多电子原子的光谱项总结.ppt

合集下载

大学《仪器分析》课件:第3章 原子光谱

大学《仪器分析》课件:第3章 原子光谱
10
例:钠原子,一个外层电子, S =1/2;因此: 2S +1 = 2;双重线; 碱土金属:两个外层电子, 自旋方向相同时, S =1/2 + 1/2 =1, M = 3;三重线; 自旋方向相反时, S =1/2 - 1/2 =0, M = 1;单重线;
11
一条谱线是原子的外层电子在两个能级之间的跃迁产生的, 可用两个光谱项符号表示这种跃迁或跃迁谱线:
第3章 原子光谱法基础
原子发射光谱法--依据每种化学元素的 原子或离子在热激发或电激发下,发射 特征的电磁辐射,进行元素定性、定量 分析的方法。 它是光学分析中产生与发展最早的一种 分析方法
1
❖ 原子发射光谱法包括三个主要的过程: 1.由光源提供能量使试样蒸发,形成气态原子,并进一步
使气态原子激发而产生光辐射;
14
四、谱线的自吸与自蚀
❖ 自吸:中心发射的辐射被 边缘的同种基态原子吸收, 使辐射强度降低的现象。
❖ 元素浓度低时,不出现自 吸。随浓度增加,自吸越 严重,当达到一定值时, 谱线中心完全吸收,如同 出现两条线,这种现象称 为自蚀。
❖ 基态原子对共振线的吸收 最严重。
15
第三节 原子发射光谱仪
❖ 光源、分光仪和检测器
的谱线,III表示二次电离离子发射的谱线。
3
二、能级与能级图
➢ 能级:电子在稳定状态所具有的能量称为能级。 ➢ 能级图:把原子系统内所有可能存在的能量为
零,高于基态的所有能量状态为激发态。
➢ 原子的能级通常用光谱项符号表示:n2S+1Lj n:主量子数;M(2S+1):谱线多重性符号; L:总角量子数; j:内量子数
例 钠原子的双重线 Na 588.996nm ; 32S1/ 2 — 32P3/ 2; Na 589.593nm ; 32S1/ 2 — 32P1/ 2;

多电子原子

多电子原子

第二种情况: 在同一nl态中具有k个电子,即k个同科电子 1.忽略电子之间的相互作用: nl的状态数为N=2(2l+1)。当k个电子按这些状态 分布时,由于泡利原理的限制,不能存在 ml和 ms 相同的电子。因而,问题便归结为求N个状态按k 的组合数,即简并度

G
k Cn
N ( N 1)( N 2) ( N k 1) k!

n 1
★一个能级包含的量子态数目,称这一能级的简并 度
多电子组态: 第一种情况:每个nl (次壳层)中,只有一个电子
★若忽略电子之间的相互作用,电子能量与量子数 n和l有关 电子i可以有Ni个态:Ni=2(2l+1) 多电子的组合,原子的能级简并度为 G=N1﹒N2﹒N2 …Ni 1.如果忽略电子的自旋—轨道相互作用 角动量L可有2L+1种取向, 角动量S可有2S+1种可能的取向 ●由量子数L和S表征的能级的简并度为 GLS=(2L+1)(2S+1)

共振线 (n1P→n1S0)

互组合线 (n3P→n1S0) 无 457.115nm 657.278nm 689.259nm 791.134nm
B Mg Ca Sr Ba
234.861nm 285.213nm 422.673nm 460.733nm 553.54பைடு நூலகம்nm
弱 强 强 较强
1


两者是竞争的,其能级寿命很短,主要以 前者自电离方式衰变,因而是一个自电离 态。
3.双电子被激发时,n逐渐增大,电子-电子相互作 用甚至可与电子与核的作用比较,因而两个电子 的运动产生了关联。这种双电子激发的里德堡态 是研究电子关联的理想体系,自 1989 年以来人们 开始关注这方面的理论工作。 4.一般来说,原子的自电离态有较高的衰变率,谱 线较宽。但是近来也发现不少窄线宽的自电离态, 它们具有较长寿命,特别在双电子高激发态中出 现。这种亚稳自电离态为产生真空紫外激光提供 了可能性。

