初中数学七年级上册有理数乘法的运算律及运用导学案

合集下载

2.9.2有理数乘法的运算律导学案

2.9.2有理数乘法的运算律导学案

课题:2.9.2 有理数乘法的运算律学习目标:1、掌握多个有理数乘法的法则.会运用运算律使运算简化。

培养学生观察、比较、归纳及运算能力。

学习重难点:运用有理数乘法运算律简化运算。

学习过程:一、温故知新1.有理数的乘法法则是什么?(口答)2.选择正确答案:<1>若ab>0,则必有( )A.a>0, b>0B.a<0,b<0C.a>0,b<0D.a.b同号(2)若ab=0,则必有( )A.a=b=0B.a=0C.a,b至少有一个为0D.a.b最多有一个为0(3)一个有理数和它的相反数之积( )A.符号为正B.符号为负C.不大于零D.不小于零(4)下列说法错误的是( )A.一个数同0相乘,仍得0B.一个数同1相乘,仍得原数C.一个数同-1相乘,得原数的相反数D.互为相反数的积为1二、自主学习:阅读课本P46—49页,认真完成下面的题目。

1. “做一做”,完成下列问题:(1) (-5)×2=-(5×2) =;2×(-5)=-(2×5) =;两个有理数相乘,交换____________,积_______。

(2)[2×(-3)]×(-4)=(-6)×(-4)=;2×[(-3)×(-4)]=2×12=;三个数相乘,先把________相乘,或者先把________相乘,积______。

根据乘法交换律和结合律可以推出:三个或三个以上有理数相乘,2.计算:(―2)×5×(―3),有多少种不同的算法?你认为哪些算法比较好?3.完成【例2】观察各式,能发现几个正数与负数相乘,积的符号与各因数的符号之间的关系吗?4.再试一试:―1×1×1×1×1=______;―1×(―1)×1×1×1=______;―1×(―1)×(―1)×1×1=______;―1×(―1)×(―1)×(―1)×1=______;―1×(―1)×(―1)×(―1)×(―1)=______。

新人教版七年级数学上册《有理数的乘除法-乘法运算律》教案

新人教版七年级数学上册《有理数的乘除法-乘法运算律》教案

新人教版七年级数学上册《有理数的乘除法-乘法运算律》教案
《乘法运算律》教案
一、教学目标:
1、在掌握有理数的乘法法则基础上,能运用乘法交换律、结合律,简化运算;
2、通过探索有理数乘法运算律及其应用的过程,培养学生猜测、验证、推理等能力;
3、通过运用乘法运算律来简化运算,让学生体会有理数乘法计算方法的多样化,培养学
生理解的深刻性,拓展思维。

二、教学重点和难点:
重点:熟练运用运算律进行计算;
难点:灵活运用运算律。

三、学法指导与教学准备:
问题自主探索----类比学习----学生合作交流----探索与创新
四、教学过程:
活动一、创设情境
在小学里我们知道,数的乘法满足交换律、结合律和分配律,引进负数以后,这些运算律是否还成立呢?
活动二、探索归纳
(一)探究乘法交换律、结合律
1、试一试:
(1)任意举出两个有理数相乘的例子,并比较两个运算结果:
_________×_______
(2)任意选择三个有理数相乘的例子,分组先把前两个相乘或者先把后两个相乘,并比较两个运算结果:
_________×_______×_______
2、通过上面例子你能发现什么?请评判自己的猜想。

3、概括得出结论:
通过上面例子说明有理数的乘法仍满足交换律、结合律,对于交换律,结合律不仅要会文字表达,也要会用字母表示:
ab
乘法交换律:两个数相乘,交换因数的位置,积相等ba。

北师大版七年级数学上册2.7.2《有理数的乘法》导学案(无答案)

北师大版七年级数学上册2.7.2《有理数的乘法》导学案(无答案)

