中考复习专题_圆切线证明

合集下载

圆的相关证明与计算(复习讲义)(原卷版)-中考数学重难点题型专题汇总

圆的相关证明与计算(复习讲义)(原卷版)-中考数学重难点题型专题汇总

题型五--圆的相关证明与计算(复习讲义)【考点总结|典例分析】考点01圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.考点02垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.考点03圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.考点04圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.考点05与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r ⇔点在⊙O 外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r考点06切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.考点07三角形与圆1.三角形外接圆外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.1.如图,点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,则CED ∠=()A.48︒B.24︒C.22︒D.21︒2.如图,A,B,C 是半径为1的⊙O 上的三个点,若,∠CAB=30°,则∠ABC 的度数为()A.95°B.100°C.105°D.110°3.如图,AB 是⊙O 的直径,AC,BC 是⊙O 的弦,若20A ∠=︒,则B Ð的度数为()A.70°B.90°C.40°D.60°4.如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是()A.3B.C.4D.25.如图,已知在⊙O 中, AB BCCD ==,OC 与AD 相交于点E.求证:(1)AD∥BC(2)四边形BCDE 为菱形.6.如图,A,B 是O 上两点,且AB OA =,连接OB 并延长到点C,使BC OB =,连接AC.(1)求证:AC 是O 的切线.(2)点D,E 分别是AC,OA 的中点,DE 所在直线交O 于点F,G,4OA =,求GF 的长.7.如图,Rt ABC 中,90ABC ∠=︒,以点C 为圆心,CB 为半径作C ,D 为C 上一点,连接AD 、CD ,AB AD =,AC 平分BAD ∠.(1)求证:AD 是C 的切线;(2)延长AD 、BC 相交于点E,若2EDC ABC S S = ,求tan BAC ∠的值.8.如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.9.如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.10.如图,已知点C 是以AB 为直径的圆上一点,D 是AB 延长线上一点,过点D 作BD 的垂线交AC 的延长线于点E ,连结CD ,且CD ED =.(1)求证:CD 是O 的切线;(2)若tan 2DCE ∠=,1BD =,求O 的半径.11.如图,AB 是⊙O 的直径,C 为⊙O 上一点,连接AC,CE⊥AB 于点E,D 是直径AB 延长线上一点,且∠BCE=∠BCD.(1)求证:CD 是⊙O 的切线;(2)若AD=8,BE CE=12,求CD的长.12.如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.13.如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO并延长,与⊙O 交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.=CD =DB ,连接AD,过点D作14.如图,AB为⊙O的直径,C、D为⊙O上的两个点,ACDE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.15.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.16.如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC 平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=3,求⊙O的半径.17.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若⊙O的半径为5,BC=16,求DE的长.。

2020年中考数学一轮专项复习32 圆中与切线有关的证明、计算(含解析)

2020年中考数学一轮专项复习32 圆中与切线有关的证明、计算(含解析)

2020年中考数学一轮专项复习——圆中与切线有关的证明、计算基础过关1. (2018湘西州)已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A. 相交B. 相切C. 相离D. 无法确定2.(2019广州)平面内,⊙O的半径为1,点P到O的距离为2,过点P可作⊙O的切线的条数为()A. 0条B. 1条C. 2条D. 无数条3.(2019杭州)如图,P为⊙O外一点,P A、PB分别切⊙O于A、B两点,若P A=3,则PB=()A. 2B. 3C. 4D. 5第3题图4.(2019重庆A卷)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连接OD,若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°第4题图5.(2019舟山)如图,已知⊙O上三点A、B、C,半径OC=1,∠ABC=30°,切线P A交OC延长线于点P,则P A的长为()第5题图A. 2B. 3C. 2D. 1 26.(2019娄底)如图,边长为23的等边△ABC的内切圆的半径为()A. 1B. 3C. 2D. 2 3第6题图7.(2019泰安)如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO的延长线于点P,则∠P的度数为()A. 32°B. 31°C. 29°D. 61°第7题图8.(2019贺州)如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=3OD,AB=12,CD的长是()第8题图A. 2 3B. 2C. 3 3D. 4 39.(2019宿迁)直角三角形的两条直角边分别为5和12,则它的内切圆半径为________.10.如图,P A是⊙O的切线,A为切点,连接PO交⊙O于点B,P A=4,PB=2,则sin∠APO=________.第10题图11.(2019包头)如图,BD是⊙O的直径,A是⊙O外一点,点C在⊙O上,AC与⊙O相切于点C,∠CAB=90°,若BD=6,AB=4,∠ABC=∠CBD,则弦BC的长为________.第11题图12.(2020原创)如图,AB是⊙O的直径,CA与⊙O相切于点A,且CA=BA.连接OC,过点A作AD⊥OC 于点E,交⊙O于点D,连接DB.(1)求证:△ACE≌△BAD;(2)连接CB交⊙O于点M,交AD于点N.若AD=4,求MN的长.第12题图13.如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于点D,交AC 于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线;(2)若∠A=22.5°,求证:AC=DC.第13题图能力提升1.(2019绵阳模拟)如图,圆形薄铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10 cm处,铁片与直尺的唯一公共点A落在直尺的14 cm处,铁片与三角尺的唯一公共点为B.下列说法错误的是()A. 圆形铁片的半径是4 cmB. 四边形AOBC为正方形C. 弧AB的长度为4π cmD. 扇形OAB的面积为4π cm2第1题图2.(2019安顺)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:点H为CE的中点;(3)若BC=10,cos C=55,求AE的长.第2题图满分冲关1.(2019玉林)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3.点O是AB的三等分点,半圆O与AC相切,M、N分别是BC与半圆弧上的动点,则MN的最小值与最大值之和是()A. 5B. 6C. 7D. 8第1题图2.如图,直线y =-34x -3交x 轴于点A ,交y 轴于点B ,点P 是x 轴上一动点,以点P 为圆心,以1个单位长度为半径作⊙P ,当⊙P 与直线AB 相切时,点P 的坐标是________.第2题图参考答案基础过关1.B 【解析】根据圆心到直线的距离等于半径,则圆与直线相切,可知直线l 与⊙O 相切. 2.C 【解析】∵⊙O 的半径为1,点P 到O 的距离为2,∴点P 在圆外.过圆外一点可以作两条直线和圆相切.3.B 【解析】∵P 为⊙O 外一点,P A ,PB 分别切⊙O 于A ,B 两点,∴根据切线长定理知,PB =P A =3.4.C 【解析】∵AB 是⊙O 的直径,AC 与⊙O 相切于点A ,∴∠BAC =90°,∵∠C =50°,∴∠ABD =40°,∴∠AOD =2∠ABD =80°.5.B 【解析】 如解图,连接OA ,则∠AOC =2∠ABC =60°,∵AP 是⊙O 的切线,∴OA ⊥AP ,∴AP =OA ·tan ∠AOC =1×tan60°= 3.第5题解图6.A 【解析】如解图,连接OA ,过点O 作OD ⊥AB 于点D ,∵⊙O 是等边△ABC 的内切圆,∴D 为AB 的中点.∵AB =23,∴AD =12AB = 3.∵在等边△ABC 中,∠CAB =60°,∴∠OAD =30°.∴tan ∠OAD=OD AD .∴tan30°=OD 3,解得OD =1.第6题解图7.A 【解析】如解图,设BP 与⊙O 交于点M ,连接OC 、CM .∵PC 是⊙O 的切线,∴∠OCP =90°.∵四边形ABMC 是⊙O 的内接四边形,∠A =119°,∴∠BMC =180°-119°=61°.∵OC =OM ,∴∠OCM =∠OMC =61°.∴在△COM 中,∠COM =180°-∠OCM =∠OMC =58°.∴在△COP 中,∠P =180°-∠COM -∠OCP =180°-58°-90°=32°.第7题解图8.A 【解析】∵AD 是⊙O 的切线,∴OD ⊥AD ,在Rt △AOD 中,AD =3OD ,∴tan A =OD AD =OD3OD =33,∴∠A =30°,∴∠AOD =60°,∵OD =OB ,∴∠ODB =∠ABD =12∠AOD =30°,∵BD 平分∠ABC ,∴∠CBD =∠ABD =30°,∴∠ABC =60°,∴∠C =90°. 在Rt △ABC 中,BC =AB ·sin A =12×12=6. 在Rt △CBD 中,CD =BC ·tan30°=6×33=2 3. 9.2 【解析】∵两条直角边的长分别为5和12,由勾股定理可知,斜边长=52+122=13,∴它的内切圆的半径=5+12-132=2.10.35 【解析】∵P A 为⊙O 的切线,A 为切点,∴∠OAP =90°,∵在Rt △OAP 中,P A =4,PB =2,设半径为r ,∴OA =OB =r ,OP =r +2.在Rt △OAP 中,由勾股定理得(r +2)2=r 2+42,解得r =3,∴OP =3+2=5,OA =3,∴sin ∠APO =OA OP =35.11.26 【解析】如解图,连接CD ,∵BD 是⊙O 的直径,∴∠DCB =90°,∵∠ABC =∠CBD ,∠CAB =∠DCB =90°,∴△CAB ∽△DCB .∴BC AB =BD CB,即BC =BD ·AB =2 6.第11题解图12.(1)证明:∵AB 是⊙O 的直径, ∴∠ADB =90°, ∵AD ⊥OC , ∴∠AEC =90°, ∴∠ADB =∠AEC , ∵CA 是⊙O 的切线, ∴∠CAO =90°,∴∠CAE +∠BAD =∠CAE +∠ACE =90°, ∴∠ACE =∠BAD , 在△ACE 和△BAD 中, ⎩⎪⎨⎪⎧∠AEC =∠BDA ∠ACE =∠BAD CA =AB, ∴△ACE ≌△BAD (AAS); (2)解:如解图,连接AM ,第12题解图∵AD ⊥OC ,AD =4, ∴AE =DE =12AD =2,∵△ACE ≌△BAD ,∴AE =BD =2,CE =AD =4,在Rt △ABD 中,AB =AD 2+BD 2=25, 在Rt △ABC 中,BC =AB 2+AC 2=210. ∵∠CEN =∠BDN =90°,∠CNE =∠BND , ∴△CEN ∽△BDN , ∴CN BN =CEBD=2. ∴BN =13BC =2103,∵AB 是⊙O 的直径,∴∠AMB =90°,即AM ⊥CB , ∵CA =BA ,∠CAB =90°, ∴BM =12BC =10,∴MN =BM -BN =103. 13.证明:(1)如解图,连接OC , ∵AB 是⊙O 的直径, ∴∠ACB =90°. ∴∠ECD =90°. ∵点F 为DE 的中点, ∴EF =CF . ∴∠FCE =∠FEC . ∵∠AEO =∠FEC , ∴∠FCE =∠AEO . ∵OA =OC , ∴∠OCA =∠A . ∵OD ⊥AB , ∴∠A +∠AEO =90°. ∴∠OCA +∠FCE =90°, 即∠FCO =90°. ∴OC ⊥CF .∵OC 是⊙O 的半径, ∴CF 是⊙O 的切线;第13题解图(2)∵∠A =22.5°,∴∠BOC =2∠A =45°.∵OD ⊥AB ,∴∠BOD =90°.∴∠DOC =45°.∵∠FCO =90°,∴∠CFO =45°.∴∠CFO =∠DOC .∴CF =CO .∵CF =EF =DF ,∴DE =2CF .∴AB =2OC =DE .∵∠A +∠B =90°,∠D +∠B =90°,∴∠A =∠D ,在△ABC 和△DEC 中,⎩⎪⎨⎪⎧∠A =∠D∠ACB =∠DCE =90°AB =DE,∴△ABC ≌△DEC (AAS).∴AC =DC .能力提升1.C 【解析】∵CA 、CB 分别与⊙O 相切,∴∠OBC =∠OAC =90°,∵∠ACB =90°,∴四边形AOBC 是矩形,∵OA =OB ,∴四边形AOBC 是正方形,∵AC =4 cm ,∴OB =4 cm ,即圆形铁片的半径是4 cm ,∴弧AB 的长为90π×4180=2π cm ,扇形OAB 的面积为90π×42360=4π cm 2,综上所述,说法错误的是C . 2.(1)解:DH 与⊙O 相切.理由如下:如解图,连接OD ,∵OB =OD ,∴∠B =∠ODB ,∵AB =AC ,∴∠B =∠C ,∴∠ODB =∠C ,∴OD ∥AC ,∵DH ⊥AC ,∴OD ⊥DH ,∵OD 是⊙O 的半径,∴DH 与⊙O 相切;第2题解图 (2)证明:如解图,连接DE ,∵四边形ABDE 是圆内接四边形,∴∠B +∠AED =180°,∵∠DEC +∠AED =180°,∴∠DEC =∠B ,∵∠B =∠C ,∴∠DEC =∠C ,∴DE =DC ,∵DH ⊥EC ,∴点H 为CE 的中点;(3)解:如解图,连接AD ,∵AB 是⊙O 的直径,∴∠ADB =90°,∴AD ⊥BC ,∵AB =AC ,∴DC =12BC =12×10=5,∵在Rt △ADC 中,cos C =DC AC =55,∴AC =55,∵在Rt △DHC 中,cos C =HC CD =55,∴HC =5,∵点H 为CE 的中点,∴CE =2CH =25,∴AE =AC -EC =3 5.满分冲关1.B 【解析】如解图,在Rt △ABC 中,AC =4,BC =3,∠C =90°,∴AB =5,∵点O 是AB 的三等分点,∴AO =53,设半圆O 与AC 相切于点D ,交AB 于点E 、F ,则OD ⊥AD ,∴△ADO ∽△ACB ,∴DO CB =AO AB ,即DO 3=13,∴DO =EO =1.当N 在点E 处,M 在点B 处时MN 最大,最大值为BE =BO +OE =103+1;过点O 作OM ⊥BC 于M ,交半圆O 于点N ,则此时MN 最小,∵△BOM ∽△BAC ,∴OM AC =OB AB =23,∴OM =83,∴MN 的最小值为OM -ON =83-1,∴最大值与最小值的和为103+1+83-1=6.第1题解图2.(-73,0)或(-173,0) 【解析】如解图①,当点P 在直线AB 上方且⊙P 与直线AB 相切时,设切点为C ,连接PC ,则PC ⊥AB ,∵直线y =-34x -3交x 轴于点A ,交y 轴于点B ,∴A (-4,0),B (0,-3).∴AB =5.在△APC 与△ABO 中,∠AOB =90°,∠ACP =90°,∠P AC =∠OAB ,∴△ABO ∽△APC .∴CP OB=AP AB .∴13=AP 5.∴AP =53.∴OP =AO -AP =4-53=73.∴P 点的坐标为(-73,0);如解图②,当点P 在AB 下方且⊙P 与直线AB 相切时,设切点为C ,连接PC ,则PC ⊥AB ,在△ABO 与△APC 中,∵∠AOB =90°,∠ACP =90°,∠P AC =∠OAB ,∴△APC ∽△ABO .∴CP OB =AP AB .∴13=AP 5.∴AP =53.∴OP =AO +AP =4+53=173.∴P 点的坐标为(-173,0)综上的述点P 的坐标是(-73,0)或(-173,0).第2题解图。