原子光谱法PPT课件

原子光谱法PPT课件
第44页/共83页
1、火焰原子化
构成: 喷雾器、雾化室,燃烧器三大部分
第45页/共83页
1)气溶胶产生 雾化过程的关键是要产生直径足够小的气溶胶。
据实验: do < 1 m 在火焰中通过 0.03 mm,就脱剂 do > 30 m 在火焰中通过 30 mm,才脱溶剂 因此应创造条件,产生直径小于10 m 的气溶胶
原子吸收光谱法
第26页/共83页
第一节 概述
太阳光
暗线 (弗劳 霍费 线)
• 原子吸收光谱法是一种基于待测基态原子对特 征谱线的吸收而建立的一种分析方法。
1、原子吸收现象的发现
• 1802年Wollaston发现太阳光谱的暗线; • 1823年德国科学家Fraunhofer测定出了它们的波长 • Kirchhoff将原子发射和原子吸收联系在一起
开始时,管内为Ar气,不 导电,需要用高压电火花触 发,使气体电离后,在高频 交流电场的作用下,带电粒 子高速运动,碰撞,形成 “雪崩”式放电,产生等离 子体气流。在垂直于磁场方 向将产生感应电流(涡电流, 粉色),其电阻很小,电流 很大(数百安),产生高温。又 将气体加热、电离,在管口 形成稳定的等离子体焰炬。
在原子吸收法中可忽略。 4、原子吸收线的轮廓
综合上述因素,实际原子吸收线的宽度约为10-3 nm 数量级
第33页/共83页
三、原子吸收光谱的测量
1、积分吸收 从理论上可以得出,积分吸收与原子蒸气中吸
收辐射的原子数成正比。数学表达式为:
∫K d = e2N0ƒ/mc
若能测定积分吸收,则可求出原子浓度。但是,测定 谱线宽度仅为10-3nm的积分吸收,需要分辨率非常高 的色散仪器。
不能多元素同时分析

原子光谱与分子光谱ppt实用资料

原子光谱与分子光谱ppt实用资料

2021/7/23
电子能级跃迁的选择定则
一条谱线是原子的外层电子在两个能级之间的跃迁产 生的,可用两个光谱项符号表示这种跃迁或跃迁谱线:
例 钠原子的双重线 Na 5889.96 ; 32S1/ 2 — 32P3/ 2; Na 5895.93 ; 32S1/ 2 — 32P1/ 2;
2021/7/23
第七章 原子发射光谱
分析
Atomic emission spectrometry,AES
第二节 原子光谱与分子光谱
一、原子光谱 atom spectrum 二、分子光谱 molecular spectrum
atom spectrum and molecular spectrum
2021/7/23
一、 原子光谱
例:碳原子,基态的电子层结构(1s)2(2s) 2(2p) 2 , 两个外层2p电子: S =0 , ±1 ; 3个不同值; L与S之间存在相互作用;可裂分产生(2 S +1)个能级; 这就是原子光谱产生光谱多重线的原因,用 M 表示, 称为谱线的多重性;
2021/7/23
例:钠原子,一个外层电子, S =1/2;因此: M =2( S ) +1 = 2;双重线; 碱土金属:两个外层电子, 自旋方向相同时, S =1/2 + 1/2 =1, M = 3;三重线; 自旋方向相反时, S =1/2 - 1/2 =0, M = 1;单重线;
2021/7/23
内量子数 :
内量子数J取决于总角量子数L和总自旋量子数S的矢量和 :
J = (L + S), (L + S - 1),······, (L - S) 若 L ≥ S ; 其数值共(2 S +1)个; 若 L < S ; 其数值共(2 L +1)个; 例:L=2,S=1,则 J 有三个值,J = 3,2,1; L=0,S=1/2;则 J 仅有一个值 1/2; J 值称光谱支项;