2.7.2 有理数的乘法【学习目标】有理数运算中,熟练运用乘法交换律,结合律以及乘法对加法的分配律。

【学习重难点】学习重点:利用有理数的乘法运算律进行计算学习难点:通过你的认真预习,你觉得这节课的难点是【预习学法指导】一、利用6分钟时间通过自己认真阅读课本第52~53页,独立完成下面的问题: 计算下列各题并比较它们的结果:第一组:(1)(-7)×8与8×(-7)(2)(-35)×(-109)与(-109)×(-35)第二组:(1) [(-4)×(-6)]×5与(-4)×[(-6)×5](2)[21×(-73)]×(-4)与21×[(73-)×(-4)]第三组:(1)(-2)×[(-3)+(23-)]与(-2)×(-3)+(-2)×(23-)(2)5×[(-7)+(54-)]与5×(-7)+5×(54-)归纳总结:1.乘法的交换律:2.乘法的结合律:3.乘法对加法的分配律:在有理数运算中, 律 律 律仍然成立。

二、利用2分钟时间进一步阅读课本第53页例题3,独立完成下面的题目:(1)(0.25-32)×(-36) (2)30×(3121-)(3)[9×(-4)] ×(41-) (4)(-5)×(-25)×(-2)×4祝贺你已经按照导学案的要求顺利完成预习环节!请问,你只用了 分钟来完成的?还有时间就继续挑战吧!三、运用与拓展延伸:1.若m 、n 互为相反数,则( )A.mn <0B.mn >0C.mn ≤0D.mn ≥02. 若|a|=3,|b|=5,且a 、b 异号,则a×b= 。

3.计算:)531(135)135()53()135(54-⨯--⨯---⨯课内训练巩固(1)(31+41-61)×24(2)(-2)×(-7)×(+5)×(71-);(3))214()1512()92(315-⨯-⨯-⨯(4)(-12)×(-15)×0×(123245-);(5) )01.05121103)(10(-+--(5)。

