梁的弯曲变形应用原理
材料力学梁的弯曲变形第3节 用叠加法求梁的变形

y M (x) EI
• 叠加原理:当梁为小变形时,梁的挠度和转角均是 载荷的线性函数,可以使用叠加法计算梁的转角和 挠度,即梁在几个载荷同时作用下产生的挠度和转 角等于各个载荷单独作用下梁的挠度和转角的叠加 和,这就是计算梁弯曲变形的叠加原理。
• 叠加原理的步骤: ①分解载荷;②分别计算各载荷 单独作用时梁的变形;③叠加得最后结果。
a
x
5ql 4 384 EI
例6-5 悬臂梁AB上作用有均布载荷q,自由端作 用有集中力F = ql,梁的跨度为l,抗弯刚度为EI,如 图所示。试求截面B的挠度和转角。
解:(1)分解载荷
梁上载荷可分解成均布载 荷 q 与集中力 F 的叠加。
(2)查表得这两钟情况下
截面 B 的挠度和转角
yBq
ql3 2EI
2ql
3
(顺时针)
3EI
例6-6 如图所示,外伸梁在外伸段作用有均布 载荷q,梁的抗弯刚度为EI。求C截面的挠度。
解: 1)简化、分解载荷
2)分别计算 B 截面挠度:
悬臂梁因 B 截面产生转角引
起的挠度 yC1和悬臂梁在均布 载荷作用下产生的挠度 yC2
0.5qa2
qa
+
B
yA3
ql4 8EI
7ql 4 384EI
5Fl3 48EI
41ql4 5Fl3 384EI 48EI
代入数值得:
yA 3.89 103 m 3.89mm()
ql 4 8EI
+
Bq
ql3 6EI
弯曲变形——精选推荐

第六章弯曲变形判断弯曲变形1、“平面弯曲梁的挠曲线必定是一条与外力作用面重合或平行的平面曲线”2、“由于挠曲线的曲率与弯矩成正比,因此横截面的挠度与转角也与横截面的弯矩成正比”3、“只要满足线弹性条件,就可以应用挠曲线的近似微分方程”4、“两梁的抗弯刚度相同、弯矩方程相同,则两梁的挠曲线形状相同”5、“梁的挠曲线方程随弯矩方程的分段而分段,只要梁不具有中间铰,梁的挠曲线仍然是一条光滑、连续的曲线。
”6、“最大挠度处的截面转角一定为0”7、“最大弯矩处的挠度也一定是最大”8、“梁的最大挠度不一定是发生在梁的最大弯矩处。
”9、“只要材料服从虎克定律,则构件弯曲时其弯矩、转角、挠度都可以用叠加方法来求”10、“两根几何尺寸、支撑条件完全相同的静定梁,只要所受的载荷相同,则两梁所对应的截面的挠度和转角相同,而与梁的材料是否相同无关”11、“一铸铁简支梁在均布载荷的作用下,当其横截面相同且分别按图示两种情况放置时,梁同一截面的应力和变形均相同”选择弯曲变形1、圆截面的悬臂梁在自由端受集中力的作用,当梁的直径减少一半而其他条件不变时,最大正应力是原来的倍;最大挠度是原来的倍。
若梁的长度增大一倍,其他条件不变,最大弯曲正应力是原来的倍,最大挠度是原来的倍。
A:2; B:16 C:8 D:4;2、y’’=M(x)/EI在条件下成立。
A:小变形; B:材料服从虎克定律;C:挠曲线在xoy面内; D:同时满足A、B、C;3、等直梁在弯曲变形时,挠曲线最大曲率发生在处。
A:挠度最大; B:转角最大 C:剪力最大; D:弯矩最大;4、在简支梁中,对于减少弯曲变形效果最明显。
A:减小集中力P; B:减小梁的跨度;C:采用优质钢; D:提高截面的惯性矩5、板条弯成1/4圆,设梁始终处于线弹性范围内:①σ=My/I Z,②y’’=M(x)/EI Z哪一个会得到正确的计算结果?A:①正确、②正确;B:①正确、②错误; C:①错误、②正确; D:①错误、②错误;6、应用叠加原理求横截面的挠度、转角时,需要满足的条件是。
