角,【点睛】本题主要考查了同位角的定义,是需要识记的内容,比较简单.6、A【解析】【分析】根据对顶角,点到直线的距离,邻补角,角平分线以及垂直的定义分别判断.【详解】解:①有公共顶点且相等的角不一定是对顶角,故错误;②直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故错误③互为邻补角的两个角的平分线互相垂直,故正确;④同一平面内,经过一点有且只有一条直线与已知直线垂直,故错误;故选A.【点睛】本题考查了对顶角,点到直线的距离,邻补角,角平分线以及垂直的定义,属于基础知识,要注意理解概念,抓住易错点.7、C【解析】【分析】分别画出∠A两边分别垂直于∠B的两边,然后利用同角的余角相等进行求解即可.【详解】解:如图所示:BE⊥AE,BC⊥AC,∴∠BCF=∠AEF=90°,∴∠A+∠AFE=90°,∠B+∠BFC=90°,∴∠A=∠B如图所示:BD⊥AD,BC⊥AC,∴∠ADE=∠BCE=90°,∴∠A+∠BEC=90°,∠CBE+∠BEC=90°,∴∠A=∠CBE,∵∠CBE+∠DBC=180°,∴∠A+∠DBC=180°,综上所述,∠A与∠B的关系是相等或互补,故选C.【点睛】本题主要考查了垂直的定义,同角的余角相等,以及等角的补角之间的关系,解题的关键在于能够根据题意画出图形进行求解.8、A【解析】【分析】根据点到直线的距离,垂足在直线上,据此分析即可【详解】A. AD 表示的是点A 到直线BC 距离,故该选项正确,符合题意;B. AD 表示的是点D 到直线AB 距离,故该选项不正确,不符合题意;C. AD 表示的是点D 到直线AB 距离,故该选项不正确,不符合题意;D. AD 不能表示点到直线距离,故该选项不正确,不符合题意;故选A【点睛】本题考查了点到直线的距离,理解点到直线的距离,垂足在直线上是解题的关键.9、C【解析】【分析】如图(见解析),过点O 作CD AB ∥,先根据平行线的性质可得13,24∠=∠∠=∠,再根据角的和差即可得.【详解】解:如图,过点O 作CD AB ∥,13,24∴∠=∠∠=∠,590∠=︒,18059403∴∠+∠=︒-∠=︒,2190∴∠+∠=︒,故选:C .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题关键.10、B【解析】【分析】根据AOC ∠与BOC ∠互补求解即可.【详解】135AOC ∠=︒,180********BOC AOC ∴∠=︒-∠=︒-︒=︒,故选:B .【点睛】本题主要考查补角,掌握互补的概念是关键.二、填空题1、6【解析】【分析】根据题意利用平行线间距离即所有垂线段的长度相等,可以求得S△ADF=S△ABD,S△ADE=S△ACD,S△CEF=S△BCE,利用面积相等把S△DEF转化为已知△ABC的面积,即可求解.【详解】解:∵BF∥AD∥CE,∴S△ADF=S△ABD,S△ADE=S△ACD,S△CEF=S△BCE,∴S△AEF=S△CEF-S△ACE=S△BCE-S△ACE=S△ABC,S△DEF=S△ADF+S△ADE+S△AEF=S△ABD+S△ACD+S△ABC=S△ABC+S△ABC=2S△ABC=2×3=6,故答案为:6.【点睛】本题考查平行线的推论,注意掌握平行线间距离即所有垂线段的长度相等并利用三角形面积相等,把S△DEF转化为已知△ABC的面积.2、0<l≤2【解析】【分析】根据直线外一点与直线上各点连线的所有线段中,垂线段最短解答即可.【详解】解:∵点P为直线外一点,点A、B、C、D直线a上不同的点,∵直线外一点与直线上各点连线的所有线段中,垂线段最短∴点P到直线a的距离l小于等于2,故答案为:0<l≤2.【点睛】本题考查点到直线的距离、垂线段最短,熟知直线外一点与直线上各点连线的所有线段中,垂线段最短是解答的关键.3、55【解析】【分析】由已知可得,BOF ∠90=︒,进而根据12180BOF ∠+∠+∠=︒,∠1=35º,即可求得2∠.【详解】EF ⊥AB ,∴BOF ∠90=︒,12180BOF ∠+∠+∠=︒,∠1=35º,155∴∠=︒故答案为:55【点睛】本题考查了两条相交线所成的角,垂直的定义,平角的定义,掌握垂直的定义是解题的关键. 4、60︒【解析】【分析】根据2AOC BOC ∠∠=,180AOC BOC ∠+∠=︒可得60BOC ∠=︒,再根据对顶角相等即可求出AOD ∠的度数.【详解】解:∵2AOC BOC ∠∠=,180AOC BOC ∠+∠=︒∴2180BOC BOC ∠+∠=︒∴60BOC ∠=︒∵AOD BOC ∠=∠∴60AOD ∠=︒故答案为:60︒【点睛】本题主要考查了邻补角、对顶角的相关知识,熟练运用邻补角、对顶角的相关知识是解答此题的关键.5、,CDE DEB ∠∠【解析】【分析】同位角的含义:若两个角在截线的同旁,都在被截线的同侧,则这两个角为同位角,根据此含义即可判断.【详解】由图知:,CDE DEB ∠∠与∠A 都是同位角故答案为:,CDE DEB ∠∠【点睛】本题考查了同位角的识别,关键是掌握同位角的含义并能在图中正确识别.三、解答题1、(1)∠1与∠2是一对同位角;(2)∠3与∠4是一对内错角,∠2与∠4是一对同旁内角【解析】【分析】同位角:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同旁内角:两条直线被第三条直线所截,在截线同旁,且在被截直线之间的两角,叫做同旁内角;由以上概念进行判断即可.【详解】解:直线AB,EF被直线CD所截,(1)∠1与∠2是一对同位角;(2)∠3与∠4是一对内错角,∠2与∠4是一对同旁内角.【点睛】本题考查同位角、内错角以及同旁内角的识别,掌握这几种角的基本定义是解题关键.2、共组成6对角,位置关系有两种:①有公共顶点,一边重合,另一边互为反向延长线;②有公共顶点,角的两边互为反向延长线,具体分类见解析【解析】【分析】根据题意画出图形,然后结合题意可进行求解.【详解】解:如图,由图可知两条相交的直线,两两相配共组成6对角,位置关系有两种:①有公共顶点,一边重合,另一边互为反向延长线;②有公共顶点,角的两边互为反向延长线,这6对角中有:4对邻补角(即为∠AOD与∠AOC,∠AOD与∠BOD,∠BOD与∠BOC,∠BOC与∠AOC),2对对顶角(即为∠AOD与∠BOC,∠BOD与∠AOC).【点睛】本题主要考查对顶角及邻补角的概念,熟练掌握对顶角及邻补角的概念是解题的关键.3、见解析【解析】【分析】根据平行线的判定与性质,求解即可.【详解】证明:∵CF AB ⊥,ED AB ⊥,∴CF ED ∥,∴1BCF ∠=∠,∵12∠=∠,∴2BCF ∠=∠,∴FG BC ∥.∴180BCA FGC ∠+∠=︒.【点睛】此题考查了平行线的判定与性质,解题的关键是掌握平行线的判定方法与性质.4、①②③④作图见解析;⑤PQ ;⑥QD ;⑦QF ;⑧PE【解析】【分析】由题意①②③④根据题目要求即可作出图示,⑤⑥⑦⑧根据两点之间距离及点到直线的距离的定义即可得出答案.【详解】①②③④作图如图所示;⑤根据两点之间距离即可得出P,Q两点间的距离是线段PQ的长度;⑥根据点到直线的距离可得出点Q到直线AB的距离是线段QD的长度;⑦根据点到直线的距离可得出点Q到直线AC的距离是线段QF的长度;⑧根据点到直线的距离可得出点P到直线AB的距离是线段PE的长度.【点睛】本题主要考查基本作图和两点之间距离及点到直线的距离,熟练掌握相关概念与作图方法是解题的关键.5、(1)40°;(2)见解析;(3)70°【解析】【分析】(1)过点F作FN∥AB,由∠FEB=150°,可计算出∠EFN的度数,由∠EFG=90°,可计算出∠NFG 的度数,由平行线的性质即可得出答案;(2)根据题目补充理由和相关结论即可;(3)类似(2)中的方法求解即可.【详解】解:(1)过点F作FN∥AB,∵FN∥AB,∠FEB=130°,∴∠EFN+∠FEB=180°,∴∠EFN=180°﹣∠FEB=180°﹣130°=50°,∵∠EFG=90°,∴∠NFG=∠EFG﹣∠EFN=90°﹣50°=40°,∵AB∥CD,∴FN∥CD,∴∠FGC=∠NFG=40°.故答案为:40°;(2)如图②,过点E作EM∥FG,交CD于点M.∵AB∥CD(已知)∴∠BEM=∠EMC(两直线平行,内错角相等)又∵EM∥FG∴∠FGC=∠EMC(两直线平行,同位角相等)∠EFG+∠FEM=180°(两直线平行,同旁内角互补)即∠FGC=(∠BEM)(等量代换)∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(∠FEM)又∵∠EFG=90°∴∠FEM=90°∴∠FEB﹣∠FGC=90°故答案为:两直线平行,内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,∠BEM,∠FEM,90°(3)过点E作EH∥FG,交CD于点H.∵AB∥CD∴∠BEH=∠EHC又∵EM∥FG∴∠FGC=∠EHC∠EFG+∠FEH=180°即∠FGC=∠BEH∴∠FEB﹣∠FGC=∠FEB﹣∠BEH=∠FEH又∵∠EFG=110°∴∠FEH=70°∴∠FEB﹣∠FGC=70°故答案为:70°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质进行求解是解决本题的关键.。
精品试题鲁教版(五四)六年级数学下册第七章相交线与平行线专项测评试卷(精选含答案)

六年级数学下册第七章相交线与平行线专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,4∠的内错角是( )A .1∠B .2∠C .3∠D .5∠2、如图,射线AB 的方向是北偏东70°,射线AC 的方向是南偏西30°,则∠BAC 的度数是( )A .100°B .140°C .160°D .105°3、直线m 外一点P 它到直线的上点A 、B 、C 的距离分别是6cm 、5cm 、3cm ,则点P 到直线m 的距离为( )A .3cmB .5cmC .6cmD .不大于3cm4、如图,直线AB 、CD 相交于点O ,OE 平分∠BOC ,若∠BOD :∠BOE =1:2,则∠AOE 的大小为( )A .72°B .98°C .100°D .108°5、如图,在所标识的角中,下列说法不正确的是( )A .1∠和2∠互为补角B .1∠和4∠是同位角C .2∠和4∠是内错角D .2∠和3∠是对顶角6、如图,点A 是直线l 外一点,过点A 作AB ⊥l 于点B .在直线l 上取一点C ,连结AC ,使AC =53AB ,点P 在线段BC 上,连结AP .若AB =3,则线段AP 的长不可能是( )A .3.5B .4C .5D .5.57、下列命题中,为真命题的是( )A .若22a b =,则a b =B .若a b >,则a b >C .同位角相等D .对顶角相等8、下面四个图形中,1∠与2∠是对顶角的是( )A .B .C .D .9、如图,直线AD ,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是()A .∠2 和∠4B .∠6和∠4C .∠2 和∠6D .∠6和∠310、如图,直线a 、b 被直线c 所截,下列说法不正确的是( )A .∠1与∠5是同位角B .∠3与∠6是同旁内角C .∠2与∠4是对顶角D .∠5与∠2是内错角第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线AB 、CD 、EF 相交于点O ,OG ⊥EF ,且∠GOB =20°,∠AOC =40°,则∠COE =_____°.2、如图,直线AB ,CD 相交于点O ,31DOE BOE ∠=∠=︒,则1∠=__°.3、如图, 直线AB , CD , EF 相交于点O , 若:1:2AOE COE ∠∠=, AB CD ⊥,则COF ∠=______度.4、如图,直线AB 、CD 相交于点O ,∠AOD =100°,那么∠BOD =______.5、如图,AO⊥BO,O为垂足,直线CD过点O,且∠BOD=3∠AOC,则∠BOD=________.三、解答题(5小题,每小题10分,共计50分)1、已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点O 处.(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为°,∠CON的度数为°;(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为°;(3)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为°;∠DOC与∠BON的数量关系是∠DOC∠BON(填“>”、“=”或“<”);(4)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON的度数为°;∠AOM﹣∠CON的度数为°2、按要求画图,并回答问题:如图,平面内有三个点A,B,C.根据下列语句画图:(1)画直线AB ;(2)射线BC ;(3)延长线段AC 到点D ,使得CD AC =;(4)通过画图、测量,点B 到点D 的距离约为______cm (精确到0.1);(5)通过画图、测量,点D 到直线AB 的最短距离约为______cm (精确到0.1).3、如图,OB ⊥OD ,OC 平分∠AOD ,∠BOC =35°,求∠AOD 和∠AOB 的大小.4、如图,直线AB 和CD 相交于点O ,若40BOD ∠=︒,OA 平分EOC ∠,求EOD ∠的度数.5、已知:直线AB 与直线CD 交于点O ,过点O 作OE ⊥AB .(1)如图,14COE AOD ∠=∠,求∠AOC 的度数.(2)如图,在(1)的条件下,过点O作OF⊥CD,经过点O画直线MN,满足射线OM平分∠BOD在不添加任何辅助线的情况下,请直接写出与2∠EOF度数相等的角.-参考答案-一、单选题1、D【解析】【分析】根据内错角是在截线两旁,被截线之内的两角,内错角的边构成” Z“形作答.【详解】∠,∠4的同旁内角是∠3,∠4的同位角是∠2,∠4与∠1不具有特殊位解:如图,4∠的内错角是5置关系.故选:D.【点睛】本题考查了内错角的定义,正确记忆内错角的定义是解决本题的关键.2、B【解析】【分析】BAD CAE DAE再利用角的和差关系可得答案.根据方位角的含义先求解,,,解:如图,标注字母,射线AB 的方向是北偏东70°,射线AC 的方向是南偏西30°,907020,30,BAD CAE而90,DAE ∠=︒309020140,BAC CAE DAE BAD故选B【点睛】本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.3、D【解析】【分析】根据垂线段的性质“直线外和直线上所有点的连线中,垂线段最短”作答.【详解】 解:垂线段最短,∴点P 到直线m 的距离3cm ,【点睛】本题考查了点到直线的距离的定义和垂线段的性质,解题的关键是掌握垂线段最短.4、D【解析】【分析】根据角平分线的定义得到∠COE=∠BOE,根据邻补角的定义列出方程,解方程求出∠BOD,根据对顶角相等求出∠AOC,结合图形计算,得到答案.【详解】解:设∠BOD=x,∵∠BOD:∠BOE=1:2,∴∠BOE=2x,∵OE平分∠BOC,∴∠COE=∠BOE=2x,∴x+2x+2x=180°,解得,x=36°,即∠BOD=36°,∠COE=72°,∴∠AOC=∠BOD=36°,∴∠AOE=∠COE+∠AOC=108°,故选:D.【点睛】本题考查的是对顶角、邻补角的概念,掌握对顶角相等、邻补角之和为180°是解题的关键.5、C【解析】根据同位角、内错角、邻补角、对顶角的定义求解判断即可.【详解】解:A、1∠和2∠是邻补角,故此选项不符合题意;B、1∠和4∠是同位角,故此选项不符合题意;C、2∠和4∠不是内错角,故此选项符合题意;D、2∠和3∠是对顶角,故此选项不符合题意.故选:C.【点睛】此题考查了同位角、内错角、对顶角以及邻补角的定义,熟记同位角、内错角、邻补角、对顶角的定义是解题的关键.三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.6、D【解析】【分析】直接利用垂线段最短以及结合已知得出AP的取值范围进而得出答案.【详解】∵过点A作AB⊥l于点B,在直线l上取一点C,连接AC,使AC=53AB,P在线段BC上连接AP.∵AB=3,∴AC=5,∴3≤AP≤5,故AP不可能是5.5,故选:D .【点睛】本题考查了垂线段最短,正确得出AP 的取值范围是解题的关键.7、D【解析】【分析】利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.【详解】解:A 、若22a b =,则a b =或a b =-,故A 错误.B 、当0b a <<时,有a b <,故B 错误.C 、两直线平行,同位角相等,故C 错误.D 、对顶角相等,D 正确.故选:D .【点睛】本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.8、C【解析】【分析】根据对顶角的定义,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,分别判断即可.