人教版七年级初一七年级上册 第一章第14课时有理数乘法运算律导学案教案

人教版七年级初一七年级上册 第一章第14课时有理数乘法运算律导学案教案

第14课时 有理数乘法运算律字母表示:a (b +c +d +e +f +…z )=ab +ac +ad +ae +af +…az1.有理数的乘法交换律 【例1】(﹣4)××0.25的计算结果是(). A .﹣ B . C . D .﹣ 总结: 乘法交换律可以改变乘法运算的运算顺序,单独使用乘法交换律的运算不多. 一般,三个有理数相乘,其中有两个可以约分或乘积为整数的时候,使用交换律交换位置相乘可以简便计算过程. 三个以上的有理数相乘,交换律和结合律同时使用可以使运算简便. 注意:运用乘法交换律时,要带着有理数前面的符号一起交换,尤其是负号不能丢. 练1.式子××5=×5×,这里应用了( ). A .分配律 B .乘法交换律 C .乘法结合律 D .乘法的性质 2.有理数的乘法结合律 【例2】计算:-33×0.5×(-2.5)×0.4. 13总结:运用乘法结合律要优先结合具有以下特征的因数: ①互为倒数; ②乘积为整数或便于约分的因数. 练2.计算:(﹣4)×1.25×(﹣8). 练3.在计算4×(﹣7)×(﹣5)=(4×5)×7中,运用了乘法的( ) A .交换律 B .结合律 C .分配律 D .交换律和结合律 3.有理数的乘法分配律 【例3】计算的结果是( )A .﹣B .0C .1D .总结:乘法分配律揭示了加法和乘法的运算性质,利用它可以简化有理数的运算,对于乘法分配律,不仅要会正向应用,而且要会逆向应用,有时还要构造条件变形后再用,以求简便、迅速、准确解答习题.练4.计算时,运用( )可以使运算简便.A .乘法交换律B .乘法结合律C .乘法分配律D .加法结合律练5.简便运算:29×(﹣12).4.乘法运算律的综合应用【例4】计算:.总结:运用乘法运算律可以简化有理数乘法运算.乘法交换律和乘法结合律要灵活、综合地运用,两者相得益彰.根据乘法交换律和结合律可以推出:三个以上有理数相乘,可以任意交换因数的位置,也可以先把其中的几个数相乘.运用乘法交换律和结合律的目的,是把容易计算的几个因数先进行计算.应用乘法分配律可以打破“先算括号”的计算习惯,简化乘法与加法的运算.练6.上面运算没有用到( )A .乘法结合律B .乘法交换律C .分配律D .乘法交换律和结合律练7.式子(﹣+)×4×25=(﹣+)×100=50﹣30+40中用的运算律是( ) A .乘法交换律及乘法结合律 B .乘法交换律及分配律C .加法结合律及分配律D .乘法结合律及分配律一、选择题211513+0.68+13+0.343737⨯⨯⨯⨯1.计算:(﹣8)××0.125=()A.﹣ B. C. D.﹣2.(﹣4)×(﹣3.9)×(﹣25)的计算结果是()A.﹣390 B.390 C.39 D.﹣393.算式﹣25×14+18×14﹣39×(﹣14)=(﹣25+18+39)×14是逆用了()A.加法交换律 B.乘法交换律 C.乘法结合律 D.乘法分配律4.(•台湾)计算(﹣1000)×(5﹣10)之值为何?()A.1000 B.1001 C.4999 D.5001二、填空题5.在等式中,应用的运算律有和.6.计算:99×(﹣5)= .7.计算:78×(﹣)+(﹣11)×(﹣)+(﹣33)×= .8.计算:﹣3.59×(﹣)﹣2.41×(﹣)+6×(﹣)= .三、解答题9.计算:﹣3.14×35.2+6.28×(﹣23.2)﹣1.57×36.8.10.计算:(﹣1)×(﹣2)×(﹣3)+(﹣2)×(﹣3)×(﹣4)+(﹣3)×(﹣4)×(﹣5)+…+(﹣100)×(﹣101)×(﹣102).11..【例1】计算:(﹣4)××0.25=( )A .﹣B .C .D .﹣解答:解:原式=(﹣4)×0.25×=﹣1×=﹣,故选:A .点评:本题考查了有理数的乘法,乘法交换律是解题关键,注意运算符号.【例2】计算:-33×0.5×(-2.5)×0.4. 解:原式=××(×) = =16.【例3】计算的结果是( )A .﹣B .0C .1D .分析:原式利用乘法分配律计算即可得到结果.解答:解:原式=﹣×﹣×﹣×(﹣) =﹣1﹣2+=﹣.故选A .点评:此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.【例4】计算:. 解:原式= = 13100312522550323211513+0.68+13+0.343737⨯⨯⨯⨯212513+13+0.34+0.343377⨯⨯⨯⨯212513++0.34+3377⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭=13.34.练习答案:练1.式子××5=×5×这里应用了()A.乘法分配律 B.乘法交换律 C.乘法结合律 D.乘法的性质分析:根据有理数的乘法运算定律解答即可.解答:解:××5=×5×应用了乘法交换律.故选B.点评:本题考查了有理数的乘法,是基础题,熟记乘法运算定律是解题的关键.练2.计算:(﹣4)×1.25×(﹣8).