中考专题切线长定理及弦切角定理

中考专题切线长定理及弦切角定理

中考复习专题一一切线长定理与弦切角定理[知识要点二 1.切线长定理:过圆外一点P 做该圆的两条切线,切点为A 、Bo AB 交P0于点C,则有如下 结论:(1) PA 二PB(2) P0丄AB,且P0平分AB(3) ZAPO = ZBPO = ZOAC = ZOBC; ZAOP = ABOP = ZCAP = ZCBP2•弦切角定理:弦切角(切线与圆的夹角)等于它所夹的弧所对的圆周角 推论:若两弦切角所夹的弧相等,则这两个弦切角也相等[典型例题】【例1】如图LAB, AC 是OO 的两条切线,切点分别为B 、C 、D 是优弧BC 上的点,已知ZBAC=80<\举一反三:1 •如图2, AB 是。

O 的弦,AD 是0 O 的切线,C 为AB ±任一点,ZACB=108°,那么ZBAD= ____________________________ 2•如图3,PA,PB 切0 O 于A, B 两点,AC 丄PB •且与€> 0相交于D,若ZDBC=22°,则ZAPB= ___________________________【例2】如图,已知圆上的^AC = BD,过C 点的圆的切线与BA 的延长线交于E 点,证明:⑴ ZACEMBCD ;(2)BC 2=BExCD ・举一反三:1 •如图,曲是圆0的直径,D 为圆0上一点,过0作圆0的切线交曲那么ZBDC= ___________ .匸 图2A0 的延长线于点G 若DA=DC.求证:AB=2BC.【例3】已知:如图7 —149, PA, PB 切00于A, B 两点,AC 为直径,则图中与ZPAB 相等的角的个数为【例4】如图,AE 、AD. BC 分别切OO 于点E 、D. F,若AD=20,求AABC 的周长.A. 1 个;B. 2 个:C. 4 个;D. 5 个. 举一反三:1.如图,PA 、PB 是€)0的切线,A 、B 为切点,Z0AB=30°・(1) 求ZAPB 的度数;(2) 当0A=3时,求AP 的长.2.已知:如图,0O 内切于△ABC, ZBOC= 105° , ZACB=90° ,AB=20c m ・求 BC 、AC 的长.图 7-149AA3・已知:如图,/XABC三边BC* CA=b. AB R它的内切圆0的半径长为儿求△ABC的面积S.A4•如图,在ZkABC中,已知ZABC=90°,在AB上取一点E,以BE为直径的OO恰与AC相切于点D, 若AE=2 cm, AD=4 cm.(1)求OO的直径BE的长:⑵计算AABC的而积.[课后作业】直径,AE切00于点3,连接D3,若ZD = 20。