【详解】解:A、两角两边没有互为反向延长线,选项错误;B、两角两边没有互为反向延长线,选项错误;C、有公共顶点,且两角两边互为反向延长线,选项正确.D、没有公共顶点,两角没有互为反向延长线,选项错误.故选:C.【点睛】本题考查对顶角的定义,根据定义解题是关键.9、A【解析】【分析】同位角:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角,根据此定义即可得出答案.【详解】解:∵直线AD,BE被直线BF和AC所截,∴∠1与∠2是同位角,∠5与∠4是内错角,故选A.【点睛】本题考查的知识点是同位角和内错角的概念,解题关键是熟记内错角和同位角的定义.10、D【解析】【分析】根据同位角、对顶角、同旁内角以及内错角的定义对各选项作出判断即可.【详解】解:A、∠1与∠5是同位角,故本选项不符合题意;B、∠3与∠6是同旁内角,故本选项不符合题意.C、∠2与∠4是对顶角,故本选项不符合题意;D、∠5与 2不是内错角,故本选项符合题意.故选:D.【点睛】本题主要考查了同位角、对顶角、同旁内角、内错角的定义,解答此题的关键是确定三线八角,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.二、填空题1、30°【解析】【分析】先根据对顶角得到∠BOD=40°,再根据垂直的定义得到∠EOG=∠FOG=90°,求出∠DOF,最后根据对顶角求出∠COE.【详解】解:∵∠AOC=40°,∴∠BOD=40°,∵OG⊥EF,∴∠EOG=∠FOG=90°,∵∠GOB=20°,∴∠BOF =70°,∴∠COE =∠DOF =70°-40°=30°,故答案为:30°.【点睛】本题考查了垂直的定义,对顶角的性质;弄清各个角之间的关系是解决问题的关键.2、62【解析】【分析】先求出∠DOB 的值,然后根据对顶角相等求解即可.【详解】解:31DOE BOE ∠=∠=︒,313162DOB DOE BOD ∴∠=∠+∠=︒+︒=︒,1DOB ∠=∠,162∴∠=︒,故答案为62.【点睛】本题考查了角的和差,对顶角相等,正确识图是解答本题的关键.3、120【解析】【分析】根据垂直的定义和对顶角相等的性质可得答案.【详解】解:AB CD ⊥,90AOC BOC ∴∠=∠=︒,又:1:2AOE COE ∠∠=,119030123AOE AOC ∴∠=∠=︒⨯=︒+, AOE BOF ∠=∠,3090120COF BOF BOC ∴∠=∠+∠=︒+︒=︒,故答案为:120.【点睛】本题考查垂直的定义,对顶角相等的性质,解题的关键是掌握垂直的定义.4、80°##80度【解析】【分析】根据邻补角的定义,即可解答.【详解】解:∵∠AOD +∠BOD =180°,∴∠BOD =180°-∠AOD =180°-100°=80°,故答案为:80°.【点睛】本题考查了邻补角的定义,如果两个角有一条公共边,其余两边互为反向延长线,那么这两个角互为邻补角,互为邻补角两个角的和等于180°.5、67.5°【解析】【分析】根据垂直的定义得到∠AOB=90°,可利用互余得∠AOC+∠BOD=90°,把∠AOC=13∠BOD代入可计算出∠BOD.【详解】解:∵AO⊥BO,∴∠AOB=90°,∵∠COD=180°,∴∠AOC+∠BOD=90°,∵∠BOD=3∠AOC,∴13∠BOD+∠BOD=90°,∴∠BOD=67.5°.故答案为67.5°.【点睛】本题考查了垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.垂线的性质:过一点有且只有一条直线与已知直线垂直.三、解答题1、(1)120;150;(2)30°;(3)30,=;(4)150;30.【解析】【分析】(1)根据∠AOC=60°,利用两角互补可得∠BOC=180°﹣60°=120°,根据∠AON=90°,利用两角和∠CON=∠AOC+∠AON即可得出结论;(2)根据OM平分∠BOC,可得出∠BOM=60°,由∠BOM+∠BON=∠MON=90°可求得∠BON的度数;(3)根据对顶角求出∠AOD=30°,根据∠AOC=60°,可得∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.(4)根据垂直可得∠AON与∠MNO互余,根据∠MNO=60°(三角板里面的60°角),可求∠AON=90°﹣60°=30°,根据∠AOC=60°,求出∠CON=∠AOC﹣∠AON=60°﹣30°=30°即可.【详解】解:(1)∵∠AOC=60°,∠BOC与∠AOC互补,∠AON=90°,∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°=150°.故答案为120;150;(2)∵三角板一边OM恰好在∠BOC的角平分线OE上,由(1)得∠BOC=120°,∠BOC=60°,∴∠BOM=12又∵∠MON=∠BOM+∠BON=90°,∴∠BON=90°﹣60°=30°.故答案为30°;(3)∵∠AOD=∠BON(对顶角),∠BON=30°,∴∠AOD=30°,又∵∠AOC=60°,∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.故答案为30,=;(4)∵MN⊥AB,∴∠AON与∠MNO互余,∵∠MNO=60°(三角板里面的60°角),∴∠AON=90°﹣60°=30°,∵∠AOC=60°,∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,∴∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.故答案为150;30.【点睛】本题考查图中角度的计算,角平分线的定义,对顶角性质,互为余角,补角,掌握角度的和差计算,角平分线的定义,对顶角性质,互为余角,补角是解题关键.2、(1)见解析;(2)见解析;(3)见解析;(4)3.5;(5)1.4【解析】【分析】(1)根据直线定义即可画直线AB;(2)根据射线定义即可画直线BC;(3)根据线段定义即可连接AC并延长到点D,使得CD=AC;(4)通过画图、测量,即可得点B到点D的距离.(5)通过画图、测量,即可得点D到直线AB的距离.【详解】解:(1)如图,直线AB即为所求;(2)如图,射线BC即为所求;(3)如图,线段CD即为所画;(4)通过画图、测量,点B到点D的距离约为3.5cm,故答案为:3.5;(5)通过画图、测量,点D到点AB的距离DE约为1.4cm故答案为:1.4【点睛】本题考查了基本作图、直线是向两方无限延伸的,射线是向一方无限延伸的;线段有两个端点、两点间的距离,点到直线间的距离,解决本题的关键是准确作图.3、∠AOD=110°,∠AOB=20°【解析】【分析】根据OB⊥OD,先可求出∠COD,再根据角平分线的性质求出∠AOD,利用角度的关系即可求出∠AOB.【详解】解:∵OB⊥OD∴∠BOD=90°∵∠BOC=35°,∴∠COD=90°-∠BOC=55°∵OC平分∠AOD,∴∠AOD=2∠COD=110°∴∠AOB=∠AOD-∠BOD=110°-90°=20°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质、垂直的定义.4、100°【解析】【分析】根据对顶角相等以及角平分线的性质可得出∠AOE 的度数,再根据平角的定义即可得出∠EOD 的度数.【详解】解:∵∠BOD =40°,∴∠AOC =∠BOD =40°.∵OA 平分∠EOC ,∴∠AOE =∠AOC =40°,∴1801804040100EOD AOE BOD ∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题主要考查了角平分线的性质以及对顶角、邻补角的性质,难度不大.5、(1)60°;(2)∠BOC ,∠AOD ,∠NOF ,∠EOM【解析】【分析】(1)根据对顶角的性质得出BOC AOD ∠=∠,再根据14COE AOD ∠=∠列出方程即可求解;(2))根据(1)中∠AOC =60°,分别计算各角的度数,得其中∠EOF =60°,根据各角的度数可得结论.【详解】:(1)如图1,∵BOC AOD ∠=∠,且14COE AOD ∠=∠,∴4BOC AOD COE ∠=∠=∠,∵OE ⊥AB ,∴∠BOE =90°,∴∠COB -∠COE -=90°,490COE COE ∠-∠=︒,30COE ∠=︒,∴120BOC ∠=︒,18060AOC BOC ∠=︒-∠=︒(2)如图2,由(1)知:∠AOC =60°,∵射线OM 平分∠BOD ,∴∠BOM =∠DOM =∠AON =∠CON =30°,∵OE ⊥AB ,OC ⊥OF ,∴∠AOE =∠COF =90°,∴∠AOC =∠EOF =60°,∴∠AOD =∠BOC =∠FON =∠EOM =180°﹣60°=120°=2∠EOF ,∴与2∠EOF 度数相等的角是:∠AOD ,∠BOC ,∠FON ,∠EOM .【点睛】本题考查的是垂直的性质,角平分线的定义,以及对顶角和邻补角,熟练掌握这些性质和定义是关键,并会识图,明确角的和与差.。
综合解析鲁教版(五四)六年级数学下册第七章相交线与平行线专项测试试题(含详解)

六年级数学下册第七章相交线与平行线专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将军要从村庄A去村外的河边饮马,有三条路AB、AC、AD可走,将军沿着AB路线到的河边,他这样做的道理是()A.两点之间,线段最短B.两点之间,直线最短C.两点确定一条直线D.直线外一点与直线上各点连接的所有线段中,垂线段最短2、如图所示,∠1和∠2是对顶角的是()A.B.C.D.3、如图,点P是直线m外一点,A、B、C三点在直线m上,PB⊥AC于点B,那么点P到直线m的距离是线段()的长度.A.PA B.PB C.PC D.AB4、下列说法中正确的是()A.锐角的2倍是钝角B.两点之间的所有连线中,线段最短C.相等的角是对顶角D.若AC=BC,则点C是线段AB的中点5、在如图中,∠1和∠2不是同位角的是()A.B.C.D.6、如图,点A,O,B在一条直线上,OE⊥AB,∠1与∠2互余,那么图中相等的角有()A.2对B.3对C.4对D.5对7、下列四个图形中,1∠和2∠是内错角的是()A.B.C.D.8、如图,在A、B两地之间要修条笔直的公路,从A地测得公路走向是北偏东48︒,A,B两地同时开工,若干天后公路准确接通,若公路AB长8千米,另一条公路BC长是6千米,且从B地测得公路BC的走向是北偏西42︒,则A地到公路BC的距离是()A.6千米B.8千米C.10千米D.14千米9、如图,测量运动员跳远成绩选取的应是图中()A.线段PA的长度B.线段PB的长度C.线段PM的长度D.线段PH的长度10、体育课上老师按照如图所示的方式测量同学的跳远成绩,这里面蕴含的数学原理是()A.垂线段最短B.两点之间,线段最短C.平面内,过一点有且只有一条直线与已知直线垂直D.两点确定一条直线第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,点A,B,C,D在同一条直线上.在线段PA,PB,PC,PD中,最短的线段是________,理由是________.2、两条直线相交,可以构成四个角,若在图中再添加一条直线,即直线EF被第三条直线CD所截,构成了_____个角,简称“______”.同位角:图中∠1与∠5,这两个角分别在直线AB,CD的同一方(上方),并且都在直线EF的同侧(右侧),具有这种位置关系的一对角叫做______.图中还有同位角:______.内错角:∠3与∠5,这两个角分别在直线AB,CD之间,并且分别在直线EF两侧,(∠3在直线EF左侧,∠5在直线EF右侧),具有这种位置关系的一对角叫做______.图中还有内错角:______.同旁内角:∠3与∠6,这两个角分别在直线AB,CD之间,但它们在直线EF的同一旁(左侧),具有这种位置关系的一对角叫做______.图中还有同旁内角:______ .3、如图,口渴的马儿在A点处想尽快地到达小河边喝水,它应该沿着线路AB奔跑,依据是___________.4、如图,∠AOB=90°,则AB___BO;若OA=3cm,OB=2cm,则A点到OB的距离是________cm,点B 到OA 的距离是________cm ;O 点到AB 上各点连接的所有线段中________最短.5、如图所示方式摆放纸杯测量角的基本原理是 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,点О在直线AB 上,BOD ∠与COD ∠互补,BOC n EOC ∠=∠.(1)若24AOD ∠=︒,3n =,求DOE ∠的度数;(2)若DO OE ⊥,求n 的值;(3)若4n =,设AOD α∠=,求DOE ∠的度数(用含α的代数式表示DOE ∠的度数).2、如图,直线AB 和CD 相交于点O ,若40BOD ∠=︒,OA 平分EOC ∠,求EOD ∠的度数.3、已知:如图,AC BD ⊥,EF BD ⊥,1A ∠=∠.求证:EF 平分BED ∠.4、已知,直线AB 、CD 交于点O ,EO ⊥AB ,∠EOC :∠BOD =7:11.(1)如图1,求∠DOE 的度数;(2)如图2,过点O 画出直线CD 的垂线MN ,请直接写出图中所有度数为125°的角.5、如图所示,从标有数字的角中找出:(1)直线CD 和AB 被直线AC 所截构成的内错角.(2)直线CD 和AC 被直线AD 所截构成的同位角.(3)直线AC 和AB 被直线BC 所截构成的同旁内角.-参考答案-一、单选题1、D【解析】【分析】根据垂线段最短即可完成.【详解】根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确故选:D【点睛】本题考查了垂线的性质的简单应用,直线外一点与直线上各点连接的所有线段中,垂线段最短,掌握垂线段最短的性质并能运用于实际生活中是关键.2、A【解析】【分析】根据对顶角的两边互为反向延长线逐一进行判断即可.【详解】A.∠1和∠2两边是互为反向延长线,是对顶角,故此选项正确;B.∠1和∠2有一边不是互为反向延长线,故此选项错误;C.∠1和∠2没有公共顶点,故此选项错误;D.∠1和∠2有一边不是互为反向延长线,故此选项错误.故选:A.【点睛】本题考查了对顶角相等,是基础题,熟记概念并准确识图是解题的关键.3、B【解析】【分析】根据点到直线的距离的定义解答即可.【详解】解:∵PB⊥AC于点B,∴点P到直线m的距离是线段B的长度.故选:B.【点睛】本题主要考查了点到直线的距离的定义,从直线外一点到这条直线的垂线段长度叫点到直线的距离.4、B【解析】【分析】根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.【详解】解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;B.两点之间的所有连线中,线段最短,正确;C.相等的角不一定是对顶角,故不符合题意;D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;故选:B.【点睛】本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.5、D【解析】【分析】同位角的定义:两条直线a,b被第三条直线c所截,在截线c的同侧,被截两直线a,b的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.【详解】解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.故选:D.【点睛】本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.6、D【解析】【分析】根据垂直的定义、互为余角的两个角的和等于90°以及等角的余角相等解答即可.【详解】解:∵OE⊥AB,∴∠AOE=∠BOE=90°,∴∠1+∠AOC=90°,∠2+∠BOD=90°,∵∠1与∠2互余,∴∠COD=∠1+∠2=90°,∴∠1=∠BOD,∠2=∠AOC,∠AOE=∠COD,∠BOE=∠COD,∴图中相等的角有5对.故选:D.【点睛】本题考查了垂直和互余的定义以及等角的余角相等的应用,是基础题,熟记概念并准确识图是解题的关键.7、C【解析】【分析】根据内错角的概念:处于两条被截直线之间,截线的两侧,再逐一判断即可.【详解】解:A、∠1与∠2不是内错角,选项错误,不符合题意;B、∠1与∠2不是内错角,选项错误,不符合题意;C、∠1与∠2是内错角,选项正确,符合题意;D、∠1和∠2不是内错角,选项错误,不符合题意;故选:C.【点睛】本题考查了内错角,关键是根据内错角的概念解答.注意:内错角的边构成“Z”形.8、B【解析】【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【详解】解:根据两直线平行,内错角相等,可得∠ABG=48°,∵∠ABC=180°−∠ABG−∠EBC=180°−48°−42°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=8千米,故选B.【点睛】此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.9、D【解析】【分析】直接利用过一点向直线作垂线,利用垂线段最短得出答案.