分析:将后两项结合,再进行乘法运算.解答:解:原式=﹣×[1.25×(﹣8)]=.点评:本题考查了有理数的乘法,在进行分式的乘法运算时,注意将带分数化为假分数的形式.练3.在计算4×(﹣7)×(﹣5)=(4×5)×7中,运用了乘法的()A.交换律 B.结合律 C.分配律 D.交换律和结合律分析:4×(﹣7)×(﹣5)变成(4×5)×7,先交换了﹣7和﹣5的位置,再把后两个数相乘,就是运用了乘法交换律和结合律.解答:解:4×(﹣7)×(﹣5)=4×(﹣5)×(﹣7)(乘法交换律)=(4×5)×7.(乘法结合律)所以计算4×(﹣7)×(﹣5)=(4×5)×7运用的定律是乘法交换律和乘法结合律.故选D.点评:考查了有理数的乘法,解决本题关键是熟练掌握乘法的有关运算定律.练4.计算时,可以使运算简便的是运用()A.乘法交换律 B.乘法结合律 C.乘法分配律 D.加法结合律分析:24的因数有4,12,8,3,6,所以用乘法分配律.解答:解:∵=﹣×(﹣24)+×(﹣24)﹣×(﹣24)+×(﹣24)=18﹣2+15﹣20.∴问题转化为整数的运算,使计算简便.故选C.点评:乘法的分配律:a(b+c)=ab+ac,可以使计算过程简单,不易出错.练5.简便运算:29×(﹣12)分析:根据乘法分配律,可得答案.解答:解;原式=(30﹣)×(﹣12)=30×(﹣12)+×12=﹣360+=﹣359.点评:本题考查了有理数的乘法,利用了有理数的乘法分配律.练6.上面运算没有用到()A.乘法结合律B.乘法交换律C.分配律D.乘法交换律和结合律分析:根据乘法运算法则分别判断得出即可.解答:解:∵,∴运算中用到了乘法结合律以及乘法交换律,没用到分配律.故选:C.点评:此题主要考查了乘法运算法则的应用,熟练掌握运算法则是解题关键.练7.式子(﹣+)×4×25=(﹣+)×100=50﹣30+40中用的运算律是()A.乘法交换律及乘法结合律B.乘法交换律及分配律C.加法结合律及分配律D.乘法结合律及分配律分析:根据乘法运算的几种规律,结合题意即可作出判断.解答:解:运算过程中,先运用了乘法结合律,然后运用了乘法分配律.故选D.点评:本题考查了有理数的乘法运算,注意掌握乘法运算的几种规律.课后小测答案:1.计算:(﹣8)××0.125=()A.﹣B.C.D.﹣解:(﹣8)××0.125,=(﹣8)×0.125×,=﹣1×,=﹣.故选A.2.(﹣4)×(﹣3.9)×(﹣25)的计算结果是()A.﹣390B.390C.39D.﹣39解:(﹣4)×(﹣3.9)×(﹣25)=(﹣4)×(﹣25)×(﹣3.9)=100×(﹣3.9)=﹣390.故选A.3.算式﹣25×14+18×14﹣39×(﹣14)=(﹣25+18+39)×14是逆用了()A.加法交换律B.乘法交换律C.乘法结合律D.乘法分配律解:﹣25×14+18×14﹣39×(﹣14)=(﹣25+18+39)×14是逆用了乘法分配律,故选:D.4.(•台湾)计算(﹣1000)×(5﹣10)之值为何?()A.1000B.1001C.4999D.5001解:原式=﹣(1000+)×(﹣5)=(1000+)×5=1000×5+×5=5000+1=5001.故选D.5.在等式中,应用的运算律有交换律和结合律.解:第一步计算中,(﹣)和(﹣8)交换了位置,运用了交换律;第二步计算中,先计算1.25×(﹣8),运用了结合律.答:应用的运算律有交换律和结合律.6.计算:99×(﹣5)= ﹣499.解:原式=99×(﹣5)+×(﹣5)=﹣495﹣=﹣499.7.计算:78×(﹣)+(﹣11)×(﹣)+(﹣33)×= ﹣60 .解:78×(﹣)+(﹣11)×(﹣)+(﹣33)×=78×(﹣)+(﹣11)×(﹣)+33×(﹣)=﹣×(78﹣11+33)=﹣×100=﹣60,故填:﹣60.8.计算:﹣3.59×(﹣)﹣2.41×(﹣)+6×(﹣)= 0 .解:﹣3.59×(﹣)﹣2.41×(﹣)+6×(﹣),=(﹣)×(﹣3.59﹣2.41+6),=(﹣)×0,=0.故答案为:0.9.计算:﹣3.14×35.2+6.28×(﹣23.2)﹣1.57×36.8.解:原式=﹣3.14×35.2+(﹣3.14)×46.4+(﹣3.14)×18.4=﹣3.14×(35.2+46.4+18.4)=﹣3.14×90=﹣282.6.10.计算:(﹣1)×(﹣2)×(﹣3)+(﹣2)×(﹣3)×(﹣4)+(﹣3)×(﹣4)×(﹣5)+…+(﹣100)×(﹣101)×(﹣102).解:(﹣1)×(﹣2)×(﹣3)+(﹣2)×(﹣3)×(﹣4)+(﹣3)×(﹣4)×(﹣5)+…+(﹣100)×(﹣101)×(﹣102)=﹣×1×2×3×4﹣×(2×3×4×5﹣1×2×3×4)﹣(3×4×5×6﹣2×3×4×5)﹣…﹣(100×101×102×103﹣99×100×101×102)=﹣(1×2×3×4+2×3×4×5﹣1×2×3×4+3×4×5×6﹣2×3×4×5+…+100×101×102×103﹣99×100×101×102)=﹣×100×101×102×103=﹣26527650.11..解:原式==﹣(10+1+20)×1=﹣31.。