中考数学专题复习:与圆切线有关的线段计算

中考数学专题复习:与圆切线有关的线段计算
AE
判定
等边△ 平行
中位线
角90°
课堂小结
说说你的收获!
课堂小测
在Rt△ABC中,∠ACB= 90°, D是AB边上的一点,以BD为直 径作⊙0交AC于点E,连接DE 并延长,与BC的延长线交于点 F,且BD=BF. (1)求证: AC与⊙O相切.
(2)若BC=6,AB=12,求⊙0的面积.
(2)如果直线与圆没有明确的交点,则过 圆心作该直线的垂线段,证明垂线段等于半 径,即“无交点,作垂直,证半径”.
运用技巧 类型一:“有交点,连半径,证垂直”. 1.如图AB=AC,AB为⊙O的直径,⊙O 交BC于D,DM⊥AC于M . 求证:DM与⊙O相切.
【难点在于如何证明两线垂直】
运用技巧 类型二:“无交点,作垂直,证半径”. 2.如图,已知OC平分∠AOB,D是OC 上求任证一:点OB,与⊙—⊙D—D与—相O—切A—相.—切—于—点—E —. 垂直或直角三角形
构造思想——运用相似三角形对应边成比 例,或三角函数边角的关系、勾股定理等 找出隐藏的线段之间的数量关系,建立数 学模型,利用方程的思想,设出未知数表 示关键的线段,再运用线段之间的数量关 系建立方程来解决问题。
拓展提高
在等边△ABC中,以BC为直径的⊙0与
AB交于点D,DE⊥AC,垂足为点E.
(1)求证:DE为⊙0的切线. (2)计算 CE .
(2) 若∠CAB=30°,AB=10,求线段BF的长.
【方法点拨】连接切点和圆心构造垂直 或直角三角形.
实战中考
变式训练:如图,点O在∠APB的平分线上,⊙O 与PA相切于点C. (1)求证:直线PB与⊙O相切; (2)PO的延长线与⊙O交于点E.若⊙O的 半径为3,PC=4.求弦CE的长.

2023年中考九年级数学高频考点拔高训练-圆的切线的证明

2023年中考九年级数学高频考点拔高训练-圆的切线的证明

2023年中考九年级数学高频考点拔高训练-圆的切线的证明1.如图,△ABD是△O的内接三角形,E是弦BD的中点,点C是△O外一点,且△DBC=△A=60°,连接OE并延长与△O相交于点F,与BC相交于点C.(1)求证:BC是△O的切线;(2)若△O的半径为6cm,求弦BD的长.2.如图,AB是⊙O的直径,点C是⊙O上一点,∠BAC的平分线AD交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)如果∠BAC=60°,AE=4√3,求AC长.3.如图,AC与△O相切,切点为C,点B在CO的延长线上,BD△AO,垂足为D,△ABD=△BO D.(1)求证:AB为△O的切线;(2)若BC=4,AC=3,求BD的长.4.如图,AB 是△O 的直径,点E 在△O 上,连接AE 和BE ,BC 平分△ABE 交△O 于点C ,过点C 作CD△BE ,交BE 的延长线于点D ,连接CE .(1)请判断直线CD 与△O 的位置关系,并说明理由;(2)若sin△ECD =35,CE =5,求△O 的半径. 5.如图,AB 为△O 的直径,C 、D 为△O 上不同于A 、B 的两点,△ABD =2△BAC ,连接CD ,过点C 作CE△DB ,垂足为E ,直径AB 与CE 的延长线相交于F 点.(1)求证:CF 是△O 的切线;(2)当BD = 185 ,sinF = 35时,求OF 的长. 6.如图,线段AB 经过圆心O ,交△O 于点A 、C ,点D 为△O 上一点,连结AD 、OD 、BD ,△A =△B =30°.(1)求证:BD 是△O 的切线.(2)若OA =5,求OA 、OD 与AD 围成的扇形的面积.7.如图,在Rt△ABC 中,△ACB =90°,CD 是斜边AB 上的中线,以CD 为直径的△O 分别交AC 、BC 于点M 、N ,过点N 作NE△AB ,垂足为E(1)若△O的半径为52,AC=6,求BN的长;(2)求证:NE与△O相切.8.如图,AB是△O的弦,OP△OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.(1)求证:BC是△O的切线;(2)若△O的半径为√5,OP=1,求BC的长.9.如图,AB是△O的直径,点C在AB的延长线上,AD平分△CAE交△O于点D,且AE△CD,垂足为点E.(1)求证:直线CE是△O的切线.(2)若BC=3,CD=3 √2,求弦AD的长.10.如图,AB为圆的直径,C是△O上一点,过点C的直线交AB的延长线于点M.作AD△MC,垂足为D,已知AC平分△MAD .(1)求证:MC是△O的切线:(2)若AB=BM=4,求tan△MAC的值11.如图,AB是△O的直径,点C在△O上,BD平分∠ABC交△O于点D,过点D作DE⊥BC,垂足为E.(1)求证:DE与△O相切;(2)若AB=10,AD=6,求DE的长.12.如图,点O在△APB的平分线上,△O与PA相切于点C.(1)求证:直线PB与△O相切;(2)PO的延长线与△O交于点E.若△O的半径为3,PC=4.求弦CE的长.13.如图,已知A(﹣5,0)、B(﹣3,0),点C在y轴的正半轴上,△CBO=45°,CD△AB,△CDA=90°点,P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时间ts.(1)求点C的坐标;(2)当△BCP=15°时,且△OPC中最长边是最短边的2倍,求t的值;(3)以点P为圆心,PC为半径的△P随点P的运动而变化,当△P与四边形ABCD的边(或边所在的直线)相切时,求t的值.14.已知AB为⊙O的直径,C为⊙O上一动点,连接AC,BC,在BA的延长线上取一点D,连接CD,使CD=CB.(1)如图1,若AC=AD,求证:CD是⊙O的切线;(2)如图2,延长DC交⊙O于点E,连接AE.①若⊙O的直径为√10,sinB=√10,求AD的长;10②若CD=2CE,求cosB的值.15.如图,AB、AC分别是△O的直径和弦,OD△AC于点D,过点A作△O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是△O的切线;(2)若△ABC=60°,AB=10,求线段CF的长,16.如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,△BCD=60°,点E是AB上一点,AE=3EB,△P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.(1)求抛物线的解析式;(2)求证:ED是△P的切线;(3)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.答案解析部分1.【答案】(1)证明:连接OB ,如图所示:∵E 是弦BD 的中点,∴BE =DE ,OE△BD , BF ⌢=12BD ⌢ , ∴△BOE =△A ,△OBE+△BOE =90°,∵△DBC =△A ,∴△BOE =△DBC ,∴△OBE+△DBC =90°,∴△OBC =90°,即BC△OB ,∴BC 是△O 的切线;(2)解:∵OB =6,△DBC =△A =60°,BC△OB , ∴OC =12,∵△OBC 的面积= 12 OC•BE = 12OB•BC , ∴BE = OB×BC OC =6×6√312=3√3 , ∴BD =2BE =6 √3 ,即弦BD 的长为6 √3 .2.【答案】(1)证明:连接 OD ,如图,∵∠BAC 的平分线 AD 交 ⊙O 于点 D ,∴∠BAD=∠DAC,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠DAC,∴OD//AE,∵DE⊥AE,∴DE⊥OD,OD为半径,∴DE是⊙O的切线(2)解:作OF⊥AC于F∵∠BAC=60°,∴∠DAE=30°,在RtΔADE中,DE=AE⋅tan30°=4四边形ODEF为矩形,∴OF=DE=4,在RtΔOAF中,∵∠OAF=60°∴AF=√3=4√33∴AC=2AF=8√3 33.【答案】(1)证明:作OH△AB,垂足为H∵AC与△O相切,切点为C,∴△ACO=90°∴△OAC+△AOC=90°又BD△AO∴△BDO=90°∴△BOD+△DBO=90°,△BAD+△ABD=90°又△BOD=△AOC,△ABD=△BOD∴△OAC=△BAD∴OH=OC又OC为△O半径∴AB为△O的切线(2)解:在Rt△BOH和Rt△BAC中AB=√BC2+AC2=5sin∠ABC=OHOB=ACAB=354−OB OB=35,解得OB=52,OC=32,OA=√OC2+AC2=32√5∵△AOC=△BOD,△C=△D=90°∴△AOC△△BOD∴OAOB=ACBD∴32√552=3BD,解得:BD=√5.4.【答案】(1)解:结论:CD是△O的切线.理由:连接OC.∵OC=OB,∴△OCB=△OBC,∵BC平分△ABD,∴△OBC=△CBE,∴△OCB=△CBE,∴OC//BD ,∵CD△BD ,∴CD△OC ,∵OC 是半径,∴CD 是△O 的切线;(2)解:设OA =OC =r ,设AE 交OC 于点J .∵AB 是直径,∴△AEB =90°,∵OC△DC ,CD△DB ,∴△D =△DCJ =△DEJ =90°,∴四边形CDEJ 是矩形,∴△CJE =90°,CD =EJ ,CJ =DE ,∴OC△AE ,∴AJ =EJ ,∵sin△ECD =DE CE =35,CE =5, ∴DE =3,CD =4,∴AJ =EJ =CD =4,CJ =DE =3,在Rt△AJO 中,r 2=(r ﹣3)2+42,∴r =256, ∴△O 的半径为256. 5.【答案】(1)解:连接OC .如图1所示:∵OA=OC,∴△1=△2.又∵△3=△1+△2,∴△3=2△1.又∵△4=2△1,∴△4=△3,∴OC△DB.∵CE△DB,∴OC△CF.又∵OC为△O的半径,∴CF为△O的切线;(2)解:连接AD.如图2所示:∵AB是直径,∴△D=90°,∴CF△AD,∴△BAD=△F,∴sin△BAD=sinF=BDAB=35,∴AB=53BD=6,∴OB=OC=3,∵OC△CF,∴△OCF=90°,∴sinF=OCOF=35,解得:OF=5.6.【答案】(1)证明:∵△ADO=△BAD=30°,∴△DOB=60°∵△ABD=30°,∴△ODB=90°∴OD△BD.∵点D为△O上一点,∴BD是△O的切线.(2)解:∵△DOB=60°,∴△AOD=120°.∵OA=5,∴OA、OD与AD围成的扇形的面积为120·π·52360=253π.7.【答案】(1)解:∵ △O 的半径为52,则CD=5,AB=10,BC=√AB2−AC2=√100−36=8CD为直径,得DN△BC,D为AB的中点,则BD=CD,则△BDC为等腰三角形,由三线合一知,BN=NC=12BC=4。