【详解】解:如图所示:过点P作PH⊥AB于点H,PH的长就是该运动员的跳远成绩,故选:D.【点睛】本题主要考查了垂线段最短,正确理解垂线段最短的意义是解题关键.10、A【解析】【分析】由实际出发,老师测量跳远成绩的依据是垂线段最短.【详解】解:体育课上,老师测量跳远成绩的依据是垂线段最短.故选:A.【点睛】此题考查知识点垂线段最短,关键是掌握垂线段的性质:垂线段最短.二、填空题1、PC垂线段最短【解析】【分析】根据垂线段最短求解即可.【详解】,PA,PB,PD都不垂直于AD,解:∵PC AD∴由垂线段最短可得,最短的线段是PC,理由是:垂线段最短.故答案为:PC;垂线段最短.【点睛】此题考查了垂线段最短的性质,解题的关键是熟练掌握垂线段最短.2、 8 三线八角同位角∠2和∠6;∠3和∠7;∠4和∠8 内错角;∠4和∠6 同旁内角∠4和∠5【解析】略3、垂线段最短【解析】【分析】根据点到直线,垂线段最短,即可求解.【详解】解:因为AB垂直于小河边所在直线,所以它应该沿着线路AB奔跑,依据是垂线段最短.故答案为:垂线段最短.【点睛】本题主要考查了点与直线的关系,熟练掌握点到直线,垂线段最短是解题的关键.4、> 3 2 垂线段【分析】根据点到直线的距离的定义,大角对大边,垂线段最短进行求解即可.【详解】解:∵∠AOB=90°,∴AO⊥BO,AB>BO,∵OA=3cm,OB=2cm,∴A点到OB的距离是3cm,点B到OA的距离是2cm,O点到AB上各点连接的所有线段中垂线段最短,故答案为:>,3,2,垂线段.【点睛】本题主要考查了点到直线的距离,大角对大边,垂线段最短,解题的关键在于能够熟知相关定义.5、对顶角相等【解析】【分析】利用对顶角的定义进行求解即可.【详解】图中的测量角的原理是:对顶角相等.故答案为:对顶角相等.【点睛】本题考查了对顶角,解题的关键是理解清楚对顶角的定义.三、解答题1、 (1)68(3)145.2DOE α∠=︒+【解析】【分析】(1)先证明=24,COD AOD ∠=∠︒再求解44,COE ∠=︒ 从而可得答案;(2)先证明,COD AOD ∠=∠再证明,COE BOE ∠=∠设,COE x ∠= 则,BOE nx x ∠=- 再列方程求解即可;(3) 先证明,COD AOD α∠=∠= 设,COE y ∠= 而4,n = 则4,BOC y ∠= 则42180,y α+=︒ 解方程求解,y 再利用角的和差关系可得答案.(1) 解: BOD ∠与COD ∠互补,180,BOD AOD ∠+∠=︒,COD AOD ∴∠=∠ 24AOD ∠=︒,3n =,BOC n EOC ∠=∠24,COD ∴∠=︒ 3BOC EOC ∠=∠,1802424132,44,BOC EOC ∴∠=︒-︒-︒=︒∠=︒244468.DOE ∴∠=︒+︒=︒(2) 解: BOD ∠与COD ∠互补,180,BOD AOD ∠+∠=︒,COD AOD ∴∠=∠设,COE x ∠=,BOE nx x ∴∠=-,OD OE ⊥90,COD COE AOD BOE ∴∠+∠=︒=∠+∠,COE BOE ∴∠=∠,nx x x ∴-= 而0,x ≠解得: 2.n =(3) 解: BOD ∠与COD ∠互补,180,BOD AOD ∠+∠=︒,COD AOD α∴∠=∠=设,COE y ∠= 而4,n = 则4,3,BOC y BOE y ∠=∠=42180,y α∴+=︒145,2y α∴=︒- 11+4545.22DOE ααα∴∠=︒-=︒+ 【点睛】本题考查的是角的和差关系,垂直的定义,等角的余角相等,一元一次方程的应用,熟练的利用一元一次方程解决几何图形中的角度问题是解本题的关键.2、100°【解析】【分析】根据对顶角相等以及角平分线的性质可得出∠AOE 的度数,再根据平角的定义即可得出∠EOD 的度数.【详解】解:∵∠BOD =40°,∴∠AOC =∠BOD =40°.∵OA 平分∠EOC ,∴∠AOE =∠AOC =40°,∴1801804040100EOD AOE BOD ∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题主要考查了角平分线的性质以及对顶角、邻补角的性质,难度不大.3、见解析【解析】【分析】先判定EF //AC ,得到2A ∠=∠,31∠=∠,等量代换可得∠2=∠3,从而EF 平分BED ∠.【详解】证明:AC BD ,EF BD ⊥,//EF AC ∴,2A ∴∠=∠,31∠=∠, 又1A ∠=∠,∴∠3=∠A ,23∴∠=∠,EF ∴平分BED ∠.【点睛】本题考查了平行线的判定与性质,角平分线的定义,熟练掌握平行线的判定与性质是解答本题的关键.4、(1)145°;(2)图中度数为125°的角有:∠EOM ,∠BOC ,∠AOD .【解析】【分析】(1)由EO ⊥AB ,得到∠BOE =90°,则∠COE +∠BOD =90°,再由∠EOC :∠BOD =7:11,求出∠COE=35°,∠BOD=55°,则∠DOE=∠BOD+∠BOE=145°;(2)由MN⊥CD,得到∠COM=90°,则∠EOM=∠COE+∠COM=125°,再由∠BOD=55°,得到∠BOC=180°-∠BOD=125°,则∠AOD=∠BOC=125°.【详解】解:(1)∵EO⊥AB,∴∠BOE=90°,∴∠COE+∠BOD=90°,∵∠EOC:∠BOD=7:11,∴∠COE=35°,∠BOD=55°,∴∠DOE=∠BOD+∠BOE=145°;(2)∵MN⊥CD,∴∠COM=90°,∴∠EOM=∠COE+∠COM=125°,∵∠BOD=55°,∴∠BOC=180°-∠BOD=125°,∴∠AOD=∠BOC=125°,∴图中度数为125°的角有:∠EOM,∠BOC,∠AOD.【点睛】本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握垂线的定义.5、 (1)直线CD和AB被直线AC所截构成的内错角是∠2和∠5; (2)直线CD和AC被直线AD所截构成的同位角是∠1和∠7;(3)直线AC和AB被直线BC所截构成的同旁内角是∠3和∠4【解析】【分析】根据两条直线被第三条直线所截,所形成的角中,两角在两条直线的中间,第三条直线的两旁,可得内错角,两角在两直线的中间,第三条直线的同侧,可得同旁内角,两角在两条直线的同侧,第三条直线的同侧,可得同位角.【详解】解:(1)直线CD和AB被直线AC所截构成的内错角是∠2和∠5.(2)直线CD和AC被直线AD所截构成的同位角是∠1和∠7.(3)直线AC和AB被直线BC所截构成的同旁内角是∠3和∠4.【点睛】此题主要考查了三线八角,关键是掌握同位角的边构成F形,内错角的边构成Z形,同旁内角的边构成U形.。
综合解析鲁教版(五四)六年级数学下册第七章相交线与平行线章节测试试卷(含答案解析)

六年级数学下册第七章相交线与平行线章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将矩形纸条ABCD 折叠,折痕为EF ,折叠后点C ,D 分别落在点C ′,D ′处,D ′E 与BF 交于点G .已知∠BGD ′=26°,则∠α的度数是( )A .77°B .64°C .26°D .87°2、下列图形中,∠1与∠2不是对顶角的有( )A .1个B .2个C .3个D .0个3、如图,点O 在直线BD 上,已知120∠=︒,OC OA ⊥,则BOC ∠的度数为( ).A .20°B .70°C .80°D .90°4、下列各图中,1∠和2∠是对顶角的是( )A .B .C .D .5、如图,CDB ∠与DBE ∠是同旁内角,它们是由( )A .直线CD ,AB 被直线BD 所截形成的B .直线AD ,BC 被直线AE 所截形成的C .直线DC ,AB 被直线AD 所截形成的D .直线DC ,AB 被直线BC 所截形成的6、如图,直线a 、b 被直线c 所截,下列选项中不一定能判定a ∥b 的是( )A.∠1=∠3B.∠1=∠4C.∠2=∠4D.∠2=∠57、如图,将军要从村庄A去村外的河边饮马,有三条路AB、AC、AD可走,将军沿着AB路线到的河边,他这样做的道理是()A.两点之间,线段最短B.两点之间,直线最短C.两点确定一条直线D.直线外一点与直线上各点连接的所有线段中,垂线段最短8、下图中,1∠和2∠是对顶角的是()A.B.C.D.9、如图,下列各组角中,是对顶角的一组是()A .∠1和∠2B .∠2和∠3C .∠2和∠4D .∠1和∠510、如图,135AOC ∠=︒,则BOC ∠的度数为( )A .55︒B .45︒C .35︒D .25︒第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,三条直线两两相交,其中同旁内角共有_______对,同位角共有______对,内错角共有_______对.2、如图,∠1还可以用______ 表示,若∠1=62°,那么∠BCA=____ 度.3、如图,口渴的马儿在A点处想尽快地到达小河边喝水,它应该沿着线路AB奔跑,依据是___________.4、如图,直线AB、CD相交于点O,OE⊥AB于点O,若∠COE=55°,则∠BOD为______.5、如图,若AB,AF被ED所截,则1与______________是内错角.三、解答题(5小题,每小题10分,共计50分)1、如图所示,从标有数字的角中找出:(1)直线CD和AB被直线AC所截构成的内错角.(2)直线CD和AC被直线AD所截构成的同位角.(3)直线AC和AB被直线BC所截构成的同旁内角.2、如图,OC⊥AB于点O,OD平分∠BOC,求∠COD的度数.3、如图,直线AB,CD相交于点O,OM⊥AB于点O,ON⊥CD于点O.(1)试说明∠1=∠2;(2)若∠BOC=4∠2,求∠AOC的大小.4、如图所示,直线AB、CD相交于点O,∠1=65°,求∠2、∠3、∠4的度数5、如图,点O是直线AB上的一点,∠BOC:∠AOC=1:2,OD平分∠BOC,OE⊥OD于点O.(1)求∠BOC的度数;(2)试说明OE平分∠AOC.-参考答案-一、单选题1、A【解析】【分析】本题首先根据∠BGD′=26°,可以得出∠AEG=∠BGD′=26°,由折叠可知∠α=∠FED,由此即可求出∠α=77°.【详解】解:由图可知:AD∥BC∴∠AEG=∠BGD′=26°,即:∠GED=154°,由折叠可知: ∠α=∠FED,∴∠α=12GED=77°故选:A.【点睛】本题主要考察的是根据平行得性质进行角度的转化.2、C【解析】【分析】根据对顶角的定义:有公共顶点且两条边都互为反向延长线的两个角称为对顶角,逐一判断即可.【详解】解:①中∠1和∠2的两边不互为反向延长线,故①符合题意;②中∠1和∠2是对顶角,故②不符合题意;③中∠1和∠2的两边不互为反向延长线,故③符合题意;④中∠1和∠2没有公共点,故④符合题意.∴∠1 和∠2 不是对顶角的有3个,故选C.【点睛】此题考查的是对顶角的识别,掌握对顶角的定义是解决此题的关键.3、B【解析】【分析】直接利用垂直的定义结合互余得出答案.【详解】解:∵点O 在直线DB 上, OC ⊥OA ,∴∠AOC =90°,∵∠1=20°,∴∠BOC =90°−20°=70°,故选:B .【点睛】此题主要考查了垂线以及互余,正确把握相关定义是解题关键.4、D【解析】【分析】由题意根据对顶角的两边互为反向延长线对各图形分析判断后进行解答.【详解】解:根据对顶角的定义:A 中1∠和2∠顶点不在同一位置,不是对顶角;B 中1∠和2∠角度不同,不是对顶角;C 中1∠和2∠顶点不在同一位置,不是对顶角;D 中1∠和2∠是对顶角;故选:D .【点睛】此题主要考查了对顶角,正确把握对顶角的定义是解题关键.5、A【解析】【分析】根据两直线被第三条直线所截,根据角位于两直线的中间,截线的同一侧是同旁内角,可得同旁内角.【详解】解:CDB ∠与DBE ∠是同旁内角,它们是由直线CD ,AB 被直线BD 所截形成的故选A .【点睛】本题考查了同旁内角的含义,熟练掌握含义是解题的关键.6、B【解析】【分析】根据平行线的判定逐项判断即可得.【详解】解:A 、13∠=∠,根据同位角相等,两直线平行能判定a b ∥,此项不符题意;B 、14∠=∠,不一定能判定a b ∥,此项符合题意;C 、24∠∠=,根据同位角相等,两直线平行能判定a b ∥,此项不符题意;D 、25∠=∠,根据内错角相等,两直线平行能判定a b ∥,此项不符题意;故选:B .【点睛】本题考查了平行线的判定,熟练掌握判定方法是解题关键.7、D【解析】【分析】根据垂线段最短即可完成.【详解】根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确故选:D【点睛】本题考查了垂线的性质的简单应用,直线外一点与直线上各点连接的所有线段中,垂线段最短,掌握垂线段最短的性质并能运用于实际生活中是关键.8、C【解析】【分析】根据对顶角的定义解答即可.【详解】解:A. 1∠和2∠的某一边不是互为反向延长线,不是对顶角,故不符合题意;B. 1∠和2∠没有公共顶点,不是对顶角,故不符合题意;C. 1∠和2∠是对顶角,符合题意;D. 1∠和2∠的某一边不是互为反向延长线,不是对顶角,故不符合题意.故选C.【点睛】本题考查了对顶角,熟记对顶角的定义是解题的关键.对顶角的定义:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.9、C【解析】【分析】根据对顶角的定义,即可求解.【详解】解:A 、∠1和∠2是同位角,故本选项不符合题意;B 、∠2和∠3是邻补角,故本选项不符合题意;C 、∠2和∠4是对顶角,故本选项符合题意;D 、∠1和∠5不是对顶角,故本选项不符合题意;故选:C .【点睛】本题主要考查了对顶角的定义,熟练掌握如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角是解题的关键.10、B【解析】【分析】根据AOC ∠与BOC ∠互补求解即可.【详解】135AOC ∠=︒,180********BOC AOC ∴∠=︒-∠=︒-︒=︒,故选:B .【点睛】本题主要考查补角,掌握互补的概念是关键.二、填空题1、 6 12 6【解析】【分析】根据同位角、同旁内角和内错角的定义判断即可;【详解】如图所示:同位角有:1∠与5∠;1∠与10∠;2∠与6∠,2∠与9∠;6∠与12∠;3∠与12∠;7∠与11∠;8∠与10∠;8∠与4∠;7∠与3∠;5∠与9∠;4∠和11∠,共有12对;同旁内角有:2∠与5∠;4∠与10∠;7∠与12∠;3∠与8∠;3∠与9∠;8∠与9∠,共有6对; 内错角有:4∠与9∠;3∠与5∠;7∠与9∠;3∠与10∠;8∠与12∠;2∠与8∠,共有6对; 故答案是:6;12;6.【点睛】本题主要考查了同位角、内错角、同旁内角的判断,准确分析判断是解题的关键.∠118︒2、BCE【解析】【分析】根据角的表示和邻补角的性质计算即可;【详解】∠表示;∠1还可以用BCE∵∠1=62°,1180∠+∠=︒,BCA∴18062118∠=︒-︒=︒;BCA∠;118︒.故答案是:BCE【点睛】本题主要考查了角的表示和邻补角的性质,准确计算是解题的关键.3、垂线段最短【解析】【分析】根据点到直线,垂线段最短,即可求解.【详解】解:因为AB垂直于小河边所在直线,所以它应该沿着线路AB奔跑,依据是垂线段最短.故答案为:垂线段最短.【点睛】本题主要考查了点与直线的关系,熟练掌握点到直线,垂线段最短是解题的关键.4、35°【分析】根据垂直的定理得出AOE ∠的度数,然后根据已知条件得出AOC ∠的度数,最后根据对顶角相等求出BOD ∠即可.【详解】解:∵OE ⊥AB ,∴∠AOE =90°,∵ 55COE ∠=︒ ,∴∠AOC =90°- 35COE ∠=︒ ,∴∠BOD =∠AOC = 35︒ ,故答案为:35°.【点睛】本题考查了垂线的定义,对顶角的定义,根据题意得出AOC ∠的度数是解本题的关键.5、3∠【解析】【分析】根据内错角的定义填空即可.【详解】解:1∠与3∠是内错角,故答案为3∠【点睛】本题主要考查内错角的定义,解答此类题确定三线八角是关键,可直接从截线入手.同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.1、 (1)直线CD和AB被直线AC所截构成的内错角是∠2和∠5; (2)直线CD和AC被直线AD所截构成的同位角是∠1和∠7;(3)直线AC和AB被直线BC所截构成的同旁内角是∠3和∠4【解析】【分析】根据两条直线被第三条直线所截,所形成的角中,两角在两条直线的中间,第三条直线的两旁,可得内错角,两角在两直线的中间,第三条直线的同侧,可得同旁内角,两角在两条直线的同侧,第三条直线的同侧,可得同位角.【详解】解:(1)直线CD和AB被直线AC所截构成的内错角是∠2和∠5.(2)直线CD和AC被直线AD所截构成的同位角是∠1和∠7.(3)直线AC和AB被直线BC所截构成的同旁内角是∠3和∠4.【点睛】此题主要考查了三线八角,关键是掌握同位角的边构成F形,内错角的边构成Z形,同旁内角的边构成U形.2、45°【解析】【分析】根据垂线的定义得到∠BOC=90°,再由角平分线的定义即可得到.【详解】解:∵OC⊥AB于点O,∴∠BOC=90°,∵OD平分∠BOC,∴1=452COD BOC∠=∠.【点睛】本题主要考查了垂线的定义和角平分线的定义,熟知定义是解题的关键.3、(1)见解析;(2)60°【解析】【分析】(1)利用同角的余角相等解答即可得出结论;(2)利用(1)的结论,等量代换可得∠BOC=4∠1,利用∠BOM=90°=3∠1,求得∠1的度数,则∠AOC=90°﹣∠1.【详解】解:(1)∵OM⊥AB,ON⊥CD,∴∠AOM=∠CON=90°,∴∠AOC+∠1=90°,∠AOC+∠2=90°,∴∠1=∠2.(2)∵OM⊥AB,∴∠BOM=90°.∵∠1=∠2,∠BOC=4∠2,∴∠BOC=4∠1.∴∠BOM=∠BOC﹣∠1=4∠1﹣∠1=3∠1,即3∠1=90°,∴∠1=30°.∴∠AOC=∠AOM﹣∠1=90°﹣30°=60°.【点睛】本题考查了对顶角、垂线性质、余角等基本几何知识,属于基础题.熟练掌握基本几何公理、基本几何概念是关键.4、∠2=115°,∠3=65°,∠4=115°【解析】【分析】根据对顶角相等和邻补角定义可求出各个角.【详解】解:∵∠1=65°,∠1=∠3,∴∠3=65°,∵∠1=65°,∠1+∠2=180°,∴∠2=180°-65°=115°,又∵∠2=∠4,∴∠4=115°.【点睛】本题考核知识点:对顶角,邻补角,解题关键是掌握对顶角,邻补角的定义和性质.5、(1)∠BOC=60°(2)见解析【解析】【分析】(1)根据∠AOB是平角,∠BOC:∠AOC=1:2即可求解;(2)由角平分线的定义和相加等于90°的两个角互余、等角的余角相等来分析即可.【详解】(1)∵∠AOB=∠BOC+∠AOC=180°,又∠BOC:∠AOC=1:2,∴∠AOC=2∠BOC,∴∠BOC+2∠BOC=180°,∴∠BOC=60°;(2)∵OD平分∠BOC,∴∠BOD=∠DOC,∵∠DOC+∠COE=90°,∠AOB是平角,∴∠AOE+∠BOD=90°,∴∠AOE=∠COE即OE平分∠AOC.【点睛】本题考查了角的计算和角平分线的定义,垂直的定义,正确理解角平分线的定义,余角的性质以及平角的定义是解题的关键.。