混凝土梁的受弯原理及计算

混凝土梁的受弯原理及计算一、引言混凝土梁是建筑结构中常用的承载构件,其作用是承受荷载并将其传递到支撑点。
了解混凝土梁的受弯原理及计算方法对于工程设计和施工至关重要。
本文将详细介绍混凝土梁的受弯原理及计算方法。
二、混凝土梁的受力状态混凝土梁在受荷载作用下,会出现弯曲变形,其受力状态可分为以下三种:1. 弯矩状态:混凝土梁在荷载作用下,产生弯矩,使其纵向受拉区域发生拉应力,纵向受压区域发生压应力。
2. 剪力状态:混凝土梁在荷载作用下,产生剪力,使其截面内部出现切应力。
3. 变形状态:混凝土梁在荷载作用下,产生弯曲变形和剪切变形,使其截面形态发生变化。
三、混凝土梁的受弯原理混凝土梁的受弯原理是基于梁的弯曲变形产生的。
在弯曲变形下,混凝土梁的纵向受拉区域发生拉应力,纵向受压区域发生压应力。
这种应力分布状态下,混凝土的强度不同,需要根据混凝土的受压强度和受拉强度进行计算。
混凝土梁在受弯作用下,其受力状态可分为以下两种情况:1. 单纯弯曲状态:在这种情况下,混凝土梁只有弯曲变形,没有产生剪力。
2. 弯曲和剪力状态:在这种情况下,混凝土梁除了弯曲变形外,还产生剪力。
四、混凝土梁的截面特性混凝土梁的截面特性是指混凝土梁在受弯作用下,截面内部的受力状态和应力分布状态。
混凝土梁的截面特性会影响混凝土梁的受力性能和承载能力。
混凝土梁的截面特性主要包括以下几个方面:1. 截面形状:混凝土梁的截面形状可以是矩形、T形、L形等,不同的截面形状会影响混凝土梁的受力性能和承载能力。
2. 纵向钢筋:混凝土梁中的纵向钢筋可以提高混凝土梁的承载能力和抗裂性能。
3. 混凝土强度:混凝土的强度会影响混凝土梁的承载能力。
4. 荷载类型:不同类型的荷载会对混凝土梁的受力性能产生不同的影响。
五、混凝土梁的计算方法混凝土梁的计算方法主要有以下几个方面:1. 弯矩计算:根据荷载和支座条件等确定混凝土梁受弯矩的大小和分布情况。
2. 应力计算:根据弯曲变形下混凝土梁截面内应力的分布情况,计算混凝土梁受拉区域和受压区域的应力。
工程力学第10章 弯曲变形与简单超静定梁

简支梁。 根据原超静定梁A端横截面转角θA=0这一变形条件, 即可进而建立补 充方程以求解MeA。 建议读者按此自行算出全部结果。 以上解题的方法步骤也适用于解二次超静定梁。 此时可建立两个变形几何方程, 因而补充方程也就有两个。 这样, 解多余约束力时就需解二元一次联立方程组。 对于三次以上的超静定梁若仍用上述方法求解, 则将不够简便, 此时就宜采用其 他方法。
但弹性模量E值则是比较接近的。 2.调整跨度 梁的转角和挠度与梁的跨度的n次方成正比, 跨度减小时, 转角和挠度就会有更 大程度的减小。 例如均布载荷作用下的简支梁, 其最大挠度与跨度的四次方成 正比, 当其跨度减小为原跨度的1/2时, 则最大挠度将减小为原挠度的1/16。 故减小跨度是提高梁的刚度的一种有效措施。 在有些情况下, 可以增设梁的中 间支座, 以减小梁的跨度, 从而可显著地减小梁的挠度。 但这样就使梁成为超 静定梁。 图10-10a、 b分别画出了均布载荷作用下的简支梁与三支点的超静 定梁的挠曲线大致形状, 可以看出后者的挠度远较前者为小。 在有可能时, 还 可将简支梁改为两端外伸的梁。 这样, 既减小了跨度, 而且外伸端的自重与两 支座间向下的载荷将分别使轴线上每一点产生相反方向的挠度(图10-11a、 b), 从而相互抵消一部分。 这也就提高了梁的刚度。 例如桥式起重机的桁架钢梁 就常采用这种结构形式(图10-11c), 以达到上述效果。