2020中考数学 冲刺专题:圆切线的相关证明与计算

2020中考数学 冲刺专题:圆切线的相关证明与计算

2020中考数学冲刺专题:圆切线的相关证明与计算1. 如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD,CD.过点D作BC的平行线,与AB的延长线相交于点P.第1题图(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.(1)证明:如解图,连接OD,∵圆心O在BC上,∴BC是⊙O的直径,∴∠BAC=90°,第1题解图∵AD平分∠BAC,∴∠BAC=2∠DAC.∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°,即OD⊥BC.∵PD∥BC,∴OD ⊥PD .又∵OD 是⊙O 的半径, ∴PD 是⊙O 的切线; (2)证明:∵PD ∥BC , ∴∠P =∠ABC . 又∵∠ABC =∠ADC , ∴∠P =∠ADC .∵∠PBD +∠ABD =180°,∠ACD +∠ABD =180°, ∴∠PBD =∠ACD , ∴△PBD ∽△DCA ;(3)解:∵△ABC 是直角三角形, ∴BC 2=AB 2+AC 2=62+82=100, ∴BC =10.∵OD 垂直平分BC , ∴DB =DC .∵BC 是⊙O 的直径, ∴∠BDC =90°.∵在Rt △DBC 中,DB 2+DC 2=BC 2,即2DC 2=BC 2=100, ∴DC =DB =5 2. ∵△PBD ∽△DCA , ∴PB DC =BD CA ,∴PB =DC ·BD CA =52·528=254.2.如图,点A在⊙O上,点P是⊙O外一点,P A与⊙O相切于点A,连接OP交⊙O 于点D,作AB⊥OP于点C,交⊙O于点B,连接PB.第2题图(1)求证:PB是⊙O的切线;(2)若PC=9,AB=63,求图中阴影部分的面积.(1)证明:连接OB,∵OP⊥AB,∴AC=BC,∴OP垂直平分AB,∴AP=BP,又∵OA=OB,OP=OP,第2题解图∴△APO≌△BPO(SSS),∵P A切⊙O于点A,∴AP⊥OA,∴∠P AO=90°,∴∠PBO=∠P AO=90°,∴OB ⊥BP , 又∵点B 在⊙O 上, ∴PB 与⊙O 相切于点B ;(2)解:∵OP ⊥AB ,OP 经过圆心O , ∴BC =12AB =33, ∵∠PBO =∠BCO =90°,∴∠PBC +∠OBC =∠OBC +∠BOC =90°, ∴∠PBC =∠BOC , ∵∠PCB =∠BCO =90°, ∴△PBC ∽△BOC , ∴BC OC =PC BC ,∴OC =BC ·BC PC =33×339=3, ∴在Rt △OCB 中,OB =OC 2+BC 2=6,tan ∠COB =BCOC =3,∴∠COB =60°,PB =OP ·sin60°=63,∴S △OPB =12PB ·BO =183,S 扇形DOB =6036360 g =6π,∴S 阴影=S △OPB -S 扇形DOB =183-6π.3.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,∠A =2∠BCD ,点E 在AB 的延长线上,∠AED =∠ABC . (1)求证:DE 与⊙O 相切;(2)若BF =2,DF =10,求⊙O 的半径.第3题图(1)证明:如解图,连接DO,∴∠BOD=2∠BCD=∠A,∵∠DEA=∠CBA,第3题解图∴∠DEA+∠DOE=∠CAB+∠CBA,∵∠ACB=90°,∴OD⊥DE,又∵OD为⊙O的半径,∴DE是⊙O的切线;(2)解:如解图,连接BD,可得△FBD∽△DBO,BD DF BF==,BO OD BD∴BD=DF10∴OB=5.4.如图,AB是⊙O的直径,BC切⊙O于点B,连接CO并延长,交⊙O于点D、E,连接AD并延长,交BC于点F,连接BD、BE.第4题图(1)试判断∠CBD 与∠CEB 是否相等,并证明你的结论; (2)求证:BD BE =CDBC ;(3)若BC =2AB ,求tan ∠CDF 的值. (1)解:∠CBD =∠CEB ,证明如下: ∵AB 是⊙O 的直径,BC 切⊙O 于点B , ∴∠CBD =90°-∠OBD ,又∵DE 过⊙O 的圆心,∴∠DBE =90°,OB =OD , ∴∠CEB =90°-∠ODB ,∠ODB =∠OBD , ∴∠CBD =∠CEB ;(2)证明:∵在△CBD 和△CEB 中, ∵∠CBD =∠CEB ,∠C =∠C , ∴△CBD ∽△CEB ,∴BD BE =CD BC ; (3)解:∵BC =2AB ,OB =12AB , ∴在Rt △OBC 中,OC =32AB ,∴CD =OC -OD =AB ,∵DE 是⊙O 的直径, ∴∠DBE =90°,∵∠CDF =∠ADE =∠ABE =∠BED ,∴tan ∠CDF =tan ∠BED =BD BE =CD BC =AB 2AB =22.5.如图,在Rt△ABC中,∠A=90°,以AB为直径的⊙O交BC于点D,点E在⊙O 上,CE=CA,AB和CE的延长线交于点F.(1)求证:CE与⊙O相切;(2)若⊙O的半径为3,EF=4,求BD的长.第5题图(1)证明:如解图,连接OE,OC,第5题解图∵OA=OE,CE=CA,OC共用,∴△OEC≌△OAC(SSS),∴∠OEC=∠A=90°,∵OE是⊙O的半径,∴CE与⊙O相切;(2)解:在Rt△OEF中,OE=3,EF=4,∴OF=OE2+EF2=5,∴AF=8,在Rt△ACF中,设AC=x,则CF=CE+EF=x+4,∵AF2+AC2=CF2,∴82+x2=(x+4)2,解得x =6,则AC =6,在Rt △ABC 中,AB =6,AC =6, ∴BC =62,如解图,连接AD ,则AD ⊥BC , ∴BD =12BC =3 2.6.如图,在Rt △ABC 中,∠ACB =90°,以BC 为直径的⊙O 交AB 于点D ,点E 是AC 的中点,OE 交CD 于点F .(1)若∠BCD =36°,BC =10,求BD ︵的长; (2)判断直线DE 与⊙O 的位置关系,并说明理由.第6题图(1)解:如解图,连接OD ,∵∠BCD =36°, ∴∠BOD =2∠BCD =2×36°=72°, ∵BC 是⊙O 的直径,且BC =10, ∴l BD ︵=72π×5180=2π;第6题解图(2)解:DE 是⊙O 的切线.理由如下: ∵BC 是⊙O 的直径,∴∠ADC =180°-∠BDC =90°, 又∵点E 是线段AC 的中点, ∴DE =AE =EC =12AC , 在△DOE 与△COE 中, ∵⎩⎪⎨⎪⎧OD =OC OE =OE DE =CE , ∴△DOE ≌△COE , ∵∠ACB =90°,∴∠ODE =∠OCE =90°, ∵OD 是⊙O 的半径, ∴DE 是⊙O 的切线.7.如图,⊙O 的半径OC 垂直弦AB 于点H ,连接BC ,过点A 作弦AE ∥BC ,过点C 作CD ∥BA 交EA 延长线于点D ,延长CO 交AE 于点F . (1)求证:CD 为⊙O 的切线; (2)若BC =10,AB =16,求OF 的长.第7题图(1)证明:∵OC ⊥AB ,AB ∥CD , ∴OC ⊥DC , ∵OC 是⊙O 的半径, ∴CD 是⊙O 的切线; (2)解:如解图,连接BO .设OB =x ,∵AB =16,OC ⊥AB , ∴HA =BH =8, ∵BC =10,∴CH =6, ∴OH =x -6. 在Rt △BHO 中, ∵OH 2+BH 2=OB 2,∴(x -6)2+82=x 2,解得x =253, ∵CB ∥AE ,∴∠CBH =∠F AH , 在△CHB 和△FHA 中,⎩⎪⎨⎪⎧∠CBH =∠F AH ∠CHB =∠FHA BH =AH, ∴△CHB ≌△FHA ,∴CH =HF , ∴CF =2CH =12,∴OF =CF -OC =12-253=113.第7题解图8.如图,在Rt △ABC 中,∠ACB =90°,以BC 为直径的⊙O 交AB 于点D ,E 是AC 的中点,OE 交CD 于点F .(1)若∠BCD =36°,BC =10,求BD ︵的长;(2)判断直线DE 与⊙O 的位置关系,并说明理由;(3)求证:2CE 2=AB ·EF.第8题图(1)解:如解图,连接OD ,∵∠BCD =36°,∴∠BOD =2∠BCD =2×36°=72°, ∵BC 是⊙O 的直径,且BC =10,∴l BD ︵=72π×5180=2π.第8题解图(2)解:DE 是⊙O 的切线;理由如下:∵BC 是⊙O 的直径,∴∠ADC =∠BDC =90°,又∵点E 是线段AC 的中点,∴DE =AE =EC =12AC ,在△DOE 与△COE 中,∵⎩⎪⎨⎪⎧OD =OC OE =OE DE =CE,∴△DOE ≌△COE ; ∵∠ACB =90°,∴∠ODE =∠OCE =90°, ∵OD 是⊙O 的半径,∴DE 是⊙O 的切线;(3)证明:∵△DOE ≌△COE ,∴OE 是线段CD 的垂直平分线,DE =CE , ∴点F 是线段CD 的中点,∵点E 是线段AC 的中点,则EF =12AD ,在△ACD 与△ABC 中,⎩⎨⎧∠CAD =∠BAC ∠ADC =∠ACB, ∴△ACD ∽△ABC ,则AC AB =AD AC ,即AC 2=AB ·AD ,而AC =2CE ,AD =2EF , ∴(2CE )2=AB ·2EF ,即4CE 2=AB ·2EF ,∴2CE 2=AB ·EF .。