有理数的乘法 第二课时《有理数乘法相关运算律》(教学设计)-初中《数学》七年级上册-人教版

有理数的乘法 第二课时《有理数乘法相关运算律》(教学设计)-初中《数学》七年级上册-人教版
1.4.1
第二课时《有理数乘法相关运算律》教学设计
课题
数学七年级上册
版本
新人教版
执教者
课标要求
掌握多个有理数相乘的符号法则
学情分析
学生前面已经学习了有理数的加法运算和减法运算,并知道了有理数包括正数、负数和零,或正整数、正分数、负整数、负分数和零,“两负数相乘,积的符号为正”与“两负数相加,和为负”容易混淆.
几个数相乘,如果其中有因数为0,积等于0




内容分析
在上节课学习有理数乘法的基础上,巩固有理数的乘法法则,探索多个有理数相乘时,积的符号的确定方法.




知识与技能目标
掌握有理数相乘的运算顺序及积的符号确定规则
过程与方法目标
发展学生的观察、归纳、猜测、验证等能力.
情感态度与价值观目标
能让学生在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解,能从交流中获益.
教学资源
多媒体、PPT课件
教学重点
应用符号法则正确地进行有理数乘法运算
教学难点多个有理数相乘时积符号的确定方法教学


教学方法
观察、分析、归纳与练习巩固相结合,两先两后教学法
学习方法
自主探究,先学后教




教学环节
教学内容
教师活动
学生活动
设计意图
一、预习导学
二、学习研讨
(1)自学内容:教材第31页的内容.
几个数相乘,如果其中有一个因数为0,积等于0
例3 计算:
(1) (-3)× ×(- )×(- )
(2)(-5)×6×(- )×

七年级数学有理数的乘法教案及教学设计(精选6篇)

七年级数学有理数的乘法教案及教学设计(精选6篇)

七年级数学有理数的乘法教案及教学设计(精选6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!七年级数学有理数的乘法教案及教学设计(精选6篇)作为一位杰出的老师,有必要进行细致的教案准备工作,教案有利于教学水平的提高,有助于教研活动的开展。

七年级数学上册《有理数乘法的运算律》优秀教学案例

七年级数学上册《有理数乘法的运算律》优秀教学案例
2.通过团队合作、交流分享,培养学生的集体荣誉感和合作精神。
3.培养学生勇于面对困难、敢于挑战的精神,使他们具备克服困难、解决问题的信心。
4.引导学生认识到数学在生活中的重要作用,提高他们的数学素养,为将来的学习和工作打下坚实基础。
在本章节的教学过程中,我将关注学生在知识与技能、过程与方法、情感态度与价值观等方面的全面发展。通过有针对性的教学策略,激发学生的学习兴趣,帮助他们掌握有理数乘法的运算规律,提高数学素养,为未来的学习生活奠定基础。
(五)作业小结
为了巩固本节课所学知识,我会布置以下作业:
1.完成课本上的练习题,运用有理数乘法运算律进行计算。
2.结合生活实际,设计一道运用有理数乘法解决的实际问题,并与同学分享。
3.总结本节课的学习心得,反思自己在学习过程中的优点和不足。
五、案例亮点
1.生活情境的巧妙融入
本教学案例的最大亮点之一是将生活情境与数学知识紧密结合。通过创设购物打折、温度变化等实际问题,让学生在解决具体问题的过程中,自然而然地运用有理数乘法运算。这种设计既激发了学生的学习兴趣,又使他们认识到数学知识在生活中的广泛应用,增强了数学学习的实用性。
2.设计多样化的教学活动,如小组讨论、案例分析等,让学生在实践中掌握有理数乘法的运算方法。
3.运用问题驱动的教学方法,激发学生的求知欲,培养他们主动探究、积极思考的学习习惯。
4.结合生活实际,让学生感受数学知识的实用价值,提高他们将数学知识应用于解决实际问题的能力。
(三)情感态度与价值观
1.培养学生对待数学学习的积极态度,激发他们对数学知识的热爱和兴趣。
三、教学策略
(一)情景创设
为了让学生更好地理解和掌握有理数乘法的运算律,我将创设贴近生活的教学情境,让学生在具体的情境中感受数学知识的应用。例如,通过设计购物打折、温度变化等实际问题,让学生在解决问题的过程中运用有理数乘法运算。这样的情境创设能激发学生的学习兴趣,使他们更加投入地进行数学学习。