难点解析鲁教版(五四)六年级数学下册第七章相交线与平行线专项练习试卷(含答案详解)

六年级数学下册第七章相交线与平行线专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线AB ,CD 相交于点O ,90AOE ∠=︒,90DOF ∠=︒,OB 平分DOG ∠,给出下列结论:①当50AOF ∠=︒时,50DOE ∠=︒;②OD 为EOG ∠的平分线;③若150AOD ∠=︒时,30EOF ∠=︒;④BOG EOF ∠=∠.其中正确的结论有( )A .4个B .3个C .2个D .1个2、下列说法中正确的是( )A .锐角的2倍是钝角B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC =BC ,则点C 是线段AB 的中点3、下列选项中1∠,2∠是对顶角的是( )A.B.C.D.4、如图,AC⊥BC,CD⊥AB,则点C到AB的距离是线段()的长度A.CD B.AD C.BD D.BCAB m,则5、如图,从旗杆AB的顶端A向地面拉一条绳子,绳子底端恰好在地面P处,若旗杆10.2绳子AP的长度不可能...是().A.12m B.11m C.10.3m D.10m6、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是()A .77°B .64°C .26°D .87°7、下列图形中线段AD 的长表示点A 到直线BC 距离的是( )A .B .C .D .8、在如图中,∠1和∠2不是同位角的是( )A .B .C .D .9、已知各角的度数如图所示,则下列各题中的x 和y 分别是( ).A .40,70︒︒B .30,70︒︒C .40,80︒︒D .30,80︒︒10、∠A 两边分别垂直于∠B 的两边,∠A 与∠B 的关系是( )A .相等B .互补C .相等或互补D .不能确定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知直线12//l l ,145∠=︒,则23∠+∠=______°.2、如图,直线a 、b 、c 分别与直线d 、e 相交,与∠1构成同位角的角共有________个,和∠l 构成内错角的角共有________个,与∠1构成同旁内角的角共有________个.3、如图,已知直线AB 和CD 相交于O 点,∠COE 是直角,OF 平分∠AOE ,∠COF =36°,则∠BOD 的大小为 _____.4、如图,直线AB ,CD 相交于点O ,135∠=︒,275∠=︒,则EOB ∠的度数为__________︒.5、如果两个角有一条公共边,它们的另一边互为____________,那么这两个角互为邻补角.图中∠1的邻补角有___________.三、解答题(5小题,每小题10分,共计50分)1、(1)请在给定的图中按照要求画图:①画射线AB;②画平角∠BAD;③连接AC.(2)点B、C分别表示两个村庄,它们之间要铺设燃气管道.若节省管道,则沿着线段BC铺设.这样做的数学依据是:.2、如图,直线AB,CD,EF相交于点O,(1)指出∠AOC,∠EOB的对顶角及∠AOC的邻补角.(2)图中一共有几对对顶角?指出它们.3、如图,直线AB、CD相交于点O,OE平分∠BOC,∠FOE=90°,若∠AOD=70°,求∠AOF度数4、(1)用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?(2)经过直线l上一点A画l的垂线,这样的垂线能画出几条?(3)经过直线l外一点B画l的垂线,这样的垂线能画出几条?5、如图,在ABC中,DE∥AC,DF∥AB.(1)判断∠A与∠EDF之间的大小关系,并说明理由.(2)求∠A+∠B+∠C的度数.-参考答案-一、单选题1、B【解析】【分析】由邻补角,角平分线的定义,余角的性质进行依次判断即可.【详解】解:∵∠AOE =90°,∠DOF =90°,∴∠BOE =90°=∠AOE =∠DOF ,∴∠AOF +∠EOF =90°,∠EOF +∠EOD =90°,∠EOD +∠BOD =90°,∴∠EOF =∠BOD ,∠AOF =∠DOE ,∴当∠AOF =50°时,∠DOE =50°;故①正确;∵OB 平分∠DOG ,∴∠BOD =∠BOG ,∴∠BOD =∠BOG =∠EOF =∠AOC ,故④正确;∵150AOD ∠=︒,∴∠BOD =180°-150°=30°,∴30EOF ∠=︒故③正确;若OD为EOG∠的平分线,则∠DOE=∠DOG,∴∠BOG+∠BOD=90°-∠EOE,∴∠EOF=30°,而无法确定30∠=︒,EOF∴无法说明②的正确性;故选:B.【点睛】本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.2、B【解析】【分析】根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.【详解】解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;B.两点之间的所有连线中,线段最短,正确;C.相等的角不一定是对顶角,故不符合题意;D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;故选:B.【点睛】本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.3、C【解析】【分析】根据对顶角的定义:两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角,对各项进行分析即可.【详解】解:A中∠1和∠2不是两边互为反向延长线,不是对顶角;B中∠1和∠2角度不同,不是对顶角;C中∠1和∠2是对顶角;D中∠1和∠2顶点不在同一位置,不是对顶角.故选:C.【点睛】本题考查了对顶角的定义,熟记对顶角的定义是解题的关键.4、A【解析】【分析】⊥和点到直线的距离的定义即可得出答案.根据CD AB【详解】⊥,解:CD AB∴点C到AB的距离是线段CD的长度,故选:A.【点睛】本题考查了点到直线的距离,理解定义是解题关键.5、D【解析】【分析】根据点到直线的距离垂线段最短分析即可.【详解】根据题意,点A到BC的距离为10.2AB=,根据垂线段最短可知,AP的长度不可能小于AB,故选D.【点睛】本题考查了垂线段最短,理解垂线段最短是解题的关键.6、A【解析】【分析】本题首先根据∠BGD′=26°,可以得出∠AEG=∠BGD′=26°,由折叠可知∠α=∠FED,由此即可求出∠α=77°.【详解】解:由图可知:AD∥BC∴∠AEG=∠BGD′=26°,即:∠GED=154°,由折叠可知: ∠α=∠FED,∴∠α=12GED∠=77°故选:A.【点睛】本题主要考察的是根据平行得性质进行角度的转化.7、A【解析】【分析】根据点到直线的距离,垂足在直线上,据此分析即可【详解】A. AD表示的是点A到直线BC距离,故该选项正确,符合题意;B. AD表示的是点D到直线AB距离,故该选项不正确,不符合题意;C. AD表示的是点D到直线AB距离,故该选项不正确,不符合题意;D. AD不能表示点到直线距离,故该选项不正确,不符合题意;故选A【点睛】本题考查了点到直线的距离,理解点到直线的距离,垂足在直线上是解题的关键.8、D【解析】【分析】同位角的定义:两条直线a,b被第三条直线c所截,在截线c的同侧,被截两直线a,b的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.【详解】解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.故选:D.【点睛】本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.9、B【解析】【分析】根据对顶角相等列方程可求得x的值;根据邻补角互补列方程可求得y的值.【详解】解:根据题意得:x=2x-30°,解得:x=30°;y+2y-30°=180°,解得:y=70°;故选:B.【点睛】本题考查了一元一次方程组的应用,理解对顶角相等,邻补角互补,解答本题的关键是找出题目中的等量关系,列出方程组.10、C【解析】【分析】分别画出∠A两边分别垂直于∠B的两边,然后利用同角的余角相等进行求解即可.【详解】解:如图所示:BE⊥AE,BC⊥AC,∴∠BCF=∠AEF=90°,∴∠A+∠AFE=90°,∠B+∠BFC=90°,∴∠A=∠B如图所示:BD⊥AD,BC⊥AC,∴∠ADE=∠BCE=90°,∴∠A+∠BEC=90°,∠CBE+∠BEC=90°,∴∠A=∠CBE,∵∠CBE+∠DBC=180°,∴∠A+∠DBC=180°,综上所述,∠A与∠B的关系是相等或互补,故选C.【点睛】本题主要考查了垂直的定义,同角的余角相等,以及等角的补角之间的关系,解题的关键在于能够根据题意画出图形进行求解.二、填空题1、225【解析】【分析】过2∠的定点作31//l l ,根据平行线的性质即可求得.【详解】解:如图,过2∠的顶点作31//l l∴1445∠=∠=︒∵12l l //∴23//l l∴35180∠+∠=︒∵∠2=∠4+∠5,∴180+41802345345225︒∠=︒+∠+∠=∠+∠︒=∠+=︒故答案为225【点睛】本题考查了平行线的性质,熟悉平行线的性质是解题的关键.2、 3 2 2【解析】【分析】根据同位角、内错角、同旁内角的定义判断即可;【详解】如图,与∠1是同位角的是:∠2, ∠3,∠4;与∠1是内错角的是:∠5, ∠6;与∠1是同旁内角的是:∠7,∠8.【点睛】本题主要考查了同位角、内错角、同旁内角的判断,准确分析是解题的关键.3、18°##18度【解析】【分析】根据直角的定义可得∠COE=90°,然后求出∠EOF,再根据角平分线的定义求出∠AOF,然后根据∠AOC=∠AOF﹣∠COF求出∠AOC,再根据对顶角相等解答.【详解】解:∵∠COE是直角,∴∠COE=90°,∵∠COF=36°,∴∠EOF=∠COE﹣∠COF=90°﹣36°=54°,∵OF平分∠AOE,∴∠AOF=∠EOF=54°,∴∠AOC=∠AOF﹣∠COF=54°﹣36°=18°,∴∠BOD=∠AOC=18°.故答案为:18°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.4、110【解析】【分析】∠=︒即可求出∠EOB.先根据对顶角相等求出∠DOB,进而结合275【详解】解:∵∠1=35°,∴∠DOB=∠1=35°,又∵∠2=75°,∴∠EOB=∠2+∠DOB=110°.故答案为:110.【点睛】本题考查了角的计算以及对顶角相等的性质,比较简单.5、反向延长线∠2,∠3【解析】略三、解答题1、(1)①见解析;②见解析;③见解析;(2)两点之间,线段最短【解析】【分析】(1)①根据射线的定义,作出图形即可;②根据平角的定义,作出图形即可;③根据线段的定义,作出图形即可;(2)根据两点之间线段最短解决问题.【详解】解:(1)①如图,射线AB即为所求;②如图,∠BAD即为所求;③如图,线段AC即为所求;(2)沿着线段BC铺设.这样做的数学依据是:两点之间线段最短.【点睛】本题主要考查了直线,射线,平角的定义,线段的基本事实,熟练掌握直线是两端都没有端点、可以向两端无限延伸、不可测量长度的线;射线是只有一个端点,它从一个端点向另一边无限延长不可测量长度的线;直线上两个点和它们之间的部分叫做线段;两点之间线段最短是解题的关键.2、(1)∠AOC的对顶角是∠BOD,∠EOB的对顶角是∠AOF,.∠AOC的邻补角是∠AOD,∠BOC;(2)共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD【解析】【分析】根据对顶角的定义:两个角有一个公共点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角叫做对顶角;邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种位置关系的两个角叫做邻补角,进行求解即可.【详解】解:(1)由题意得:∠AOC的对顶角是∠BOD,∠EOB的对顶角是∠AOF.∠AOC的邻补角是∠AOD,∠BOC.(2)图中共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD.【点睛】本题主要考查了对顶角和邻补角的定义,熟知定义是解题的关键.3、55°【解析】【分析】由题意利用对顶角可得∠COB=∠AOD=70°,再根据角平分线性质可得∠EOB=∠EOC=35°,进而利用邻补角的性质得出∠AOF=180°-∠EOB-∠FOE即可求得答案.【详解】解:∵∠AOD=70°,∴∠COB=∠AOD=70°,∵OE平分∠BOC,∴∠EOB=∠EOC=35°,∵∠FOE=90°,∴∠AOF=180°-∠EOB-∠FOE=55°.【点睛】本题考查角的运算,熟练掌握对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.4、(1)能画无数条;(2)能画一条;(3)能画一条【解析】【分析】用三角板的一条直角边与已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和点A (或点B)重合,过点A(或点B)沿直角边向已知直线画直线即可,在两线相交处标出垂足(直角符号),据此即可解答.【详解】解:(1)根据题意得:画已知直线l的垂线,这样的垂线能画出无数条;(2)根据题意得:经过直线l上一点A画l的垂线,这样的垂线能画出一条;(3)根据题意得:经过直线l外一点B画l的垂线,这样的垂线能画出一条.【点睛】本题主要考查了画已知直线的垂线,熟练掌握同一平面内,过已知点有且只有一条直线与已知直线垂直是解题的关键.5、(1)两角相等,见解析;(2)180°【解析】【分析】(1)根据平行线的性质得到∠A=∠BED,∠EDF=∠BED,即可得到结论;(2)根据平行线的性质得到∠C=∠EDB,∠B=∠FDC,利用平角的定义即可求解;【详解】(1)两角相等,理由如下:∵DE∥AC,∴∠A=∠BED(两直线平行,同位角相等).∵DF∥AB,∴∠EDF=∠BED(两直线平行,内错角相等),∴∠A=∠EDF(等量代换).(2)∵DE∥AC,∴∠C=∠EDB(两直线平行,同位角相等).∵DF∥AB,∴∠B=∠FDC(两直线平行,同位角相等).∵∠EDB+∠EDF+∠FDC=180°,∴∠A+∠B+∠C=180°(等量代换).【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.。
精品试卷鲁教版(五四)六年级数学下册第七章相交线与平行线同步训练试题(含答案解析)