2023年中考九年级数学高频考点提升练习--切线的证明(含解析)

2023年中考九年级数学高频考点提升练习--切线的证明1.在Rt△ABC中,∠A=90°,AB=AC=4,O是BC边上的点,⊙O与AB相切,切点为D,AC与⊙O相交于点E,且AD=AE.(1)求证:AC是⊙O的切线;(2)如果F为DE弧上的一个动点(不与D、E重合),过点F作⊙O的切线分别与边AB、AC相交于G、H,连接OG、OH,有两个结论:①四边形BCHG的周长不变,②∠GOH的度数不变.已知这两个结论只有一个符合题意,找出正确的结论并证明;(3)探究:在(2)的条件下,设BG=x,CH=y,试问y与x之间满足怎样的函数关系,写出你的探究过程并确定变量x的取值范围,并说明当x=y时F点的位置.2.如图,AB是⊙O的直径,点C、D在⊙O上,且CD平分⊙ACB,过点D作DE∥AB交CB延长线于点E.(1)求证:DE是⊙O的切线;(2)若AC=4,tan∠BAC=12,求DE的长.3.如图,以BC为直径的⊙O交⊙CFB的边CF于点A,BM平分⊙ABC交AC于点M,AD⊙BC于点D,AD交BM于点N,ME⊙BC于点E,AB2=AF·AC,cos⊙ABD=35,AD=12.(1)求证:⊙ABF⊙⊙ACB;(2)求证:FB是⊙O的切线;(3)证明四边形AMEN是菱形,并求该菱形的面积S.4.如图1,AB为⊙O直径,CB与⊙O相切于点B,D为⊙O上一点,连接AD、OC,若AD//OC.(1)求证:CD为⊙O的切线;(2)如图2,过点A作AE⊥AB交CD延长线于点E,连接BD交OC于点F,若AB=3AE=12,求BF的长.5.如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,⊙CBO=45°,CD⊙AB.⊙CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒.(1)求点C 的坐标;(2)当⊙BCP=15°时,求t 的值;(3)以点P 为圆心,PC 为半径的⊙P 随点P 的运动而变化,当⊙P 与四边形ABCD 的边(或边所在的直线)相切时,求t 的值.6.如图,A 为⊙O 外一点,AO⊙BC ,直径BC =12,AO =10,BD 的长为π,点P 是BC 上一动点,⊙DPM =90°,点M 在⊙O 上,且⊙DPM 在DP 的下方.(1)当sinA =35时,求证:AM 是⊙O 的切线; (2)求AM 的最大长度.7.如图,在平面直角坐标系中,点A 、C 的坐标分别为(0,8)、(6,0),以AC 为直径作⊙O ,交坐标轴于点B ,点D 是⊙O 上一点,且 BD =AD ,过点D 作DE⊙BC ,垂足为E.(1)求证:CD 平分⊙ACE ;(2)判断直线ED 与⊙O 的位置关系,并说明理由;(3)求线段CE 的长.8.如图,已知AB 是⊙O 的直径,AC 是弦(不是直径),OD ⊙AC 垂足为G 交⊙O 于D ,E 为⊙O 上一点(异于A 、B ),连接ED 交AC 于点F ,过点E 的直线交BA 、CA 的延长线分别于点P 、M ,且ME =MF .(1)求证:PE是⊙O的切线.(2)若DF=2,EF=8,求AD的长.(3)若PE=6 √2,sin⊙P=13,求AE的长.9.如图,已知等边⊙ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D 作DF⊙AC,垂足为F,过点F作FG⊙AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求tan⊙FGD的值.10.如图,⊙O是⊙ABC的外接圆,圆心O在AB上,且⊙B=2⊙A,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,EF=FC.(1)求证:CF是⊙O的切线(2)设⊙O的半径为2,且AC=CE,求AM的长11.如图,⊙ O是⊙ ABC的外接圆,AC为直径,弦BD=BA,BE⊥DC交DC的延长线于点E,求证:(1)∠ECB=∠BAD;(2)BE是⊙ O的切线.12.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,连接AD,过点D作DM⊥AC,垂足为M,AB、MD的延长线交于点N.(1)求证:MN是⊙O的切线;(2)若BC=6,cosC=35,求DN的长.13.已知,如图,AB是⊙O的直径,点C为⊙O上一点,BD⊙OF于点F,交⊙O于点D,AC与BD交于点G,点E为OC的延长线上一点,且⊙OEB=⊙ACD.(1)求证:BE是⊙O的切线;(2)若⊙O的半径为52,BG的长为154,求tan⊙CAB.14.如图,⊙ABC内接于⊙O,AB是⊙O的直径,⊙O的切线PC交BA的延长线于点P,OF⊙BC交AC于点E,交PC于点F,连接AF.(1)判断直线AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为6,AF=2√3,求AC的长;(3)在(2)的条件下,求阴影部分的面积.15.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,连结OA、OB、OC,延长BO与AC交于点D,与⊙O交于点F,延长BA到点G,使得∠BGF=∠GBC,连接FG.备用图(1)求证:FG是⊙O的切线;(2)若⊙O的半径为4.①当OD=3,求AD的长度;②当△OCD是直角三角形时,求△ABC的面积.16.如图1,在矩形ABCD中,AB=9,BC=12,点P是线段AD上的一个动点,以点P为圆心,PD为半径作⊙P,连接CP.(1)当⊙P经过PC的中点时,PC的长为;(2)当CP平分∠ACD时,判断AC与⊙P的位置关系.说明理由,并求出PD的长;(3)如图2,当⊙P与AC交于E,F两点,且EF=9.6时,求点P到AC 的距离.答案解析部分1.【答案】(1)解:如图,连接OA,OD,OE,∵AB是⊙O的切线,点D为切点,∴⊙ADO=90°,∵AD=AE,OD=0E,AO=AO,∴⊙AOD⊙⊙AOE,∴⊙ADO=⊙AEO=90°,∴AC是⊙O的切线,点E为切点;(2)解:根据题意,四边形BCHG的周长为BC+CH+BG+HG,∵∠A=90°,AB=AC=4,∴⊙B=⊙C=45°,BC=4 √2,∵⊙ADO=⊙AEO=90°,OD=0E,∴⊙DOB=⊙EOC=45°,⊙BOD⊙⊙COE,∴OB=OC,BD=CE,∴⊙EOD=90°,⊙AOB=90°,⊙BAO=45°,∴BD=OD=DA=CE= 12AB=2,∵AB,AC,GH都是⊙O的切线,∴HF=HE,GD=GF,∴四边形BCHG的周长为BC+CE+EH+GH+BD+GD=BC+CE+BD+GH+HF+FG= BC+CE+BD+2GH=4+4 √2+2GH,∵GH是变量,∴四边形BCHG的周长不是定值,这个结论不符合题意;∵AB,AC,GH都是⊙O的切线,根据切线长定理,得GO平分⊙DOF,HO平分⊙EOF,∴⊙GOH=⊙GOF+⊙HOF= 12⊙DOF+12⊙EOF=12(⊙DOF+⊙EO)= 12⊙EOD,∵⊙EOD=90°,∴⊙GOH=45°,是个定值,故该结论符合题意(3)解:根据题意,GD=GF=x-2,HE=HF=y-2,∴GH=x+y-4,AG=4-x,AH=4-y,在直角三角形AGH中,AG2+AH2=GH2,∴(x−2)2+(y−2)2=(x+y−4)2,整理,得y= 8x,且2<x<4,当x=y时,∴AG=AH,∴AG:AB=AH:AC,∴GH⊙BC,∴OF⊙GH,∵BG=CH,⊙B=⊙C,BO=CO,∴⊙BOG⊙⊙COH,∴GO=HO,∴GF=FH,∴A,F,O三点一线,∴⊙DOF=⊙EOF,∴弧DF=弧EF,故点F是弧DE的中点.2.