《有理数乘法的运算律》 导学案

《有理数乘法的运算律》 导学案

《有理数乘法的运算律》导学案一、学习目标1、理解并掌握有理数乘法的交换律、结合律和分配律。

2、能够运用有理数乘法的运算律进行简便运算。

3、培养观察、分析和推理的能力,提高计算的准确性和效率。

二、学习重难点1、重点(1)有理数乘法的运算律。

(2)运用运算律进行简便运算。

2、难点灵活运用乘法运算律简化运算过程。

三、知识回顾1、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与 0 相乘,都得 0 。

2、计算下列各题:(1)(-3)×5(2)5×(-3)(3)(-4)×(-6)(4)(-6)×(-4)四、新课导入观察上面知识回顾中的计算结果,你能发现什么规律吗?五、探究有理数乘法的交换律1、计算:(1)5×(-6) =-30(2)(-6)×5 =-302、思考:通过上面的计算,你能得出什么结论?结论:两个数相乘,交换因数的位置,积不变。

这就是有理数乘法的交换律。

用字母表示为:ab = ba六、探究有理数乘法的结合律1、计算:(-3)×(-4)×(-5) = 12×(-5) =-60(-3)×(-4)×(-5) =(-3)×20 =-602、思考:通过上面的计算,你能得出什么结论?结论:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。

这就是有理数乘法的结合律。

用字母表示为:(ab)c = a(bc)七、探究有理数乘法的分配律1、计算:5×(-6) +(-4) = 5×(-10) =-505×(-6) + 5×(-4) =-30 +(-20) =-502、思考:通过上面的计算,你能得出什么结论?结论:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