原子物理学5

原子物理学5

同一电子组态在j-j耦合中和L-S耦合中形成的原子 态的数目相同,代表原子态的J值也是相同的。
例题:
若某原子的两个价电子处于2s2p组态,利用j-j耦合, 求可得到其原子态的个数。
同一电子组态在j-j耦合中和L-S耦合中形成的原 子态对应的能级间隔不同。
1P 1
3 1 ( , )1 2 2 3 1 ( , )2 2 2
5
5 4
4 3
4
3 2
4 3
4
3
4
3
2 2
19.77eV
2
主线系 第二辅线系 第一辅线系 柏格曼线系
E 1
He原子能级图
He原子能级结构
两套结构: 单层:S=0,重数为1; 两套能级间不发生跃迁 三层:S=1,重数为3;
两个亚稳态:
21S0 和23S1
电离能和第一激发电势很大 在三层结构中没有(1s)对应的能级(?) 三重态能级低于相应的单一态能级
倒序排列:
3P > 3P > 3P 0 1 2
能级的形成:
基态:两个电子都处于最低的1s态 激发态:所有能级都是由一个电子处于1s态,另一 个电子被激发到较高能态形成的。
试计算一下如果两个电子都处于激发态至少 需要多少能量?
单层结构 n
7.62eV
1S 1P 0 1 1D 2 1F 3 3S 1 3P 2
不同的电子组态具有不同的能量 H: 2s↔2p; 能级间隔小 2s ↔1s 能级间隔大 He: 1s1s ↔1s2s 能级间隔大 Mg: 3s3s ↔3s3p 能级间隔小 原子态 每一种电子组态都对应相应的原子态 H: 基态1s ↔ 2S1/2,激发态3p ↔ 32P1/2, 32P3/2 多电子原子的原子态是怎样的呢?

[理学]第八章原子发射光谱分析PPT课件

[理学]第八章原子发射光谱分析PPT课件

(1)、直流电弧:接触引燃,二次电子发射放电
L
E 220~380 V
V
5~30A
G
R
A
直流电作为激发能源,电压150 ~380V,电流5~ 30A;
两支石墨电极,试样放置在一支电极(下电极)的凹槽内;
阴极释放的电子不断撞击阳极,产生高温阳极斑(4000 K);
产生的电弧温度:4000~7000K
电弧点燃后,热电子流高速通过分析间隔冲击阳极,产生高热,
C充电电压达到G击穿 电压
G 放电;
回路 L-C-G 中高压高频振荡电流, G 放电中断;
下一回合充放电开始 火花不灭。
分析隙
火花特点: (1)放电稳定,分析重现性好; (2)放电间隙长,电极温度(蒸发温度)低,检出限低,自 吸现象小。多适于分析易熔金属、合金样品及高含量元素分 析; (3)激发温度高(瞬间可达10000K)适于难激发元素分析。 (4)灵敏度差,背景大,不安全,不宜作痕量分析。
E0
气态激发态原子、离子的 核外层电子,迅速回到低 能态时以光辐射的形式释 放能量。原子发射光谱
ΔE
(一). 原子核外电子的壳层结构
1.单价电子原子 主量子数( n ):描述核外电子是在那个电子壳层上运动。 n = 1、 2、 3、 4、 5、 6、7、••••••••
符号: K、L、M、N、O、P、Q、••••••••
谱线强度与下列因素有关: 1、激发温度:温度升高,谱线强度增大。但温度升高, 体系中被电离的原子数目也增多,中性原子数相应减少, 使原子线强度减弱。谱线各有其合适的温度,在此温度时, 谱线强度最大。 2、激发电位 :谱线强度与激发电位是负指数关系,激发 电位越大,谱线强度越小。 3、跃迁几率:谱线强度与跃迁几率成正比。 4、基态原子:谱线强度与基态原子数成正比,基态原子数 由元素浓度决定,因此谱线强度与元素浓度。 5、统计权重 :谱线强度与激发态和基态的统计权重之比成正比