六年级数学下册第七章相交线与平行线同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点O 在直线BD 上,已知120∠=︒,OC OA ⊥,则BOC ∠的度数为( ).A .20°B .70°C .80°D .90°2、如图,直线AB 、CD 相交于点O ,EO ⊥AB 于点O ,∠EOC =35°,则∠AOD 的度数为( )A .55°B .125°C .65°D .135°3、如图,直线a ∥b ,直线AB ⊥AC ,若∠1=52°,则∠2的度数是( )A .38°B .42°C .48°D .52°4、下列说法中正确的是( )A .锐角的2倍是钝角B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC =BC ,则点C 是线段AB 的中点5、如图,4∠的内错角是( )A .1∠B .2∠C .3∠D .5∠6、如图,135AOC ∠=︒,则BOC ∠的度数为( )A .55︒B .45︒C .35︒D .25︒7、如图,∠1与∠2是同位角的是( )① ② ③ ④A .①B .②C .③D .④8、如图所示,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是()A .34∠=∠B .12∠=∠C .D DCE ∠=∠ D .180D ACD ∠+∠=︒9、∠A 两边分别垂直于∠B 的两边,∠A 与∠B 的关系是( )A .相等B .互补C .相等或互补D .不能确定10、下列各图中,1∠和2∠是对顶角的是( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线AB 、CD 相交于点O ,12036AOD ∠=︒′,那么AOC ∠=_________︒.2、四条直线,,,AB CD EF GH 两两相交,则图形中共有_________对对顶角(平角除外);有_______对邻补角.3、如图,AO BO ⊥,若10BOC ∠=︒,OD 平分AOC ∠,则BOD ∠的度数是_____︒.4、如图,直线a 、b 、c 分别与直线d 、e 相交,与∠1构成同位角的角共有________个,和∠l 构成内错角的角共有________个,与∠1构成同旁内角的角共有________个.5、如图,在所标识的角中,∠1与____是同位角,∠2与_____是内错角,∠5与____是同旁内角.三、解答题(5小题,每小题10分,共计50分)1、如图所示,M、N是直线AB上两点,∠1=∠2,问∠1与∠2,∠3与∠4是对顶角吗?∠1与∠5,∠3与∠6是邻补角吗?2、填空,完成下列说理过程:如图,直线EF和CD相交于点O,∠AOB=90°,OC平分∠AOF,∠AOE =40°.求∠BOD的度数.解:∵∠AOE=40°(已知)∴∠AOF=180°﹣(邻补角定义)=180°﹣°=°∵OC平分∠AOF(已知)∴∠AOC12∠AOF()∵∠AOB=90°(已知)∴∠BOD=180°﹣∠AOB﹣∠AOC()=180°﹣90°﹣°=°3、如图,在ABC中,DE∥AC,DF∥AB.(1)判断∠A与∠EDF之间的大小关系,并说明理由.(2)求∠A+∠B+∠C的度数.4、如图,①过点Q作QD⊥AB,垂足为点D;②过点P作PE⊥AB,垂足为点E;③过点Q作QF⊥AC,垂足为点F;④连P,Q两点;⑤P,Q两点间的距离是线段______的长度;⑥点Q到直线AB的距离是线段______的长度;⑦点Q到直线AC的距离是线段______的长度;⑧点P到直线AB的距离是线段______的长度.5、如图,已知a∥b,∠3=∠4,那么直线c与直线d平行吗?请说明理由.-参考答案-一、单选题1、B【解析】【分析】直接利用垂直的定义结合互余得出答案.【详解】解:∵点O在直线DB上, OC⊥OA,∴∠AOC=90°,∵∠1=20°,∴∠BOC=90°−20°=70°,故选:B .【点睛】此题主要考查了垂线以及互余,正确把握相关定义是解题关键.2、B【解析】【分析】先根据余角的定义求得AOC ∠,进而根据邻补角的定义求得AOD ∠即可.【详解】EO ⊥AB ,∠EOC =35°,90903555AOC COE ∴∠=︒-∠=︒-︒=︒,180********AOD AOC ∴∠=︒-∠=︒-︒=︒.故选:B .【点睛】本题考查了垂直的定义,求一个角的余角、补角,掌握求一个角的余角与补角是解题的关键.3、A【解析】【分析】利用直角三角形的性质先求出∠B ,再利用平行线的性质求出∠2.【详解】解:∵AB ⊥AC ,∠1=52°,∴∠B =90°﹣∠1=90°﹣52°=38°∵a∥b,∴∠2=∠B=38°.故选:A.【点睛】本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键.4、B【解析】【分析】根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.【详解】解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;B.两点之间的所有连线中,线段最短,正确;C.相等的角不一定是对顶角,故不符合题意;D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;故选:B.【点睛】本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.5、D【解析】【分析】根据内错角是在截线两旁,被截线之内的两角,内错角的边构成” Z “形作答.【详解】解:如图,4∠的内错角是5∠,∠4的同旁内角是∠3,∠4的同位角是∠2,∠4与∠1不具有特殊位置关系.故选:D .【点睛】本题考查了内错角的定义,正确记忆内错角的定义是解决本题的关键.6、B【解析】【分析】根据AOC ∠与BOC ∠互补求解即可.【详解】135AOC ∠=︒,180********BOC AOC ∴∠=︒-∠=︒-︒=︒,故选:B .【点睛】本题主要考查补角,掌握互补的概念是关键.7、B【解析】【分析】同位角就是两个角都在截线的同旁,又分别处在被截线的两条直线的同侧位置的角.【详解】根据同位角的定义可知②中的∠1与∠2是同位角;故选B .【点睛】本题主要考查了同位角的判断,准确分析判断是解题的关键.8、B【解析】【分析】根据平行线的判定判断即可;【详解】当34∠=∠时,BD AC ,故A 不符合题意;当12∠=∠时,//AB CD ,故B 符合题意;当D DCE ∠=∠时,BD AE ,故C 不符合题意;当180D ACD ∠+∠=︒时,BD AE ,故D 不符合题意; 故答案选B .【点睛】本题主要考查了平行线的判定,准确分析判断是解题的关键.9、C【解析】【分析】分别画出∠A 两边分别垂直于∠B 的两边,然后利用同角的余角相等进行求解即可.【详解】解:如图所示:BE ⊥AE ,BC ⊥AC ,∴∠BCF =∠AEF =90°,∴∠A+∠AFE=90°,∠B+∠BFC=90°,∴∠A=∠B如图所示:BD⊥AD,BC⊥AC,∴∠ADE=∠BCE=90°,∴∠A+∠BEC=90°,∠CBE+∠BEC=90°,∴∠A=∠CBE,∵∠CBE+∠DBC=180°,∴∠A+∠DBC=180°,综上所述,∠A与∠B的关系是相等或互补,故选C.【点睛】本题主要考查了垂直的定义,同角的余角相等,以及等角的补角之间的关系,解题的关键在于能够根据题意画出图形进行求解.10、D【解析】【分析】由题意根据对顶角的两边互为反向延长线对各图形分析判断后进行解答.【详解】解:根据对顶角的定义:A 中1∠和2∠顶点不在同一位置,不是对顶角;B 中1∠和2∠角度不同,不是对顶角;C 中1∠和2∠顶点不在同一位置,不是对顶角;D 中1∠和2∠是对顶角;故选:D .【点睛】此题主要考查了对顶角,正确把握对顶角的定义是解题关键.二、填空题1、59.4【解析】【分析】根据邻补角的定义计算即可.【详解】解:∵直线A B 、CD 相交于点O ,∠AOD =120°36′,∴∠AOC =180°-120°36′=59°24′=59.4°,故答案为:59.4.【点睛】本题主要考查了邻补角的性质,掌握角的计算方法是解题的关键.2、 12 24【解析】【分析】根据对顶角、邻补角的定义得到4×3=12对对项角,6×4=24对邻补角.【详解】解:∠AOC与∠BOD互为对顶角,∠AOH与∠BOG互为对顶角,∠AOF与∠BOE互为对顶角;∠COH与∠DOG互为对顶角,∠COF与∠DOE互为对顶角,∠COB与∠DOA互为对顶角;∠HOF与∠GOE互为对顶角,∠HOB与∠GOA互为对顶角,∠HOD与∠GOC互为对顶角;∠FOB与∠EOA互为对顶角,∠FOD与∠EOC互为对顶角,∠FOG与∠EOH互为对顶角,∴对顶角共有12对;∠AOC与∠BOC互为邻补角,∠AOH与∠BOH互为邻补角,∠AOF与∠BOF互为邻补角,∠AOE与∠BOE 互为邻补角,∠AOG与∠BOG互为邻补角,∠AOD与∠BOD互为邻补角;∠COH与∠DOH互为邻补角,∠COF与∠DOF互为邻补角,∠COB与∠DOB互为邻补角,∠COA与∠DOA 互为邻补角,∠COE与∠DOE互为邻补角,∠COG与∠DOG互为邻补角;∠GOE与∠HOE互为邻补角,∠GOA与∠HOA互为邻补角,∠GOC与∠HOC互为邻补角,∠GOD与∠HOD 互为邻补角,∠GOB与∠HOB互为邻补角,∠GOF与∠HOF互为邻补角;∠EOA与∠FOA互为邻补角,∠EOC与∠FOC互为邻补角,∠EOH与∠FOH互为邻补角,∠EOG与∠FOG 互为邻补角,∠EOD与∠FOD互为邻补角,∠EOB与∠FOB互为邻补角,∴邻补角共有24对,故答案为:12;24.【点睛】本题考查了对顶角、邻补角的定义;仔细观察图形弄清各个角之间的对顶角关系和邻补角关系是解题的关键.3、40【解析】【分析】先求解100,AOC 利用角平分线再求解50,COD 由BOD COD BOC ∠=∠-∠可得答案.【详解】 解: AO BO ⊥,10BOC ∠=︒,100,AOC AOB BOCOD 平分AOC ∠,150,2AOD COD AOC40.BOD COD BOC故答案为:40【点睛】本题考查的是垂直的定义,角平分线的定义,角的和差运算, 熟练的运用“角的和差关系与角平分线的定义”是解本题的关键.4、 3 2 2【解析】【分析】根据同位角、内错角、同旁内角的定义判断即可;【详解】如图,与∠1是同位角的是:∠2, ∠3,∠4;与∠1是内错角的是:∠5, ∠6;与∠1是同旁内角的是:∠7,∠8.【点睛】本题主要考查了同位角、内错角、同旁内角的判断,准确分析是解题的关键.5、∠4 ∠3 ∠3【解析】略三、解答题1、∠1和∠2,∠3和∠4都不是对顶角,∠1与∠5,∠3与∠6也都不是邻补角【解析】【分析】根据对顶角和邻补角的定义求解即可.【详解】解:根据对顶角的定义可得:∠1和∠2,∠3和∠4都不是对顶角;根据邻补角的定义可得,∠1与∠5,∠3与∠6也都不是邻补角.【点睛】此题考查了邻补角和对顶角的定义,解题的关键是掌握邻补角和对顶角的有关定义,牢记两条直线相交,才能产生对顶角或邻补角.两个角有公共点顶点,且角的一边重合、另一条边互为反向延长线,这样的两个角叫做邻补角,对顶角是指角的顶点重合,角的两条边分别互为反向延长线的角。
综合解析鲁教版(五四)六年级数学下册第七章相交线与平行线章节训练试题(含答案解析)
六年级数学下册第七章相交线与平行线章节训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,PO OR OQ PR ⊥⊥,,能表示点到直线(或线段)的距离的线段有( )A .五条B .二条C .三条D .四条2、如图,直线AB ,CD 相交于点O ,OE ⊥AB 于O ,OF 平分∠DOE ,若∠AOC =32°,则∠AOF 的度数为( )A .119°B .121°C .122°D .124°3、如图,直线AB 与CD 相交于点E ,45CEB ∠=︒,EF AE ⊥,则DEF ∠的度数为( )A.125︒B.135︒C.145︒D.155︒4、下列各图中,∠1与∠2是对顶角的是()A.B.C.D.5、如图,点P为直线m外一点,点P到直线m上的三点A、B、C的距离分别为PA=4cm,PB=6cm,PC=3cm,则点P到直线m的距离可能为()A.2cm B.3cm C.5cm D.7cm6、如图,四边形中,AD∥BC,AC与BD相交于点O,若S△ABO=5cm2,S△DCO为()A.5cm2B.4cm2C.3cm2D.2cm27、下列四幅图中,1∠和2∠是同位角的是()A .(1)(2)B .(3)(4)C .(1)(2)(3)D .(1)(3)(4)8、如图所示,下列说法错误的是( )A .∠1和∠3是同位角B .∠1和∠5是同位角C .∠1和∠2是同旁内角D .∠5和∠6是内错角9、如图,135AOC ∠=︒,则BOC ∠的度数为( )A .55︒B .45︒C .35︒D .25︒10、如图,在所标识的角中,下列说法不正确的是( )A .1∠和2∠互为补角B .1∠和4∠是同位角C .2∠和4∠是内错角D .2∠和3∠是对顶角第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、填写推理理由如图:EF ∥AD ,∠1=∠2,∠BAC =70°,把求∠AGD 的过程填写完整.证明:∵EF ∥AD∴∠2=________( )又∵∠1=∠2∴∠1=∠3________∴AB ∥________( )∴∠BAC +________=180°( )又∵∠BAC =70°∴∠AGD =________2、如图,直线l 分别与直线AB 、CD 相交于点E 、F ,EG 平分∠BEF 交直线CD 于点G ,若∠1=∠BEF =68°,则∠EGF 的度数为_______.3、如图,点C 到直线AB 的距离是线段 ___的长.4、如图,AD ⊥BD ,BC ⊥CD ,AB =a cm ,BC =b cm ,则BD 的取值范围是________.5、如图,直线AB 、CD 相交于点O ,12036AOD ∠=︒′,那么AOC ∠=_________︒.三、解答题(5小题,每小题10分,共计50分)1、如图,直线,EF CD 相交于点,,O OA OB OC ⊥平分AOF ∠.(1)若40AOE ∠=︒,求∠BOD 的度数;(2)若30BOE ∠=︒,求∠DOE 的度数.2、如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤30,单位:秒)(1)当t=3时,求∠AOB的度数;(2)在运动过程中,当∠AOB达到60°时,求t的值;(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请直接写出t的值;如果不存在,请说明理由.3、如图,直线AB,CD相交于点O,OE平分∠BOC,OF⊥CD.(1)若∠AOF=50°,求∠BOE的度数;(2)若∠BOD :∠BOE =1:4,求∠AOF 的度数.4、如图,直线AB 、CD 相交于点O ,EO CD ⊥,垂足为点O .若:1:5BOD BOC ∠∠=.(1)求∠BOE 的大小;(2)过点O 画直线MN AB ⊥,若点F 是直线MN 上一点,且不与点O 重合,试求EOF ∠的大小.5、将一个含有60°角的三角尺ABC 的直角边BC 放在直线MN 上,其中∠ABC =90°,∠BAC =60°.点D 是直线MN 上任意一点,连接AD ,在∠BAD 外作∠EAD ,使∠EAD =∠BAD .(1)如图,当点D 落在线段BC 上时,若∠BAD =18°,求∠CAE 的度数;(2)当点E 落在直线AC 上时,直接写出∠BAD 的度数;(3)当∠CAE :∠BAD =7:4时,直接写出写∠BAD 的度数.-参考答案-一、单选题1、A【解析】【分析】直接利用点到直线的距离的定义分析得出答案.【详解】解:线段PO的长是点P到OR的距离,线段RO的长是点R到OP的距离,线段OQ的长是点O到PR的距离,线段PQ的长是点P到OQ的距离,线段RQ的长是点R到OQ的距离,故图中能表示点到直线距离的线段共有五条.故选:A.【点睛】此题考查了点到直线的距离.解题的关键是掌握点到直线的距离的定义,点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.2、A【解析】【分析】根据OE⊥AB于O,即可得出∠BOE=∠AOE=90°,进而求出∠DOE=58°,再利用OF平分∠DOE,即可求出∠EOF的度数,再由∠AOF=∠AOE+∠EOF即可求出∠AOF的度数.【详解】解:∵OE⊥AB于O,∴∠BOE=∠AOE=90°,∵∠AOC=32°,∴∠AOC=∠BOD=32°,∴∠DOE=∠BOE﹣∠BOD=90°﹣32°=58°,∵OF平分∠DOE,∴∠EOF12=∠DOE1582=⨯︒=29°,∠AOF=∠AOE+∠EOF=90°+29°=119°.故选:A.【点睛】此题主要考查了垂线、角平分线的定义、对顶角等知识点,根据已知熟练应用角平分线的性质以及邻补角与余角之间关系是解题关键.3、B【解析】【分析】由EF⊥AB可确定∠FEA的度数,再由对顶角相等可确定∠AED的度数,∠AED+∠AEF即是∠DEF的度数.【详解】解:∵EF⊥AB,∴∠AEF=∠FEB=90°,∵∠CEB=45°,∴∠AED=45°,∴∠DEF=∠DEA+∠AEF=90°+45°=135°,故选:B.【点睛】本题主要考查了垂直的概念,关键是要理解垂直的概念,知道对顶角相等.4、D【解析】略5、A【解析】【分析】点P 到直线m 的距离即为点P 到直线m 的垂线段的长度,据此解答即可.【详解】解:由图可知,PC 长度为3cm ,是最小的,则点P 到直线m 的距离小于3cm ,可以是2cm ,故选:A .【点睛】本题考查了点到直线的距离.直线外一点到直线上各点的连线段中,垂线段最短;直线外一点到直线的垂线段的长度,叫做点到直线的距离.6、A【解析】【分析】分别过点A 、D 作AE BC ⊥、DF BC ⊥,根据平行线的性质可得AE DF =,根据三角形的面积求得ABO DCO S S =△△,即可求解.