【答案】(1)解:连接OD,∵AB是⊙O的直径,∴⊙ACB=90°,∵CD平分⊙ACB,∴⊙ACD=45°,∴⊙AOD=2⊙ACD=90°,∵AB∥DE,∴⊙ODE=⊙AOD=90°,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:过点B作BG⊙DE于点G,∴⊙BGD=⊙BGE=90°,∵⊙AOD=90°,∴⊙DOB=90°,∵⊙ODE=90°,∴四边形ODGB是矩形,∵OD=OB,∴四边形ODGB是正方形,∴OB=OD=DG=BG,∵AC=4,∴tan∠BAC=1 2,∴BC=2,∴AB=√AC2+BC2=2√5,∴BG=DG=OB=√5,∵AB∥DE,∴⊙ABC=⊙E,∴⊙EBG=⊙BAC,∴tan∠EBG=tan∠BAC=1 2,∴EG=12BG=√5 2,∴DE=DG+EG=3√52.3.【答案】(1)证明:∵BC为⊙O的直径∴⊙BAC=90°∴⊙BAF=⊙BAC=90°又∵AB2=AF·AC∴ABAC=AF AB∴⊙ABF⊙⊙ACB(2)证明:∵⊙ABF⊙⊙ACB∴⊙ABF=⊙C又∵⊙ABC+⊙C=90°∴⊙FBC=⊙ABC+⊙ABF=90°∴BF是⊙O的切线(3)证明:∵ME⊙BC,MA⊙AB,BM平分⊙ABC ∴MA=ME∴⊙AMN=90°-⊙ABM=90°-⊙EBM=⊙EMN∴AB=BE∵NM=NM∴⊙AMN⊙⊙EMN∴AN=NE又∵AD⊙BC,ME⊙BC,∴ME⊙AD,∴⊙ANM=⊙EMN,∴⊙ANM=⊙AMN∴AN=AM∴AN=NE=EM=MA,∴四边形AMEN是菱形.∵cos⊙ABD= 35,⊙ADB=90°∴BDAB=3 5设BD=3x,则AB=5x,AD= √(5x)2−(3x)2=4x 又∵AD=12,∴x=3,∴BD=9,AB=15,∴BE=BA=15∴DE=BE-BD=6∵ND⊙ME,∴⊙BND⊙⊙BME∴NDME=BD BE设ME=y,则ND=12-y,12−y y=9 15,解得y= 15 2∴S= ME⋅DE=152×6=454.【答案】(1)证明:连接OD∵CB与⊙O相切于点B,∴OB⊥BC∵AD//OC,∴∠A=∠COB,∠ADO=∠DOC∵OA=OD,∴∠A=∠ADO=∠COB=∠DOC,∴△DOC≌△BOC(SAS),∴∠ODC=∠OBC=90°,∴OD⊥DC又OD为⊙O半径,∴CD为⊙O的切线(2)解:设CB=x∵AE⊥EB,∴AE为⊙O的切线,∴CD、CB为⊙O的切线,∴ED=AE= 4,CD=CB=x,∠DOC=∠BCO,∴BD⊥OC过点E作EM⊥BC于M,则EM=12,CM=x−4,∴(4+x)2=122+(x−4)2解得x=9,∴CB=9,∴OC=√62+92=3√13,∵AB是直径,且AD⊙OC∴⊙OFB=⊙ADB=⊙OBC=90°又∵⊙COB=⊙BOF∴OB BF =OC BC∴BF =OB⋅BC OC =6×93√13=1813√13 5.【答案】(1)解:∵⊙BCO=⊙CBO=45°,∴OC=OB=3,又∵点C 在y 轴的正半轴上,∴点C 的坐标为(0,3)(2)解:分两种情况考虑:①当点P 在点B 右侧时,如图2,若⊙BCP=15°,得⊙PCO=30°,故PO=CO•tan30°= √3 ,此时t=4+ √3 ;②当点P 在点B 左侧时,如图3,由⊙BCP=15°,得⊙PCO=60°,故OP=COtan60°=3 √3 ,此时,t=4+3 √3 ,∴t 的值为4+ √3 或4+3 √3(3)解:由题意知,若⊙P 与四边形ABCD 的边相切时,有以下三种情况: ①当⊙P 与BC 相切于点C 时,有⊙BCP=90°,从而⊙OCP=45°,得到OP=3,此时t=1;②当⊙P与CD相切于点C时,有PC⊙CD,即点P与点O重合,此时t=4;③当⊙P与AD相切时,由题意,得⊙DAO=90°,∴点A为切点,如图4,PC2=PA2=(9-t)2,PO2=(t-4)2,于是(9-t)2=(t-4)2+32,即81-18t+t2=t2-8t+16+9,解得:t=5.6,∴t的值为1或4或5.6.6.【答案】(1)证明:如图①,过点O作OE⊙AM于点E,∵在Rt⊙AOE 中,当sinA =35,OA =10, ∴OE =6∵直径BC =12,∴OM =6=OE ,∴点E 与点M 重合,OM⊙AM ,∴AM 是⊙O 的切线.(2)解:如图②,当点P 与点B 重合时,AM 取得最大值.AM 的最大长度可以通过勾股定理求得.延长AO 交⊙O 于点F ,作MG⊙AF 于点G ,连接OD 、OM ,DM ,∵BD 的长为π,∴π=∠BOD⋅π⋅6180, ∴⊙BOD =30°,∵⊙DBM =90°,∴DM 是⊙O 的直径,即DM 过点O ,∴⊙COM =30°,∵AO⊙BC ,∴⊙MOG =60°,在Rt⊙GOM 中,⊙MOG =60°,OM =6,∴OG=3,GM=3√3,在Rt⊙GAM中,AM=√AG2+GM2=14,∴AM的最大长度:14.7.【答案】(1)证明:∵四边形ABCD是⊙O内接四边形,∴⊙BAD+⊙BCD=180°,又∵⊙BCD+⊙DCE=180°,∴⊙DCE=⊙BAD,∵=,∴⊙BAD=⊙ACD,∴⊙DCE=⊙ACD,∴CD平分⊙ACE.(2)解:直线ED与⊙O相切.连接OD.∵OC=OD,∴⊙ODC=⊙OCD,又∵⊙DCE=⊙ACD,∴⊙DCE=⊙ODC,∴OD⊙BE,∴⊙ODE=⊙DEC,又∵DE⊙BC,∴⊙DEC=90°,∴⊙ODE=90°∴OD⊙DE,∴ED与⊙O相切(3)解:延长DO交AB于点H.∵OD⊙BE,O是AC的中点,∴H是AB的中点,∴HO是⊙ABC的中位线,∴HO= 12BC=3,又∵AC为直径,∴⊙ADC=90°,又∵O是AC的中点∴OD= 12AC=12× √62+82=5,∴HD=3+5=8,∵⊙ABC=⊙DEC=⊙ODE=90°,∴四边形BEDH是矩形,∴BE=HD=8,∴CE=8﹣6=28.【答案】(1)证明:连接OE,∵OD⊙AC,∴⊙DGF=90°,∴⊙D+⊙DFG=⊙D+⊙AFE=90°,∴⊙DFG=⊙AFE,∵ME=MF,∴⊙MEF=⊙MFE,∵OE=OD,∴⊙D=⊙OED,∴⊙OED+⊙MEF=90°,∴OE⊙PE,∴PE是⊙O的切线(2)解:∵OD⊙AC,∴CD=AD,∴⊙FAD=⊙AED,∵⊙ADF=⊙EDA,∴⊙DFA ~⊙DAE , ∴AD DE =DF AD, ∴AD 2=DF•DE =2×10=20, ∴AD =2 √5(3)解:设OE =x , ∵sin⊙P = OE OP =13, ∴OP =3x ,∴x 2+(6 √2 )2=(3x )2,解得:x =3,过E 作EH 垂直AB 于H ,sin⊙P = EH PE =6√2=13 , ∴EH =2 √2 ,∵OH 2+EH 2=OE 2,∴OH =1,∴AH =2,∵AE 2=HE 2+AH 2,∴AE =2 √3 .9.【答案】(1)解:连结OD ,如图,∵⊙ABC 为等边三角形,∴⊙C =⊙A =⊙B =60°,而OD =OB ,∴⊙ODB 是等边三角形,⊙ODB =60°,∴⊙ODB =⊙C ,∴OD⊙AC ,∵DF⊙AC ,∴OD⊙DF ,∴DF 是⊙O 的切线;(2)解:∵OD⊙AC ,点O 为AB 的中点,∴OD 为⊙ABC 的中位线,∴BD =CD =6.在Rt⊙CDF中,⊙C=60°,∴⊙CDF=30°,∴CF=12CD=3,∴AF=AC﹣CF=12﹣3=9,在Rt⊙AFG中,∵⊙A=60°,∴FG=AF×sinA=9× √32=9√32(3)解:过D作DH⊙AB于H.∵FG⊙AB,DH⊙AB,∴FG⊙DH,∴⊙FGD=⊙GDH.