第五章、原子发射光谱(共24张PPT)

第五章、原子发射光谱(共24张PPT)
交变感应磁场; 2)火花 氩气 气体电离 少量电荷 相互碰
撞 “雪崩”现象 大量载流子;
3)数百安极高感应电流(涡电流,Eddy current) 瞬
间加热 到10000K 等离子体 趋肤效应 内管通入Ar 形成环状结构样品通道 样品蒸发、原 子化、激发。
ICP光源特点
1)低检测限:蒸发和激发温度高;
测量电压(电容电压)为
3)基体效应小(matrix effect): 样品处于化学隋性环境(Ar)的高温分析区
已知光信号产生的电流 i 与谱线强度I成正比,即
内管—载气,样品引入(使用
待测物发出的光谱经分光得一系列谱线,这些不同波长的光在感光板上曝光,经显影、定影后于相板上得到平行排列的谱线(黑线),这些谱线“变
火花特点: 1)放电稳定,分析重现性好; 2)放电间隙长,电极温度(蒸发温度)低,检出现低,多适于分析易熔金
属、合金样品及高含量元素分析;
3)激发温度高(瞬间可达10000K)适于难激发元素分析。
电感耦合等离子体
组成:ICP 高频发生器+ 炬管
+ 样品引入系统
炬管包括:
外管—冷却气,沿切线引入
中管—辅助气,点燃 ICP (点燃
LTE 定性、难熔样品及元素定量、 导体、矿物纯物质
LTE 矿物、低含量金属定量分析
~10000
好 LTE 难激发元素、高含量金属定量
分析
ICP ~10000
6000~8000 很好 非LTE 溶液、难激发元素、大多数元

火焰 2000~3000 激光 ~10000
2000~3000 很好 LTE 溶液、碱金属、碱土金属 ~10000 很好 LTE 固体、液体
E0tIijdtK 1 0ti

原子光谱与分子光谱

原子光谱与分子光谱
12:21:30
二、 分子光谱
原子光谱为线状光谱, 分子光谱为带状光谱; 为什么分子光谱为带状光谱?
原子光谱图
12:21:30
分子光谱图
1.分子中的能量
E=Ee+ Ev + Er + En + Et + Ei 分子中原子的核能: En 分子的平移能:Et 电子运动能: Ee 原子间相对振动能: Ev 分子转动能: Er 基团间的内旋能: Ei
12:21:30
原子的能级通常用光谱项符号表示:nMLJ
n:主量子数;M:谱线多重性符号;
L:总角量子数; J :内量子数 钠原子的光谱项符号 32S1/2;
表示钠原子的电子处于n=3,M =2(S = 1/2),L =0,
J = 1/2 的能级状态(基态能级);
12:21:30
电子能级跃迁的选择定则
L=0,1,2,3,······, 例:碳原子,基态的电子层结构(1s)2(2s)2(2p)2, 两个外层2p电子: l 1= l2 =1; L=2,1,0;
12:21:30
总自旋量子数 :
S =∑ s ;外层价电子自旋量子数的矢量和, (2 S +1)个 S=N/2,N/2-1,……或1/2,0 (N是价电子) S =0,±1,± 2,······±S或 S = 0 ,±1/2,3/2 ,······±S
在一般化学反应中, En不变; Et 、 Ei较小; E=Ee+ Ev + Er
分子产生跃迁所吸收能量的辐射频率:
ν=ΔEe / h + ΔEv / h + ΔEr / h
12:21:30
2.双原子分子能级图
分子中价电子位于自旋成 对 的 单 重 基 态 S0 分 子 轨 道 上 ,当电子被激发到高能级上 时,若激发态与基态中的电 子自旋方向相反,称为单重 激发态,以S1 、 S2 、······表 示;反之,称为三重激发态 ,以T1 、 T2 、······表示;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档