【详解】解:分别过点A 、D 作AE BC ⊥、DF BC ⊥,如下图:∵//AD BC∴AE DF = 又∵12ABC S BC AE =⨯△,12DCB S BC DF =⨯△ ∴ABC DCB S S =△△∵ABO ABC CBO S S S =-△△△,DCO DCB CBO S S S =-△△△∴2=5ABO DCO S S cm =△△故选A【点睛】此题考查了平行线的性质以及三角形的面积公式,解题的关键是根据平行线的性质及三角形的面积公式推出ABO DCO S S =△△.7、A【解析】【分析】互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.【详解】解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.故选:A .【点睛】本题考查同位角的概念,是需要熟记的内容.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.8、B【解析】【分析】根据同位角、内错角、同旁内角的意义:两条直线被第三条直线所截,在截线的同旁,在被截的两直线的同一侧的角叫做同位角;两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间的两个角叫做内错角;两条直线被第三条直线所截,在截线同旁,且在被截两条直线之内的两角叫做同旁内角,可得答案.【详解】解:A 、∠1和∠3是同位角,故此选项不符合题意;B 、∠1和∠5不存在直接联系,故此选项符合题意;C 、∠1和∠2是同旁内角,故此选项不符合题意;D 、∠1和∠6是内错角,故此选项不符合题意;故选B .【点睛】本题考查了同位角、内错角、用旁内角,利用同位角、内错角、同旁内角的意义是解题关键.9、B【解析】【分析】根据AOC ∠与BOC ∠互补求解即可.【详解】135AOC ∠=︒,180********BOC AOC ∴∠=︒-∠=︒-︒=︒,【点睛】本题主要考查补角,掌握互补的概念是关键.10、C【解析】【分析】根据同位角、内错角、邻补角、对顶角的定义求解判断即可.【详解】解:A、1∠和2∠是邻补角,故此选项不符合题意;B、1∠和4∠是同位角,故此选项不符合题意;C、2∠不是内错角,故此选项符合题意;∠和4∠是对顶角,故此选项不符合题意.D、2∠和3故选:C.【点睛】此题考查了同位角、内错角、对顶角以及邻补角的定义,熟记同位角、内错角、邻补角、对顶角的定义是解题的关键.三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.二、填空题1、∠3 两直线平行,同位角相等等量代换DG内错角相等,两直线平行∠AGD两直线平行,同旁内角互补110°##110度【解析】【分析】根据平行线的判定与性质,求解即可.∵EF ∥AD ,∴∠2=∠3,(两直线平行,同位角相等)又∵∠1=∠2,∴∠1=∠3,(等量代换)∴AB ∥DG .(内错角相等,两直线平行)∴∠BAC +∠AGD =180°.(两直线平行,同旁内角互补)又∵∠BAC =70°,∴∠AGD =110°.故答案是:∠3,两直线平行,同位角相等,等量代换,DG ,内错角相等,两直线平行,∠AGD ,两直线平行,同旁内角互补,110°【点睛】此题考查了平行线的判定与性质,解题的关键是掌握平行线的判定方法与性质.2、34°##34度【解析】【分析】根据角平分线的性质可求出BEG ∠的度数,然后由平行线的判定与性质即可得出EGF ∠的度数.【详解】解:EG 平分,68BEF BEF ︒∠∠=,1342BEG BEF ︒∴∠=∠= 又1=BEF ∠∠//AB CD ∴34∴∠=∠=EGF BEG︒故答案为34︒【点睛】本题主要考查了平行线的判定与性质、角平分线的性质,灵活应用平行线的判定与性质是解题的关键.3、CF【解析】【分析】根据点到直线的距离的定义即可求解.【详解】∵CF⊥BF,∴点到直线的距离是线段CF的长故答案为:CF.【点睛】此题主要考查点到直线的距离的判断,解题的关键是熟知点到直线的距离需要作垂线.4、b cm<BD<a cm【解析】【分析】根据垂线段最短,可得AB与BD的关系,BD与BC的关系,可得答案.【详解】解:由垂线段最短,得BD<AB=a cm,BD>BC=b cm,即b cm<BD<a cm,故答案为:b cm<BD<a cm.【点睛】本题考查了垂线短的性质,直线外的点到直线的距离:垂线段最短.5、59.4【解析】【分析】根据邻补角的定义计算即可.【详解】解:∵直线A B、CD相交于点O,∠AOD=120°36′,∴∠AOC=180°-120°36′=59°24′=59.4°,故答案为:59.4.【点睛】本题主要考查了邻补角的性质,掌握角的计算方法是解题的关键.三、解答题1、(1)20°;(2)60°【解析】【分析】(1)先求出∠AOF=140°,然后根据角平分线的定义求出∠AOC=70°,再由垂线的定义得到∠AOB=90°,则∠BOD=180°-∠AOB-∠AOC=20°;(2)先求出∠AOE=60°,从而得到∠AOF=120°,根据角平分线的性质得到∠AOC=60°,则∠COE=∠AOE+∠AOC=120°,∠DOE=180°-∠COE=60°.【详解】解:(1)∵∠AOE=40°,∴∠AOF=180°-∠AOE=140°,∵OC平分∠AOF,∠AOF=70°,∴∠AOC=12∵OA⊥OB,∴∠AOB=90°,∴∠BOD=180°-∠AOB-∠AOC=20°;(2)∵∠BOE=30°,OA⊥OB,∴∠AOE=60°,∴∠AOF=180°-∠AOE=120°,∵OC平分∠AOF,∠AOF=60°,∴∠AOC=12∴∠COE=∠AOE+∠AOC=60°+60°=120°,∴∠DOE=180°-∠COE=60°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,垂线的定义,解题的关键在于能够熟练掌握角平分线的定义.2、(1)150°;(2)12或24;(3)存在,9秒、27秒【解析】【分析】(1)根据∠AOB =180°−∠AOM −∠BON 计算即可.(2)先求解,OA OB 重合时,=18,t 再分两种情况讨论:当0≤t ≤18时;当18≤t ≤30时;再构建方程求解即可.(3)分两种情形,当0≤t ≤18时;当18≤t ≤30时;分别构建方程求解即可.【详解】解:(1)当t =3时,∠AOB =180°−4°×3−6°×3=150°.(2)当,OA OB 重合时,46180,t t解得:18,t当0≤t ≤18时:60,AOB ∠=︒18060120,AOM BON∴ 4t +6t =120解得:12,t =当18≤t ≤30时:则18060,AOM BON∴ 4t +6t =180+60, 解得 t =24,答:当∠AOB 达到60°时,t 的值为6或24秒.(3) 当0≤t ≤18时,由,OA OB ⊥90,AOB ∴∠=︒∴ 180−4t −6t =90,解得t=9,AOM BON当18≤t≤30时,同理可得:18090,4t+6t=180+90解得t=27.t所以大于30的答案不予讨论,030,答:在旋转过程中存在这样的t,使得射线OB与射线OA垂直,t的值为9秒、27秒.【点睛】本题考查的是平角的定义,角的和差关系,垂直的定义,一元一次方程的应用,熟练的利用一元一次方程解决几何角度问题,清晰的分类讨论是解本题的关键.3、(1)∠BOE=70°;(2)∠AOF=70°.【解析】【分析】(1)根据补角,余角的关系,可得∠BOC,根据角平分线的定义,可得答案;(2)根据邻补角,可得关于x的方程,根据解方程,可得∠AOC,再根据余角的定义,可得答案.(1)解:∵OF⊥CD,∴∠COF=90°,∵∠AOF=50°,∴∠AOC=40°,∴∠BOC=140°,∵OE平分∠BOC,∴∠BOE =12∠BOC =70°;(2)解:∠BOD :∠BOE =1:4,设∠BOD =∠AOC =x ,∠BOE =∠COE =4x .∵∠AOC 与∠BOC 是邻补角,∴∠AOC +∠BOC =180°,即x +4x +4x =180°,解得x =20°.∵∠AOC 与∠AOF 互为余角,∴∠AOF =90°-∠AOC =90°-20°=70°.【点睛】本题考查了对顶角、邻补角,利用邻补角的定义、余角的定义是解题关键.4、 (1)60︒(2)30或150︒【解析】【分析】(1)由题意易得30BOD ∠=︒,90EOD ∠=︒,然后根据角的和差关系可进行求解;(2)由题意可分当点F 在直线CD 的上方时,当点F 在直线CD 的下方时,进而根据垂直的定义及角的和差关系可求解.(1)解:∵180BOD BOC ∠+∠=︒,:1:5BOD BOC ∠∠=,∴30BOD ∠=︒.∵OE CD ⊥,∴90EOD ∠=︒,∴903060BOE EOD BOD ∠=∠-∠=︒-︒=︒.(2)解:如图,当点F 在直线CD 的上方时,∵MN AB ⊥,∴90BOM ∠=︒,∴906030EOF BOM BOE ∠=∠-∠=-︒=︒︒.如图,当点F 在直线CD 的下方时,∵MN AB ⊥,∴90BON ∠=︒,∴9060150EOF BON BOE ∠=∠+∠=+︒=︒︒.综上所述,EOF ∠的大小为30或150︒.【点睛】本题主要考查垂直的定义及角的和差关系,熟练掌握垂直的定义及角的和差关系是解题的关键.5、(1)24︒;(2)30,60︒︒;(3)BAD ∠的值为:16︒或80︒.【解析】【分析】(1)先求解36,BAE 再利用角的和差关系可得答案;(2)分两种情况讨论,当E 落在A 的下方时,如图,当E 落在A 的上方时,如图,再结合已知条件可得答案;(3)分两种情况讨论,如图,当E 落在ABC 的内部时,如图,当E 落在ABC 的外部时,再利用角的和差倍分关系可得答案.【详解】解:(1) ∠BAD =18°,∠EAD =∠BAD ,18,EAD BAD21836,BAE 60,BAC ∠=︒603624.CAE BAC BAE(2)当E 落在A 的下方时,如图,130,2BAD EAD BAC 当E 落在A 的上方时,如图,60,BAC ∠=︒120,EAB 而,EAD BAD 160.2BAD BAE (3)当E 落在ABC 的内部时,如图,,60,BAD EAD BAC ∠CAE :∠BAD =7:4, 46016,447BAD 当E 落在ABC 的外部时,如图,,60,BAD EAD BAC ∠CAE :∠BAD =7:4,设7,CAE x 则4,BAD x EAD 360,EAD BAD BAC EAC74460360,x x xx解得:20,BAD80.综上:BAD∠的值为:16︒或80︒.【点睛】本题考查的是角的和差倍分关系,周角的含义,邻补角的含义,三角形中的角度问题,一元一次方程的应用,根据题干信息画出符合题意的图形,再进行分类讨论是解本题的关键.。
2022年必考点解析鲁教版(五四)六年级数学下册第七章相交线与平行线综合练习试卷(含答案详解)
六年级数学下册第七章相交线与平行线综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点A,O,B在一条直线上,OE⊥AB,∠1与∠2互余,那么图中相等的角有()A.2对B.3对C.4对D.5对2、如图,在A、B两地之间要修条笔直的公路,从A地测得公路走向是北偏东48︒,A,B两地同时开工,若干天后公路准确接通,若公路AB长8千米,另一条公路BC长是6千米,且从B地测得公路BC的走向是北偏西42︒,则A地到公路BC的距离是()A.6千米B.8千米C.10千米D.14千米3、如图,若要使1l与2l平行,则1l绕点O至少旋转的度数是()A.38︒B.42︒C.80︒D.138︒4、如图所示,∠1和∠2是对顶角的图形共有()A.0个B.1个C.2个D.3个5、如果∠A的两边分别垂直于∠B的两边,那么∠A和∠B的数量关系是()A.相等B.互余或互补C.互补D.相等或互补6、如图,点P为直线m外一点,点P到直线m上的三点A、B、C的距离分别为PA=4cm,PB=6cm,PC=3cm,则点P到直线m的距离可能为()A .2cmB .3cmC .5cmD .7cm7、如图,直线a ,b 被直线c 所截,则下列符合题意的结论是( )A .13∠=∠B .14∠=∠C .24∠∠=D .34180∠+∠=︒8、下列四幅图中,∠1和∠2是同位角的是( )A .(1)(2)B .(3)(4)C .(1)(2)(3)D .(2)(3)(4)9、如图,四边形中,AD ∥BC ,AC 与BD 相交于点O ,若S △ABO =5cm 2,S △DCO 为( )A .5cm 2B .4cm 2C .3cm 2D .2cm 210、如所示各图中,∠1与∠2是对顶角的是( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知AB ⊥AC ,AD ⊥BC ,则点A 到BC 的距离是线段____________的长度.2、如图,直线AB ,CD 相交于点O ,31DOE BOE ∠=∠=︒,则1∠=__°.3、如图,已知直线AB 和CD 相交于O 点,∠COE 是直角,OF 平分∠AOE ,∠COF =36°,则∠BOD 的大小为 _____.4、两条直线相交,可以构成四个角,若在图中再添加一条直线,即直线EF 被第三条直线CD 所截,构成了_____个角,简称“______”.同位角:图中∠1与∠5,这两个角分别在直线AB,CD的同一方(上方),并且都在直线EF的同侧(右侧),具有这种位置关系的一对角叫做______.图中还有同位角:______.内错角:∠3与∠5,这两个角分别在直线AB,CD之间,并且分别在直线EF两侧,(∠3在直线EF左侧,∠5在直线EF右侧),具有这种位置关系的一对角叫做______.图中还有内错角:______.同旁内角:∠3与∠6,这两个角分别在直线AB,CD之间,但它们在直线EF的同一旁(左侧),具有这种位置关系的一对角叫做______.图中还有同旁内角:______ .5、(1)如图1,若直线m、n相交于点O,∠1=90°,则a______b;(2)若直线AB、CD相交于点O,且AB⊥CD,则∠BOD=______;(3)如图2,BO⊥AO,∠BOC与∠BOA的度数之比为1∶3,那么∠COA=___ ,∠BOC的补角为______.三、解答题(5小题,每小题10分,共计50分)1、根据要求画图或作答:如图所示,已知A 、B 、C 三点.(1)连结线段AB ;(2)画直线AC 和射线BC ;(3)过点B 画直线AC 的垂线,垂足为点D ,则点A 到直线BD 的距离是线段_______的长度.2、已知点O 为直线AB 上一点,将直角三角板MON 按如图所示放置,且直角顶点在O 处,在MON ∠内部作射线OC ,且OC 恰好平分BOM ∠.(1)若24CON ∠=︒,求AOM ∠的度数;(2)若2BON CON ∠=∠,求AOM ∠的度数.3、(1)用三角尺或量角器画已知直线l 的垂线,这样的垂线能画出几条?(2)经过直线l 上一点A 画l 的垂线,这样的垂线能画出几条?(3)经过直线l 外一点B 画l 的垂线,这样的垂线能画出几条?4、如图,已知在同一平面内的三点、、A B C(1)作直线AB ,射线BC ,线段AC ;(2)在直线AB 上找一点M ,使线段CM 的长最小,画出图形,并说明理由.5、如图,在高速公路l 的同一侧有A 、B 两座城市.(1)现在要以最低成本在A 、B 两座城市之间修建一条公路,假设每公里修建的成本相同,试在图中画出这条公路的位置,并简要说明你的依据;(2)若要在高速公路l 边建一个停靠站C ,使得A 城市的人到该停靠点最方便(即距离最近),请在图中标出C 的位置,并简要说明你的依据.-参考答案-一、单选题1、D【解析】【分析】根据垂直的定义、互为余角的两个角的和等于90°以及等角的余角相等解答即可.【详解】解:∵OE⊥AB,∴∠AOE=∠BOE=90°,∴∠1+∠AOC=90°,∠2+∠BOD=90°,∵∠1与∠2互余,∴∠COD=∠1+∠2=90°,∴∠1=∠BOD,∠2=∠AOC,∠AOE=∠COD,∠BOE=∠COD,∴图中相等的角有5对.故选:D.【点睛】本题考查了垂直和互余的定义以及等角的余角相等的应用,是基础题,熟记概念并准确识图是解题的关键.2、B【解析】【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【详解】解:根据两直线平行,内错角相等,可得∠ABG=48°,∵∠ABC=180°−∠ABG−∠EBC=180°−48°−42°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=8千米,故选B.【点睛】此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.3、A【解析】【分析】根据“两直线平行,内错角相等”进行计算.【详解】解:如图,∵l1∥l2,∴∠AOB=∠OBC=42°,∴80°-42°=38°,即l1绕点O至少旋转38度才能与l2平行.故选:A.【点睛】考查了旋转的性质和平行线的性质,根据平行线的性质得到∠AOB=∠OBC=42°是解题的关键,难度不大.4、B【解析】【分析】对顶角:有公共的顶点,角的两边互为反向延长线,根据定义逐一判断即可.【详解】只有(3)中的∠1与∠2是对顶角.故选B【点睛】本题考查了对顶角的定义,理解对顶角的定义是解题的关键.5、D【解析】【分析】由题意直接根据∠A的两边分别垂直于∠B的两边画出符合条件的图形进行判断即可.