下述关系
因为挠曲线为一平坦的曲线, θ值很小, 故有 tanθ≈θ(c) 由式(b)、式(c)两式可见, 梁横截面的转角应为
式(d)表明转角θ可以足够精确地从挠曲线方程(a)对x求一次导数得到。 它表 示梁横截面位置的x与该截面的转角θ之间的关系, 通常称为转角方程。 在图10-2所示的坐标系统中, 挠度w以向上为正, 向下为负; 转角θ则以逆时针 转向为正, 顺时针转向为负。
第十三讲:第九章 梁的弯曲-变形刚度计算概要

例11
求图示梁的挠曲线方程和转角方程。EI为常量。
Me A
x
e
解:
1.列微分方程并积分
B
M e Me x e M e FAy= M M EIy xx M l l l Me 2 EIy x Me x C 2l Me 3 Me 2 EIy x x Cx D 6l 2
33 5 Fl Fl Fl 2 l 6EI EI 2 EI 3
五、 叠加法求梁的变形
基本原理 由几个外力同时作用时所引起的梁的变形 转角和挠度 等于
由各个外力单独作用时所引起的梁的变形的代数和
q F M
e
y yq y F y M e
例13 求B和yB 解: 1. Me单独作用时 2Mel BM e EI 2 2 2 M l M 2 l e y BM e e EI 2 EI 2. F单独作用时 2 Fl BF CF 2 EI yBF yCF CF l
一、梁的变形度量——挠度与转角
x
1 1'
F
A
C
B
x
y
C'
y
1'
1
y f ( x)
——挠曲线方程
一、梁的变形度量——挠度与转角
x
1 1'
F
A
C
B
x
y
1'
y
C'
1
在小变形下: 即:
dy y tan dx
——转角方程
任一横截面的转角 = 挠曲线在该截面形心处切线的斜率
2.数学方面
A
梁的弯曲概念

梁的弯曲概念梁的弯曲概念是指材料在作用力下发生弯曲变形的现象。
梁是一种常见的结构元素,广泛应用于建筑、机械、航空航天等领域。
在实际工程中,梁往往承受各种外部载荷,如重力、风载荷、地震载荷等。
因此,了解梁的弯曲行为对于结构设计和分析非常重要。
梁的弯曲行为可以通过经典的梁理论来描述。
经典梁理论假设梁是细长且直线的,在其轴向上受到均匀分布的轴向力和转矩,而其弯曲刚度足够大,可以忽略在轴向变形产生的内力,通过简化的数学模型来分析梁的弯曲行为。
在这种理论下,梁的弯曲变形可以用弯曲挠度和曲率来描述。
弯曲挠度是指梁在弯曲过程中沿截面上某一点的位移。
根据梁的弯曲方向和弯曲曲率的不同,可以分为正弯曲和负弯曲。
在梁的中性轴上,弯曲曲率为零,挠度最大。
根据梁的不同截面形状和外载荷的不同,梁的弯曲挠度可以用不同的数学表达式来计算。
曲率是指梁在弯曲过程中的曲率半径的倒数。
曲率反映了梁曲线的弯曲程度,曲率越大,梁的弯曲程度越大。
根据经典梁理论,梁的曲率与横截面的二阶惯性矩之比成正比。
对于不同形状和材料的截面,其曲率特性也有所不同。
在梁的弯曲过程中,材料内部产生了一系列力和应变。
根据材料力学理论,梁的弯曲行为可以用应变-应力关系来描述。