在Rt⊙BDH中,⊙B=60°,∴⊙BDH=30°,∴BH=12BD=3,DH=√3BH=3√3,在Rt⊙AFG中,∵⊙AFG=30°,∴AG=12AF=92,∵GH=AB﹣AG﹣BH=12﹣92﹣3=92,∴tan⊙GDH=GHDH=923√3=√32,∴tan⊙FGD=tan⊙GDH=√32.10.【答案】(1)证明:连接OC,如图,∵⊙O是⊙ABC的外接圆,圆心O在AB上,∴AB是⊙O的直径,∴⊙ACB=90°,又∵⊙B=2⊙A,∴⊙B=60°,⊙A=30°,∵EM⊙AB ,∴⊙EMB=90°,在Rt⊙EMB 中,⊙B=60°,∴⊙E=30°,又∵EF=FC ,∴⊙ECF=⊙E=30°,又∵⊙ECA=90°,∴⊙FCA=60°,∵OA=OC ,∴⊙OCA=⊙A=30°,∴⊙FCO=⊙FCA+⊙ACO=90°,∴OC⊙CF ,∴FC 是⊙O 的切线(2)解:在Rt⊙ABC 中,∵⊙ACB=90°,⊙A=30°,AB=4, ∴BC=12AB=2,AC=√3BC=2√3, ∵AC=CE ,∴CE=2√3,∴BE=BC+CE=2+2√3,在Rt⊙BEM 中,⊙BME=90°,⊙E=30°∴BM=12BE=1+√3, ∴AM=AB ﹣BM=4﹣1﹣√3=3﹣√311.【答案】(1)证明:∵四边形ABCD 是圆内接四边形, ∴⊙ECB=⊙BAD .(2)证明:连结OB,OD,在⊙ABO和⊙DBO中,{AB=BD BO=BOOA=OD,∴⊙ABO⊙⊙DBO (SSS),∴⊙DBO=⊙ABO,∵⊙ABO=⊙OAB=⊙BDC,∴⊙DBO=⊙BDC,∴OB⊙ED,∵BE⊙ED,∴EB⊙BO,∴BE是⊙O的切线12.【答案】(1)证明:连接OD,∵AB是⊙O的直径,∴∠ADB=90°;又∵AB=AC,∴BD=CD,∠BAD=∠CAD,∵AO=DO,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD//AC;∵DM⊥AC,∴∠AMD=90°,∴∠ODN=∠AMD=90°,∴OD⊥MN;又∵OD是⊙O半径,∴MN是⊙O的切线;(2)∵BC=6,BD=CD,∴BD=CD=3;在Rt△ADC中,cosC=CD AC,∵cosC=35,∴AC=5;又∵AB=AC,∴AB=5;在Rt△ADB中,根据勾股定理AD=√AB2−BD2=4,∵∠ODN=90°,∴∠NDB+∠BDO=90°;又∵∠ADB=90°,∴∠BDO+∠ODA=90°,∠OAD=∠ODA,∴∠NDB=∠OAD;又∵∠N=∠N,∴△BDN∽△DAN,∴BNDN=DNAN=BDDA=34,∴BN=34DN,DN=34AN,∴BN=34(34AN)=916AN,∵BN+AB=AN,∴916AN+5=AN,∴AN=80 7,∴DN=34AN=607.13.【答案】(1)证明:∵∠OEB=∠ACD,∠ACD=∠ABD,∴∠OEB=∠ABD,∵OF⊥BD,∴∠BFE=90°,∴∠OEB+∠EBF=90°,∴∠ABD+∠EBF=90°,即∠OBE=90°,∴BE⊥OB,∴BE是⊙O的切线;(2)解:∵OA=OB,∴∠CAO=∠ACO,∵∠CDB =∠CAO ,∴∠ACO =∠CDB ,∵∠CFD =∠GFC ,∴△CDF ∼△GCF ,∴GF CF =CG CD, ∵∠CDB =∠CAB , ∠DCA =∠DBA , ∴△DCG ∼△ABG ,∴CG CD =BG AB, ∴GF CF =BG AB, ∵r =52 , BG =154, ∴AB =2r =5 ,∴tan∠CAB =tan∠ACO =GF CF =BG AB =34. 14.【答案】(1)解:直线AF 与⊙O 相切. 理由如下:连接OC ,∵PC 为圆O 切线,∴CP⊙OC ,∴⊙OCP =90°,∵OF⊙BC ,∴⊙AOF =⊙B ,⊙COF =⊙OCB ,∵OC =OB ,∴⊙OCB =⊙B ,∴⊙AOF =⊙COF ,∵在⊙AOF 和⊙COF 中,{OA =OC ∠AOF =∠COF OF =OF,∴⊙AOF⊙⊙COF(SAS),∴⊙OAF=⊙OCF=90°,∴AF⊙OA,又∵OA为圆O的半径,∴AF为圆O的切线;(2)解:∵⊙AOF⊙⊙COF,∴⊙AOF=⊙COF,∵OA=OC,∴E为AC中点,即AE=CE=12AC,OE⊥AC,∵⊙OAF=90°,OA=6,AF=2√3,∴tan∠AOF=AFOA=2√36=√33,∴⊙AOF=30°,∴AE=12OA=3,∴AC=2AE=6;(3)解:∵AC=OA=6,OC=OA,∴⊙AOC是等边三角形,∴⊙AOC=60°,OC=6,∵⊙OCP=90°,∴CP=√3OC=6√3,∴S⊙OCP=12OC⋅CP=12×6×6√3=18√3,S扇形AOC=60⋅π×62360=6π,∴阴影部分的面积=S⊙OCP﹣S扇形AOC=18√3−6π. 15.【答案】(1)证明:连接AF,∵BF为⊙O的直径,∴∠BAF =90° , ∠FAG =90° , ∴∠BGF +∠AFG =90° ,∵AB =AC ,∴∠ABC =∠ACB , ∵∠ACB =∠AFB , ∠BGF =∠ABC , ∴∠BGF =∠AFB ,∴∠AFB +∠AFG =90° ,即 ∠OFG =90° . 又∵OF 为半径,∴FG 是 ⊙O 的切线.(2)解:①连接CF ,则 ∠ACF =∠ABF ,∵AB=AC ,OB=OC ,OA=OA ,∴△ABO ≅△ACO ,∴∠ABO =∠BAO =∠CAO =∠ACO , ∴∠CAO =∠ACF ,∴AO ∥CF ,∴AD CD =OD DF. ∵半径是4, OD =3 ,∴DF =1 , BD =7 , ∴AD CD =3 ,即 CD =13AD , 又由相交弦定理可得: AD ⋅CD =BD ⋅DF , ∴AD ⋅CD =7 ,即 13AD 2=7 , ∴AD =√21 (舍负);②∵△ODC 为直角三角形, ∠ODC =90° 不可能等于 90° . ∴(i )当 ∠ODC =90° 时,则 AD =CD , 由于 ∠ACO =∠ACF ,∴OD =DF =2 , BD =6 , ∴AD ⋅CD =AD 2=6×2=12 ,∴AD=2√3,AC=4√3,∴S△ABC=12×4√3×6=12√3;(ii)当∠COD=90°时,∵OB=OC=4,∴△OBC是等腰直角三角形,∴BC=4√2,延长AO交BC于点M,∵AB=AC,∴弧AB=弧AC,∴AM⊥BC,∴MO=sin45∘⋅BO=2√2,∴AM=4+2√2,∴S△ABC=12×4√2×(4+2√2)=8√2+8.16.【答案】(1)6√3(2)⊙P与AC相切,理由如下:如图1,过点P作PH⊥AC于点H.∵CP平分∠ACD,∴PH=PD,∴⊙P与AC相切于点H.∵四边形ABCD是矩形,∴∠ADC=90∘在Rt△ADC中,CD=9,AD=12,∴AC=15,∴sin∠DAC=3 5设⊙P半径为x,则PH=PD=x,AP=12−x.在 Rt △AHP 中, sin∠PAH =PH AP =x 12−x∴x 12−x =35 ∴x =4.5 ,即 PD 的长为 4.5 . (3)如图2,过点 P 作 PH ⊥AC 于 H ,连接 PF .由(2)可知:在 Rt △AHP 中, sin∠PAH =PH AP =35设 ⊙P 半径为 x ,则 PF =PD =x,AP =12−x .∴PH =35(12−x). 在 ⊙P 中, PH ⊥AC,EF =9.6∴HF =245在 Rt △PHF 中, [35(12−x)]2+(245)2=x 2 ∴x 1=6,x 2=−392 (舍).∴PD =6 ,∴PH =35(12−x)=185 ,即点 P 到 AC 的距离为 185 .。