【详解】解:BD⊥AD,CE⊥AB,如图:∵∠A=90°﹣∠ABD=∠DBC,∴∠A与∠DBC两边分别垂直,它们相等,而∠DBE=180°﹣∠DBC=180°﹣∠A,∴∠A与∠DBE两边分别垂直,它们互补,故选:D.【点睛】本题考查垂线及角的关系,解题关键是根据已知画出符合条件的图形.6、A【解析】【分析】点P到直线m的距离即为点P到直线m的垂线段的长度,据此解答即可.【详解】解:由图可知,PC长度为3cm,是最小的,则点P到直线m的距离小于3cm,可以是2cm,故选:A.【点睛】本题考查了点到直线的距离.直线外一点到直线上各点的连线段中,垂线段最短;直线外一点到直线的垂线段的长度,叫做点到直线的距离.7、A【解析】【分析】利用对顶角、同位角、同旁内角定义解答即可.【详解】解:A、∠1与∠3是对顶角,故原题说法正确,符合题意;B、由条件不能得出∠1=∠4,故原题说法错误,不符合题意;C、∠2与∠4是同位角,只有a//b时,∠2=∠4,故原题说法错误,不符合题意;D、∠3与∠4是同旁内角,只有a//b时,∠3+∠4=180°故原题说法错误,不符合题意;故选:A.【点睛】此题主要考查了对顶角、同位角、同旁内角,关键是掌握各种角的定义.8、A【解析】【分析】互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角,由此即可求解.【详解】解:根据同位角的定义,图(1)、(2)中,1∠和2∠是同位角;图(3)中1∠、2∠的两边都不在同一条直线上,不是同位角;图(4)中1∠、2∠不在被截线同侧,不是同位角.故选:A.【点睛】本题考查同位角的概念,是需要熟记的内容.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.9、A【解析】【分析】分别过点A 、D 作AE BC ⊥、DF BC ⊥,根据平行线的性质可得AE DF =,根据三角形的面积求得ABO DCO S S =△△,即可求解.【详解】解:分别过点A 、D 作AE BC ⊥、DF BC ⊥,如下图:∵//AD BC∴AE DF = 又∵12ABC S BC AE =⨯△,12DCB S BC DF =⨯△ ∴ABC DCB S S =△△∵ABO ABC CBO S S S =-△△△,DCO DCB CBO S S S =-△△△∴2=5ABO DCO S S cm =△△故选A【点睛】此题考查了平行线的性质以及三角形的面积公式,解题的关键是根据平行线的性质及三角形的面积公式推出ABO DCO S S =△△.10、B【解析】【分析】根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.【详解】解:A .∠1与∠2没有公共顶点,不是对顶角;B .∠1与∠2有公共顶点,并且两边互为反向延长线,是对顶角;C .∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角;D .∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角.故选:B .【点睛】本题主要考查了对顶角的定义,熟记对顶角的定义是解题的关键.二、填空题1、AD ##DA【解析】【分析】根据定义分析即可,点A 到BC 的距离,垂足在直线上,据此即可求得答案.【详解】AD BC ⊥∴点A 到BC 的距离是线段AD故答案为:AD【点睛】本题考查了垂线段的定义,理解定义是解题的关键.2、62【解析】【分析】先求出∠DOB 的值,然后根据对顶角相等求解即可.【详解】解:31DOE BOE ∠=∠=︒,313162DOB DOE BOD ∴∠=∠+∠=︒+︒=︒,1DOB ∠=∠,162∴∠=︒,故答案为62.【点睛】本题考查了角的和差,对顶角相等,正确识图是解答本题的关键.3、18°##18度【解析】【分析】根据直角的定义可得∠COE =90°,然后求出∠EOF ,再根据角平分线的定义求出∠AOF ,然后根据∠AOC =∠AOF ﹣∠COF 求出∠AOC ,再根据对顶角相等解答.【详解】解:∵∠COE 是直角,∴∠COE =90°,∵∠COF=36°,∴∠EOF=∠COE﹣∠COF=90°﹣36°=54°,∵OF平分∠AOE,∴∠AOF=∠EOF=54°,∴∠AOC=∠AOF﹣∠COF=54°﹣36°=18°,∴∠BOD=∠AOC=18°.故答案为:18°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.4、 8 三线八角同位角∠2和∠6;∠3和∠7;∠4和∠8 内错角;∠4和∠6 同旁内角∠4和∠5【解析】略5、⊥ 90° 60° 150°【解析】略三、解答题AD1、(1)画图见解析;(2)画图见解析;(3)画图见解析,.【解析】【分析】(1)连接AB即可;(2)过,A C两点画直线即可,以B为端点画射线BC即可;(3)利用三角尺过B 画AC 的垂线,垂足为,D 可得,AD BD 从而可得点A 到直线BD 的距离是垂线段AD 的长度.【详解】解:(1)如图,线段AB 即为所求作的线段,(2)如图,直线AC 和射线BC 即为所求作的直线与射线,(3)如图,BD 即为所画的垂线,点A 到直线BD 的距离是线段AD 的长度.故答案为:.AD【点睛】本题考查的是画直线,射线,线段,过一点画已知直线的垂线,点到直线的距离的含义,掌握画直线,射线,线段及画已知直线的垂线是解本题的关键.2、(1)48°;(2)45°.【解析】【分析】(1)先根据余角的定义求出∠MOC ,再根据角平分线的定义求出∠BOM ,然后根据∠AOM =180°-∠BOM 计算即可;(2)根据角的倍分关系以及角平分线的定义即可求解;【详解】解:(1)∵∠MON=90°,∠CON=24°,∴∠MOC=90°-∠CON=66°,∵OC平分∠MOB,∴∠BOM=2∠MOC=132°,∴∠AOM=180°-∠BOM=48°;(2)∵∠BON=2∠NOC,OC平分∠MOB,∴∠MOC=∠BOC=3∠NOC,∵∠MOC+∠NOC=∠MON=90°,∴3∠NOC+∠NOC=90°,∴4∠NOC=90°,∴∠BON=2∠NOC=45°,∴∠AOM=180°-∠MON-∠BON=180°-90°-45°=45°;【点睛】本题考查了角平分线的意义、互补、互余的意义,正确表示各个角,理清各个角之间的关系是得出正确结论的关键.3、(1)能画无数条;(2)能画一条;(3)能画一条【解析】【分析】用三角板的一条直角边与已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和点A (或点B)重合,过点A(或点B)沿直角边向已知直线画直线即可,在两线相交处标出垂足(直角符号),据此即可解答.【详解】解:(1)根据题意得:画已知直线l的垂线,这样的垂线能画出无数条;(2)根据题意得:经过直线l上一点A画l的垂线,这样的垂线能画出一条;(3)根据题意得:经过直线l外一点B画l的垂线,这样的垂线能画出一条.【点睛】本题主要考查了画已知直线的垂线,熟练掌握同一平面内,过已知点有且只有一条直线与已知直线垂直是解题的关键.4、 (1)见解析(2)图见解析,理由:连结直线外一点与直线上各点的所有线段中,垂线段最短.【解析】【分析】(1)根据题意,结合直线、射线、线段的定义画图;(2)根据垂线段最短解题.(1)如图,直线AB,射线BC,线段AC就是所求作的图形;(2)如图,点M即为所求作的点.理由:连结直线外一点与直线上各点的所有线段中,垂线段最短.【点睛】本题考查基础作图—直线、射线、线段、垂线段等知识,是重要考点,掌握相关知识是解题关键.5、 (1)图见解析,两点之间,线段最短(2)图见解析,垂线段最短【解析】【分析】(1)根据两点之间,线段最短画图解答即可;(2)根据垂线段最短画图解答即可.(1)这条公路的位置如图所示,我的依据是“两点之间,线段最短”.(2)点C的位置如图所示,我的依据是“垂线段最短”.【点睛】本题考查最短路径问题及垂线段最短,解题关键是掌握两点之间,线段最短及垂线段最短.。
综合解析鲁教版(五四)六年级数学下册第七章相交线与平行线定向测试试题(含解析)
六年级数学下册第七章相交线与平行线定向测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列选项中1∠,2∠是对顶角的是( )A .B .C .D .2、如图,在所标识的角中,下列说法不正确的是( )A .1∠和2∠互为补角B .1∠和4∠是同位角C .2∠和4∠是内错角D .2∠和3∠是对顶角3、如图,135AOC ∠=︒,则BOC ∠的度数为( )A.55︒B.45︒C.35︒D.25︒4、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是()A.77°B.64°C.26°D.87°5、下图中,1∠和2∠是对顶角的是()A.B.C.D.6、如图,直线a∥b,直线AB⊥AC,若∠1=52°,则∠2的度数是()A.38°B.42°C.48°D.52°7、下列四幅图中,∠1和∠2是同位角的是()A.(1)(2)B.(3)(4)C.(1)(2)(3)D.(2)(3)(4)8、在如图中,∠1和∠2不是同位角的是()A.B.C.D.9、如图,直线a、b被直线c所截,下列说法不正确的是()A.∠1与∠5是同位角B.∠3与∠6是同旁内角C.∠2与∠4是对顶角D.∠5与∠2是内错角10、如图,点O 在直线BD 上,已知120∠=︒,OC OA ⊥,则BOC ∠的度数为( ).A .20°B .70°C .80°D .90°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,∠C =90°,线段AB =10cm ,线段AD =8cm ,线段AC =6cm ,则点A 到BC 的距离为_____cm .2、如图,∠E 的同位角有___个.3、如图,直线a 、b 、c 分别与直线d 、e 相交,与∠1构成同位角的角共有________个,和∠l 构成内错角的角共有________个,与∠1构成同旁内角的角共有________个.,OG平分∠BOE,且∠EOG=36°,则∠AOC=4、如图,直线AB、CD、EF相交于点O,CD EF______.5、如图,在四边形BCEF中,BF∥AD∥CE,S△ABC=3,则△DEF的面积是___.三、解答题(5小题,每小题10分,共计50分)1、如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOC=76°;(1)求∠DOE的度数;(2)求∠BOF的度数.2、如图,已知90AOB ∠=︒,OD 平分AOC ∠,OE 平分BOC ∠.(1)若15DOB ∠=︒,求DOE ∠的度数;(2)若DOB x ∠=,此时DOE ∠=________.(3)解:∵90AOB ∠=︒,15DOB ∠=︒∴1∠=________又∵OD 平分AOC ∠∴________请继续完成求DOE ∠度数的推理过程:3、(2019·山东青岛市·七年级期中)作图题:已知:∠α、∠β、 求作:∠AOB ,使∠AOB =∠α+∠β4、如图,已知∠MON =60°,点A 在射线OM 上,点B 在射线ON 下方.请选择合适的画图工具按要求画图并回答问题.(要求:不写画法,保留画图痕迹)(1)过点A 作直线l ,使直线l 只与∠MON 的一边相交;(2)在射线ON 上取一点C ,使得OC =OA ,连接AC ,度量∠OAC 的大小为 °;(精确到度)(3)在射线ON 上作一点P ,使得AP +BP 最小,作图的依据是 .5、已知,如图1,射线PE 分别与直线AB ,CD 相交于E 、F 两点,∠PFD 的平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设∠PFM =α°,∠EMF |β﹣40|=0(1)α= ,β= ;直线AB 与CD 的位置关系是 ;(2)如图2,若点G 、H 分别在射线MA 和线段MF 上,且∠MGH =∠PNF ,试找出∠FMN 与∠GHF 之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图3),分别与AB 、CD 相交于点M 1和点N 1时,作∠PM 1B 的角平分线M 1Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值是否改变?若不变,请求出其值;若变化,请说明理由.-参考答案-一、单选题1、C【解析】【分析】根据对顶角的定义:两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角,对各项进行分析即可.【详解】解:A中∠1和∠2不是两边互为反向延长线,不是对顶角;B中∠1和∠2角度不同,不是对顶角;C中∠1和∠2是对顶角;D中∠1和∠2顶点不在同一位置,不是对顶角.故选:C.【点睛】本题考查了对顶角的定义,熟记对顶角的定义是解题的关键.2、C【解析】【分析】根据同位角、内错角、邻补角、对顶角的定义求解判断即可.【详解】解:A、1∠和2∠是邻补角,故此选项不符合题意;B、1∠是同位角,故此选项不符合题意;∠和4C、2∠不是内错角,故此选项符合题意;∠和4D 、2∠和3∠是对顶角,故此选项不符合题意.故选:C .【点睛】此题考查了同位角、内错角、对顶角以及邻补角的定义,熟记同位角、内错角、邻补角、对顶角的定义是解题的关键.三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.3、B【解析】【分析】根据AOC ∠与BOC ∠互补求解即可.【详解】135AOC ∠=︒,180********BOC AOC ∴∠=︒-∠=︒-︒=︒,故选:B .【点睛】本题主要考查补角,掌握互补的概念是关键.4、A【解析】【分析】本题首先根据∠BGD ′=26°,可以得出∠AEG =∠BGD ′=26°,由折叠可知∠α=∠FED ,由此即可求出∠α=77°.【详解】解:由图可知: AD∥BC∴∠AEG=∠BGD′=26°,即:∠GED=154°,由折叠可知: ∠α=∠FED,∴∠α=12GED∠=77°故选:A.【点睛】本题主要考察的是根据平行得性质进行角度的转化.5、C【解析】【分析】根据对顶角的定义解答即可.【详解】解:A. 1∠和2∠的某一边不是互为反向延长线,不是对顶角,故不符合题意;B. 1∠和2∠没有公共顶点,不是对顶角,故不符合题意;C. 1∠和2∠是对顶角,符合题意;D. 1∠和2∠的某一边不是互为反向延长线,不是对顶角,故不符合题意.故选C.【点睛】本题考查了对顶角,熟记对顶角的定义是解题的关键.对顶角的定义:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.6、A【解析】利用直角三角形的性质先求出∠B,再利用平行线的性质求出∠2.【详解】解:∵AB⊥AC,∠1=52°,∴∠B=90°﹣∠1=90°﹣52°=38°∵a∥b,∴∠2=∠B=38°.故选:A.【点睛】本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键.7、A【解析】【分析】互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角,由此即可求解.【详解】解:根据同位角的定义,图(1)、(2)中,1∠和2∠是同位角;图(3)中1∠、2∠的两边都不在同一条直线上,不是同位角;图(4)中1∠、2∠不在被截线同侧,不是同位角.故选:A.本题考查同位角的概念,是需要熟记的内容.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.8、D【解析】【分析】同位角的定义:两条直线a,b被第三条直线c所截,在截线c的同侧,被截两直线a,b的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.【详解】解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.故选:D.【点睛】本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.9、D【解析】【分析】根据同位角、对顶角、同旁内角以及内错角的定义对各选项作出判断即可.【详解】解:A、∠1与∠5是同位角,故本选项不符合题意;B、∠3与∠6是同旁内角,故本选项不符合题意.C、∠2与∠4是对顶角,故本选项不符合题意;D、∠5与 2不是内错角,故本选项符合题意.故选:D.【点睛】本题主要考查了同位角、对顶角、同旁内角、内错角的定义,解答此题的关键是确定三线八角,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.10、B【解析】【分析】直接利用垂直的定义结合互余得出答案.【详解】解:∵点O在直线DB上, OC⊥OA,∴∠AOC=90°,∵∠1=20°,∴∠BOC=90°−20°=70°,故选:B.【点睛】此题主要考查了垂线以及互余,正确把握相关定义是解题关键.二、填空题1、6【解析】根据点到直线的距离的定义,可得答案.【详解】解:因为∠C=90°,所以AC⊥BC,所以A到BC的距离是AC,因为线段AC=6cm,所以点A到BC的距离为6cm.故答案为:6.【点睛】本题考查了点到直线的距离,明确定义是关键.2、2【解析】【分析】由题意直接根据同位角的定义进行解答即可.