这就是有理数乘法的分配律。

用字母表示为:a(b + c) = ab + ac八、运用运算律进行简便运算例 1:计算(-12)×(1/3 1/4 + 1/6)解:原式= (-12)×1/3 (-12)×1/4 +(-12)×1/6=-4 + 3 2=-3例 2:计算(-5)×6×(-4/5)×1/4解:原式= (-5)×(-4/5)×6×1/4= 4×3/2= 6九、课堂练习1、计算:(1)(-8)×(-7)×0×(-5)(2)(-1/6 + 1/3 1/2)×(-12)2、用简便方法计算:(1)(-10)×(-824)×(-01)(2)(-3/4)×(-8 + 2/3 1/3)十、课堂小结1、有理数乘法的交换律:ab = ba2、有理数乘法的结合律:(ab)c = a(bc)3、有理数乘法的分配律:a(b + c) = ab + ac 十一、课后作业1、课本练习题2、拓展练习:计算 999×(-15)通过本节课的学习,我们掌握了有理数乘法的运算律,并能够运用这些运算律进行简便运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章有理数
1.4 有理数的乘除法
1.4.1 有理数的乘法
第2课时有理数乘法的运算律及运用
学习目标:1.掌握乘法的分配律,并能灵活的运用.
2.掌握有理数乘法的运算律,并利用运算律简化乘法运算.
重点:有理数的乘法运算律及其应用.
难点:分配律的运用.
一、知识链接
1.有理数的乘法法则:两数相乘,同号________,异号_______,并把_________相乘.一个数同0相乘,仍得________.
2.进行有理数乘法运算的步骤:
(1)确定_____________;
(2)计算____________.
3.小学学过的乘法运算律:
(1)___________________________________.
(2)___________________________________.
(3)___________________________________.
二、新知预习
1.填空
(1)(-2)×4=_______ , 4×(-2)=________.
(2)[(-2)×(-3)]×(-4)=_____×(-4)=______ , (-2)×[(-3)×(-4)]=(-2)×_____=_______.
(3) (-6)×[4+(-9)]=(-6)×______=_______, (-6)×4+(-6)×(-9)=____+____=_______;
2.观察上述三组式子,你有什么发现?
【自主归纳】在有理数的范围内,乘法的交换律和结合律,以及乘法对加法的分配律仍然适用.
(1)乘法交换律:两个有理数相乘,交换因数的位置,积不变.
用字母表示为:ab ba
=.
(2)乘法结合律:对于三个有理数相乘,可以先把前面两个数相乘,再把结果与第三个数相乘;或者先把后两个数相乘,再把第一个数与所得结果相乘,积不变.
用字母表示为:()()
=.
ab c a bc
(3)乘法对加法的分配律:一个有理数与两个有理数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.
三、自学自测
计算(1)85254
(-)(-)(-);(2)151
⨯⨯
(-2)(-);(3)91
⨯⨯
-⨯;
()30
1015
四、我的疑惑
________________________________________________________________________________ ______________________________________________________________________
一、要点探究
探究点1:有理数乘法的运算律
第一组:
(1) 2×3=6 3×2=6
2×3 = 3×2
(2) (3×4)×0.25=3 3×(4×0.25)=3
(3×4)×0.25= 3×(4×0.25)
(3) 2×(3+4)=14 2×3+2×4=14
2×(3+4)=2×3+2×4
思考:上面每小组运算分别体现了什么运算律?
第二组:
(1) 5×(-6) = -30 (-6 )×5=-30
5× (-6) = (-6) ×5
(2) [3×(-4)]×(- 5)=(-12)×(-5) =60
3×[(-4)×(-5)]=3×20=60
(3) 5×[3+(-7 )]=5×(-4)=-20 5×3+5×(-7 )=15-35=-20 5×[3+(-7 )] = 5×3+5×(-7 )
结论:
(1)第一组式子中数的范围是________;
(2)第二组式子中数的范围是________;
(3)比较第一组和第二组中的算式,可以发现____________________________. 归纳总结
1.乘法交换律:ab =ba
2.乘法结合律:(ab)c = a(bc)
3.乘法分配律:a(b +c)=ab +ac ,a(b +c +d )=ab +ac +ad
例1 用两种方法计算 (
41+61-2
1)×12
练一练:
计算:① (-8)×(-12)×(-0.125)×(-31 )×(-0.1) ② 60×(1-
21-31-41) ③ (-43 )×(8-13
1 -4 ) ④ (-11)×(-
52)+(-11)×2 53 +(-11)×(-51 )
例2 下面的计算有错吗?错在哪里?
(-24)×( 31 - 43 + 61 - 8
5 )
解:原式=-24×31-24×43+24×61-24×8
5 =-8-18+4-15
=-41+4
=-37
易错提醒:1.不要漏掉符号;2.不要漏乘.
1.计算
(1) 60×(1-
21-31- 41) ; (2)5(8)(7.2)( 2.5)12-⨯-⨯-⨯.
2.计算
(1)(-426)×251-426×749; (2)95×(-38)-95×88-95×(-26).
1.计算(-2)×(3-2
),用分配律计算过程正确的是( )
A.(-2)×3+(-2)×(-1
2
) B.(-2)×3-(-2)×(-
1
2
)
C.2×3-(-2)×(-1
2
) D.(-2)×3+2×(-
1
2
)
2.计算:
3.计算:。

相关文档
最新文档