在弯曲曲率较小的情况下,弯曲应变可以通过材料的线弹性理论来描述。
根据胡克定律,弯曲应变与弯曲曲率成正比,弯曲应力与弯曲挠度成正比。
这种线性关系被称为小形变理论。
然而,在某些情况下,梁的弯曲程度较大,线弹性假设不再成立。
这时,需要考虑材料的非线性行为,如屈服、塑性变形和蠕变等。
这就需要使用非线性理论来描述梁的弯曲行为。
梁的弯曲行为对于结构设计和分析非常重要。
首先,了解梁的弯曲特性有助于确定合适的梁截面形状和材料。
其次,可以通过对梁的弯曲行为进行分析,评估梁的结构安全性和承载能力。
最后,可以根据梁的弯曲行为来制定适合的施工、保养和维护方案,以延长梁的使用寿命。
综上所述,梁的弯曲概念和行为在结构工程中占据重要地位。
材料力学教程-7.弯曲变形

根据需要,对数据进行计算、 绘图等处理,以便更好地理解 和分析实验结果。
结果分析
结合实验数据和理论分析,评 估材料的弯曲性能,并探讨影 响材料弯曲性能的因素。
结论总结
总结实验结果,得出结论,并 提出改进和优化材料弯曲性能
的建议。
04
弯曲变形的工程应用实例
桥梁的弯曲变形分析
总结词
桥梁的弯曲变形分析是确保桥梁安全的重要环节,通过分析桥梁在不同载荷下的弯曲变形程度,可以评估桥梁的 承载能力和安全性。
转角
梁在弯曲变形后,其横截 面绕其中性轴旋转的角度 称为转角。转角是衡量梁 横截面旋转程度的量。
弯曲变形的物理关系
弯矩
由于外力作用在梁上,使梁产生弯曲变形的力矩 称为弯矩。弯矩是引起梁弯曲变形的力。
剪力
在梁弯曲变形过程中,垂直于轴线的横向剪切力 称为剪力。剪力使梁产生剪切变形。
扭矩
当外力作用在梁的某一侧时,会使梁产生扭转变 形,这种使梁产生扭转变形的力矩称为扭矩。
详细描述
高层建筑由于其高度和规模,对风载和地震等外部载荷非常敏感。因此,在高层建筑设 计阶段,需要进行详细的弯曲变形分析。这包括对建筑物的整体结构和各个楼层在不同 载荷下的弯曲变形进行模拟和分析,以确保建筑物在各种外部载荷下的安全性和稳定性。
机械零件的弯曲变形分析
要点一
总结词
机械零件的弯曲变形分析是确保机械系统正常运行的关键 环节。通过对机械零件在不同工作载荷下的弯曲变形进行 分析,可以优化零件的设计和加工工艺,提高其工作性能 和寿命。
通过实例分析和习题练习,学生可以加深对弯曲 变形的理解,提高解决实际问题的能力。
弯曲变形的未来研究方向
弯曲变形的非线性行为
梁的弹塑性弯曲课件

将环保、可持续发展理 念融入弹塑性弯曲优化 设计,推动绿色工程的 发展。
THANK YOU
感谢观看
弹性模量01Fra bibliotek材料的弹性模量越大,梁的抗弯刚度越大,弹塑性弯曲程度越
小。
屈服强度
02
材料的屈服强度越高,梁的塑性变形能力越小,弹塑性弯曲程
度越小。
应变硬化指数
03
材料的应变硬化指数越大,梁在弹塑性弯曲过程中的承载能力
越强。
截面形状对弹塑性弯曲影响
截面面积
截面面积越大,梁的抗弯截面系数越大,弹塑性弯曲程度越小。
变形与应力分布
分析模拟结果,得到梁的变形和应力分布情况, 评估梁的承载能力和安全性。
塑性铰形成与发展
观察塑性铰的形成和发展过程,研究塑性铰对梁 弹塑性弯曲性能的影响。
参数敏感性分析
针对不同参数进行敏感性分析,探讨各参数对梁 弹塑性弯曲性能的影响规律。
05
梁的弹塑性弯曲影响因素 研究
材料性能对弹塑性弯曲影响
02
梁的弹塑性弯曲理论分析