【详解】解:根据同位角的定义可得:∠BAD和∠E是同位角;∠BAC和∠E是同位角;∴∠E的同位角有2个.故答案为:2.【点睛】本题考查同位角的概念,熟记同位角的定义是解题的关键.3、 3 2 2【分析】根据同位角、内错角、同旁内角的定义判断即可;【详解】如图,与∠1是同位角的是:∠2, ∠3,∠4;与∠1是内错角的是:∠5, ∠6;与∠1是同旁内角的是:∠7,∠8.【点睛】本题主要考查了同位角、内错角、同旁内角的判断,准确分析是解题的关键.4、18°##18度【解析】【分析】首先根据角平分线的性质可得∠BOE=72°,则对顶角相等:∠AOF=72°,进而可以根据垂直的定义解答.【详解】解:∵∠EOG=36°,OG平分∠BOE,∴∠BOE=2∠BOG=72°,∴∠AOF=∠BOE=72°,又CD⊥EF,∴∠COE=90°,∴∠AOC=90°-72°=18°.故答案为:18°.【点睛】本题考查的知识点是垂线,角平分线的定义,对顶角、解题的关键是熟练的掌握垂线,角平分线的定义,对顶角.5、6【解析】【分析】根据题意利用平行线间距离即所有垂线段的长度相等,可以求得S△ADF=S△ABD,S△ADE=S△ACD,S△CEF=S△BCE,利用面积相等把S△DEF转化为已知△ABC的面积,即可求解.【详解】解:∵BF∥AD∥CE,∴S△ADF=S△ABD,S△ADE=S△ACD,S△CEF=S△BCE,∴S△AEF=S△CEF-S△ACE=S△BCE-S△ACE=S△ABC,S△DEF=S△ADF+S△ADE+S△AEF=S△ABD+S△ACD+S△ABC=S△ABC+S△ABC=2S△ABC=2×3=6,故答案为:6.【点睛】本题考查平行线的推论,注意掌握平行线间距离即所有垂线段的长度相等并利用三角形面积相等,把S△DEF转化为已知△ABC的面积.三、解答题1、(1)38°;(2)33°【解析】【分析】(1)根据对顶角相等得出∠BOD,再根据角平分线计算∠DOE;(2)求出∠DOE的补角∠COE,再用角平分线得出∠EOF,最后根据∠BOF=∠EOF-∠BOE求解.【详解】解:(1)∵∠AOC=76°,∴∠BOD=∠AOC=76°,∵OE平分∠BOD,∴∠DOE=∠BOE=12∠BOD=38°;(2)∵∠DOE=38°,∴∠COE=180°-∠DOE=142°,∵OF平分∠COE,∴∠EOF=12∠COE=71°,∴∠BOF=∠EOF-∠BOE=33°.【点睛】本题考查了角平分线的定义,以及对顶角的性质,理解角平分线的定义是关键.2、(1)∠DOE=45°;(2)45°(3)见解析【解析】【分析】(1)根据角平分线定义得出∠DOC=∠1=75°,求得∠BOC=∠DOC-∠2=60°,再根据角平分线定义得出∠3=∠4=30°.进一步计算即可求解;(2)同(1)法即可求解;(3)同(1).(1)解:∵∠AOB=90°,∠DOB=15°,∴∠1=75°,又∵OD平分∠AOC,∴∠DOC=∠1=75°,∴∠BOC=∠DOC-∠2=60°,又∵OE平分∠BOC,∴∠3=∠4=30°,∴∠DOE=∠2+∠3=45°;(2)解:∵∠AOB=90°,∠DOB=x,∴∠1=90°-x,又∵OD平分∠AOC,∴∠DOC=∠1=90°-x,∴∠BOC=∠DOC-∠2=90°-2x,又∵OE平分∠BOC,∴∠3=∠4=45°-x,∴∠DOE=∠2+∠3=45°;故答案为:45°;(3)解:∵∠AOB=90°,∠DOB=15°,∴∠1=75°,又∵OD平分∠AOC,∴∠DOC=∠1=75°,∴∠BOC=∠DOC-∠2=60°,又∵OE平分∠BOC,∴∠3=∠4=30°,∴∠DOE=∠2+∠3=45°.【点睛】本题主要考查了角平分线的定义,根据图形得出所求角与已知角的关系是解题的关键.3、作图见解析【解析】【分析】利用量角器作∠AOC=∠α,在∠AOC外以OC为边作∠COB=∠β,所以∠AOB=∠α+∠β,即为所求作的角.【详解】如图所示:(1)作∠AOC=∠α,(2)在∠AOC外以OC为边作∠COB=∠β,则∠AOB即为所求作的角.【点睛】本题主要考查了用量角器作角,准确分析作图是解题的关键.4、 (1)见解析(2)见解析,60(3)见解析,两点之间,线段最短【解析】【分析】(1)根据相交线的定义(如果两条直线只有一个公共点时,我们称这两条直线相交)作图即可;(2)利用直尺先测量出OA 长度,然后以点O 为左端点,在射线ON 上找出点C ,连接AC ,利用量角器度量角的度数即可得;(3)连接AB 与射线ON 交于点P ,即为所求,依据两点之间线段最短确定.(1)解:过点A 作直线l 如图所示:(2)解:利用直尺先测量出OA 长度,然后以点O 为左端点,在射线ON 上找出点C ,连接AC ,如图所示; 经过测量:60OAC ∠=︒,故答案为:60;(3)解:连接AB ,与射线ON 交于点P ,即为所求,依据两点之间线段最短确定,故答案为:两点之间线段最短.【点睛】题目主要考查相交线的定义、作一条线段等于已知线段、度量角度、两点之间线段最短等知识点,理解题意,综合运用这些知识点是解题关键.5、 (1)40,40,平行;(2)∠GHF +∠FMN =180°;证明见解析;(3)不变,2【解析】【分析】(1)根据非负数的性质求出α、β,再根据角平分线的性质和平行线的判定得出AB 平行于CD ;(2)根据AB ∥CD 得出∠BMN =∠PNF ,由∠MGH =∠PNF 可得∠MGH =∠BMN ,可证MN ∥GH ,利用平行线的性质可证∠FMN =∠GHF ;(3)作QU ∥AB ,PI ∥AB ,可证11MQM QM B QFN ∠=∠-∠,11FPN PM B PFN ∠=∠-∠,再根据角平分线的性质可得112FPN MQM ∠=∠. (1)|β﹣40|=0,∴8020α-=,β﹣40=0,∴40α=,β=40,∵∠PFD 的平分线与直线AB 相交于点M ,∴∠PFM =∠NFM =40°,∴∠EFM =∠NFM ,∴AB ∥CD ,故答案为:40,40,平行.(2)解:∠GHF +∠FMN =180°;证明:∵AB ∥CD ,∴∠BMN =∠PNF ,∵∠MGH =∠PNF ,∴∠MGH =∠BMN ,∴MN ∥GH ,∴∠FMN =∠GHM ,∵∠GHF +∠GHM =180°,∴∠GHF +∠FMN =180°.(3)解:不变;作QU ∥AB ,PI ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥QU ∥PI ,∴∠UQM 1=∠QM 1B ,∠UQF =∠QFN ,∠IPM 1=∠PM 1B ,∠IPF =∠PFN ,∴11MQM QM B QFN ∠=∠-∠,11FPN PM B PFN ∠=∠-∠,∵∠PFD 的平分线与直线AB 相交于点M ,∠PM 1B 的角平分线M 1Q 与射线FM 相交于点Q ,∴112PM B QM B ∠=∠,2PFN QFN ∠=∠,∴112FPN MQM ∠=∠, ∴112FPN MQM ∠=∠.【点睛】本题考查了平行线的性质与判定,解题关键是熟练运用平行线的性质与判定进行推理和证明.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Unit 7Why do you like pandas?单元检测 2015/5/25 二、单项填空(20分) 1. This is _____ animal. It’s from Africa. A. a B. an C. the D. / 2. —_____ does a panda eat? —Bamboos (竹). A. Who B. What C. Where D. Why 3. China’s _____ are famous(著名的)in the world. A. lions B. koalas C. giraffes D. pandas 4. The elephants _____ from South Africa. A. are B. comes C. is D. be 5. The cat often plays _____ the ball. A. on B. in C. with D. at 6. —What _____ animals do you like? —I like giraffes, too. A. other B. another C. others D. the other 7. Money is very important _____ it’s not the most(最) important thing. A. or B. and C. so D. but 8. I think the book is _____ boring. A. kind of B. a kind of C. kinds of D. a kind 9. —Isn’t the dog cute? —_____. I like it very much. A. Yes, it does B. No, it doesn’t C. Yes, it is D. No, it isn’t 10. —Let’s go to the movies this Sunday. —_____. A. Thank you B. It’s boring C. Yes, we are D. That sounds good 11. Does your mother like sleeping during the day ________? A. No, he doesn’t B. No, he isn’t C. No, she doesn’t D. No, she isn’t 12. Chinese people are very ________. A. friend B. friends C. friendly D. friendy 13. One of the students _______ from France. He speaks ________. A. are, Japanese B. is, English C. is, French D. come, French 14. The girl is ______ shy. A. very much B. a little C. much D. little 15. Where _______ lions ______ ? A. does, from B. do, come from C. is, from D. are, come from 16. He likes ________ my friend. A. to play with B. to play C. play with D. play 17. He works only ________. A. at the night B. in night C. at the evening D. at night 18. Mr Li is kind _____ us. But sometimes he is kind ______ serious(严肃). A. to, of B. with , to C. of, to D. of, of 19. Let’s ______ the dolphins now. They are very smart. A. read B. watch C. look D. see 20.The elephants are ____ great danger . A .in B. out C. on D with 三、完形填空(10分) It is 1 today. Wei Hua and Li Ying want to go to the 2 . They want to have a look at the 3 there. They are 4 for a bus. A bus comes and stops at the bus stop. There are two 5 seats and they sit on them. The bus stops at the 6 stop. An old man gets on the 7 . Wei Hua and Li Ying stand up and say, “Here’s 8 for you, grandpa. Please sit here. ” The old man says, “ 9 very much. It’s very kind of you to 10 me have your seats. ” 1. A. good B. fine C. nice D. Monday 2. A. school B. farm C. hill D. zoo 3. A. animals B. cakes C. turkeys D. cows 4. A. waiting B. looking C. thanking D. leaving 5. A. full B. empty C. new D. nice 6. A. first B. second C. next D. last 7. A. bike B. bus C. jeep D. tractor 8. A. a card(卡片) B. a flower C. a chair D. a seat(座位) 9. A. Thank you B. I like it C. I’m happy D. I’m sorry 10. A. help B. let C. hear D. see 四、阅读理解(15分) Birds live in trees. Squirrels(松鼠) live in trees. But do you know that some frogs live in trees, too? Tree frogs are hard to find. They can change color. On green leaves, they stay green. On a branch, they keep brown. Some tree frogs can change from green to gold or blue. Tree frogs have legs and wide feet. They have sticky pads(肉趾) at the end of their toes. These sticky pads keep the tree frogs from falling off. Tree frogs have different colors and markings on the skins(皮肤). Their eyes are different, too. Some have green eyes, some gray. Some frogs’ eyes are gold, and some are bright red. The sounds they made in spring and summer are different, too. One frog makes a sound like a dog barking. Another frog makes a loud noise like a snore(打呼噜). There is even a frog that whistles(吹口哨). 1. Why is a tree frog hard to find? A. Because it can stand on its toes. B. Because it can make a dog bark. C. Because it can change color. D. Because it has sticky pads. 2. The sticky pads_____. A. can help tree frogs jump faster B. can change tree frogs’ colors C. can change tree frogs’ sounds D. can stop tree frogs from falling off 3. The main idea of the last paragraph is that_____. A. tree frogs make barking sounds in spring B. tree frogs make noisy sounds in summer C. different frogs make different sounds in spring and summer D. tree frogs make whistling sounds 4. The animals that haven’t been mentioned(提到) in this passage are _____. A. birds and squirrels B. snakes C. dogs D. tree frogs 5. The main idea of the passage is that _____ A. the tree frog is a special kind of frog. B. dogs bark like frogs. C. squirrels do not want tree frogs in their trees. D. the tree frog is useful. (B)