弹性力学基础
01
02
03
应力与应变
掌握应力、应变的概念及 其在张量表示下的物理意 义,理解弹性体受力与变 形之间的关系。
弹性本构关系
熟悉广义胡克定律及其在 不同材料中的应用,了解 弹性常数之间的换算关系 。
弹性力学基本方程
掌握平衡方程、几何方程 和物理方程的推导及其意 义,理解边界条件的提法 和应用。
截面惯性矩
截面惯性矩越大,梁的抗弯刚度越大,弹塑性弯曲程度越小。
截面形状系数
截面形状系数越大,梁在弹塑性弯曲过程中的应力分布越均匀, 承载能力越强。
加载条件对弹塑性弯曲影响
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
梁的弯曲变形应用原理
简介
梁是一种常见的结构元素,用于承受和传递载荷。
在实际应用中,梁常常会发
生弯曲变形,这种变形有着重要的应用原理和工程意义。
本文将介绍梁的弯曲变形的应用原理,以及它在工程领域中的具体应用。
梁的弯曲变形原理
当梁受到外部载荷作用时,其会发生弯曲变形。
梁的弯曲变形主要是由内力矩
引起的,内力矩是梁截面上的剪力和弯矩引起的。
弯曲变形原理可以用以下几个要点来描述:
1.梁撑杆法:梁在弯曲时,可以看做由无数撑杆组成的系统。
每个撑杆
受到不同大小的拉伸或压缩力,整个梁发生的弯曲变形是各撑杆弹性变形的综合效果。
2.中性轴和截面旋转:梁弯曲时,存在一个中性轴,该轴是在截面内法
线应力为零的位置。
梁在弯曲时,截面内部会发生旋转,上部受拉,下部受压,截面的变形呈现出弯曲的形态。
3.弯矩与曲率关系:梁的弯曲变形与弯矩和曲率有关。
弯矩是横截面上
的合力矩,而曲率则是截面内部形成的曲线的曲率半径的倒数。
根据弯矩和曲率之间的关系,可以计算出梁的变形情况。
梁的弯曲变形应用
梁的弯曲变形在工程领域中有着广泛的应用。
下面列举了梁的弯曲变形应用在
不同工程中的具体案例:
1. 建筑结构设计
在建筑结构设计中,梁的弯曲变形是必须考虑的因素之一。
通过合理的梁的尺
寸和形状设计,可以满足建筑物的结构强度和刚度要求,保证建筑物的安全性和稳定性。
2. 桥梁工程
在桥梁工程中,梁的弯曲变形对于桥梁的承载能力和结构安全性影响重大。
通
过分析梁的弯曲变形情况,可以确定桥梁的设计参数,保证桥梁承受车辆和行人的荷载,确保桥梁的正常使用和运行。
3. 机械设计
梁的弯曲变形在机械设计中也有着广泛的应用。
例如,在起重机设计中,梁的
弯曲变形会导致起重机的运动效果失真,因此需要精确计算梁的弯曲变形,以确保起重机的稳定性和可靠性。
4. 航天器设计
在航天器设计中,梁的弯曲变形是非常重要的考虑因素。
航天器需要承受巨大
的重力和惯性力,梁的弯曲变形对于航天器的结构强度和稳定性至关重要。
通过精确计算梁的弯曲变形,可以保证航天器在运行中不会发生结构失效。
5. 梁的弯曲变形控制
除了应用中的设计考虑,梁的弯曲变形控制也是一项重要的技术。
通过选择合
适的梁材料、截面形状和尺寸,可以在一定程度上控制梁的弯曲变形,以适应不同的工程需求。
总结
梁的弯曲变形应用原理对于工程设计和实践具有重要意义。
了解梁的弯曲变形
原理,可以帮助工程师合理设计和安排结构元素,保证工程的安全和可靠性。
梁的弯曲变形应用广泛,涉及建筑、桥梁、机械等多个领域,在各个领域中都有着重要作用。
掌握梁的弯曲变形应用原理,对于工程师和设计师来说是必不可少的知识点。