2020年中考数学复习方案基础专题训练十六与圆的切线有关的证明与计算【含答案】

2020 年中考数学复习方案基础专题训练十六与圆的切线有关的证明与计算
一、选择题
1. 如图,△ABC 中,AB=5,BC=3,AC=4,以点 C 为圆心的圆与 AB 相切,则⊙C 的半径为( )
A. 2.3
B. 2.4
C. 2.5
D. 2.6
2.如图,△ABC 的边 AC 与⊙O 相交于 C,D 两点,且经过圆心 O,边 AB 与⊙O 相切,切点为 B.如果∠A=34°,那
∴OF=
=
=4.
∵∠OFE=∠DEF=∠ODE=90°,
6
∴四边形 OFED 是矩形, ∴DE=OF=4. 13.证明:∵PA 切⊙O 于 A,∴∠PAO=90°. ∵∠BOC+∠AOB=180°,且∠BOC=∠APB. ∴∠APB+∠AOB=180°. ∴在四边形 AOBP 中, ∠OBP =360° 90° 180°=90° ∴OB⊥PB, ∵OB 是⊙O 的半径, ∴PB 是⊙O 的切线.
1
二、填空题 6.如图,是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点 A,B,并使 AB 与车轮内圆相切于点 D,作 CD⊥AB 交外圆与点 C,测得 CD=10 cm,AB=60 cm,则这个外圆半径为____cm.
7.如图,AB 为⊙O 的直径,直线 l 与⊙O 相切于点 C,AD⊥l,垂足为 D,AD 交⊙O 于点 E,连接 OC、BE.若 AE=6,OA=5,则线段 DC 的长为____________.
7
3
1 ∴∠C=2×56°=28°.
1 3.C【解析】∵tan∠OAB= 2 ,所以 AC=2OC=2OD=2×2=4,
又∵AC 是小圆的切线,所以 OC⊥AB,由垂径定理,得 AB=8.故选 C.

【中考数学】2022-2023学年易错常考专题训练—切线的证明(含解析)

【中考数学】2022-2023学年易错常考专题训练—切线的证明一、综合题1.如图,⊙O 是Rt △ABC 的外接圆,∠ABC =90°,BD =BA ,BE ⊥DC 交DC 的延长线于点E .(1)若∠BAD =70°,则∠BCA = °;(2)若AB =12,BC =5,求DE 的长: (3)求证:BE 是⊙O 的切线.2.如图,AB 为 的直径,C 为 上一点,D 为BA 延长线上一点, .⊙O ⊙O ∠ACD =∠B(1)求证:DC 为 的切线;⊙O (2)线段DF 分别交AC ,BC 于点E ,F 且 , 的半径为5, ,求∠CEF =45∘⊙O sinB =35CF 的长.3.如图,四边形ABCD 的顶点在⊙O 上,BD 是⊙O 的直径,延长CD 、BA 交于点E ,连接AC 、BD 交于点F ,作AH ⊥CE ,垂足为点H ,已知∠ADE =∠ACB .(1)求证:AH 是⊙O 的切线;(2)若OB =4,AC =6,求sin ∠ACB 的值;(3)若 = ,求证:CD =DH .DF FO 234.如图,⊙ 是△ 的外接圆, 为直径,弦 , 交 的延长线于点O ABC AC BD =BA BE ⊥DC DC ,求证:E(1) ;∠ECB =∠BAD (2) 是⊙ 的切线.BE O 5.如图,已知Rt △ABC ,∠C=90°,D 为BC 的中点,以AC 为直径的⊙O 交AB 于点E .(1)求证:DE 是⊙O 的切线;(2)若AE :EB=1:2,BC=6,求AE 的长.6.如图,在Rt △ABC 中,∠C=90°,∠BAC 的角平分线AD 交BC 边于D .以AB 上某一点O 为圆心作⊙O ,使⊙O 经过点A 和点D .(1)判断直线BC 与⊙O 的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O 的半径;②设⊙O 与AB 边的另一个交点为E ,求线段BD 、BE 与劣弧DE 所围成的阴影部分的图形面积.(结果保留根号和π)7.如图,等腰三角形ABC 中,AC=BC=10,AB=12,以BC 为直径作⊙O 交AB 于点D ,交AC 于(1)求证:直线EF 是⊙O 的切线;(2)求cos ∠E 的值.8.如图,已知△ABC 是等边三角形,以AC 为直径的⊙O 分别交AB ,BC 于点D ,E ,点F 在AB的延长线上,2∠BCF=∠BAC .(1)求∠ADE 的度数.(2)求证:直线CF 是⊙O 的切线.9.如图,AB 是⊙O 的直径,弦CD ⊥AB 于H ,G 为⊙O 上一点,连接AG 交CD 于K ,在CD 的延长线上取一点E ,使EG=EK ,EG 的延长线交AB 的延长线于F.(1)求证:EF 是⊙O 的切线; (2)连接DG ,若AC ∥EF 时.①求证:△KGD ∽△KEG ;②若,AK= ,求BF 的长.cosC =451010.在 中, , , 是 边上的点,⊙O 与 相切,切点Rt △ABC ∠A =90°AB =AC =4O BC AB 为 , 与⊙O 相交于点 ,且 .D ACE AD =AE(1)求证: 是⊙O 的切线;AC (2)如果 为 弧上的一个动点(不与 、 重合),过点 作⊙O 的切线分别与边 F DE D E F 、 相交于 、 ,连接 、 ,有两个结论:①四边形 的周长不变,②AB AC G H OG OH BCHG 的度数不变.已知这两个结论只有一个符合题意,找出正确的结论并证明;∠GOH (3)探究:在(2)的条件下,设 , ,试问 与 之间满足怎样的函数关系,BG =x CH =y y x 写出你的探究过程并确定变量 的取值范围,并说明当 时 点的位置.x x =y F 11.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,连接AD ,过点D 作DM ⊥AC ,垂足为M ,AB 、MD 的延长线交于点N.(1)求证:MN 是⊙O 的切线;(2)求证:DN 2=BN•(BN+AC );(3)若BC =6,cosC = ,求DN 的长.3512.如图,AB 为⊙O 的直径,P 为BA 延长线上一点,点C 在⊙O 上,连接PC ,D 为半径OA 上一点,PD =PC ,连接CD 并延长交⊙O 于点E ,且E 是 的中点.AB(1)求证:PC 是⊙O 的切线;(2)若AB =8,CD•DE =15,求PA 的长.13.如图,内接于⊙,⊙的直径AD 与弦BC 相交于点E ,BE =CE ,过点D 作交△ABC O O DF ∥BC AC 的延长线于点F .(1)求证:DF 是⊙的切线;O (2)若,AB =6,求DF 的长.sin∠BAD =1314.如图,在中,,,以边上一点为圆心,为半径作,RtΔABC ∠BAC =90°∠C =30°AC O OA ⊙O 恰好经过边的中点,并与边相交于另一点.⊙O BC D AC F(1)求证:是的切线.BD ⊙O (2)若,是半圆上一动点,连接,,.填空: AB =3E AGF AE AD DE ①当的长度是  时,四边形是菱形;AE ABDE ②当的长度是  时,是直角三角形.AE ΔADE15.已知AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F ,切点为G ,连接AG 交CD 于K .(1)如图1,求证:KE=GE ;(2)如图2,连接CA ,BG ,若∠FGB= ∠ACH ,求证:CA ∥FE ;12(3)如图3,在(2)的条件下,连接CG 交AB 于点N ,若sinE= ,AK= ,求CN 的3510长.16.如图,已知在 Rt △ABC 中, ∠C=90° ,点D 为AC 的中点.(1)请利用尺规作出以BC 为直径的⊙O ; (保留作图痕迹 )(2)AB 交⊙O 于点 E ,连接 DE ,求证: DE 是 ⊙O 的切线.(3)若 ∠ABC=30° , BC=6 ,求⊙O 与 DE 、 DC 组成的阴影部分面积.答案解析部分1.【正确答案】(1)70(2)解:在Rt △ABC 中,AC = =13, ∠BDE =∠BAC ,∠BED =∠CBA =90°,BC 2+AB 2∴△DEB ∽△ABC ,∴ ,即 , 解得,DE = ;DE AB =BD AC DE 12=121314413(3)证明:连接OB , ∵OB =OC ,∴∠OBC =∠OCB , ∵四边形ABCD 内接于⊙O , ∴∠BAD+∠BCD =180°, ∵∠BCE+∠BCD =180°,∴∠BCE =∠BAD ,∵BD =BA , ∴∠BDA =∠BAD ,∵∠BDA =∠ACB ,∴∠ACB =∠BAD ,∴∠OBC =∠BCE ,∴OB ∥DE ,∵BE ⊥DC , ∴BE ⊥OB ,∴BE 是⊙O 的切线.2.【正确答案】(1)解:如图,连接OC ,为 的直∵AB ⊙O 径,, ∴∠ACB =∠BCO +∠OCA =90°,∴∠B =∠BCO ,∵∠ACD =∠B ,∴∠ACD =∠BCO ,即 ,∴∠ACD +∠OCA =90∘∠OCD =90∘ 为 的切线∴DC ⊙O (2)解: 中, ,, , ,(2)Rt △ACB AB =10sinB =35=ACAB ∴AC =6BC =8 , ,∵∠ACD =∠B ∠ADC =∠CDB ∽ ,∴△CAD △BCD ,∴AC BC =AD CD =68=34设 , ,AD =3x CD =4x 中, , ,Rt △OCD OC 2+CD 2=OD 252+(4x)2=(5+3x)2 舍 或 ,x =0()307 , ,∵∠CEF =45∘∠ACB =90∘ ,∴CE =CF 设 ,CF =a ,∵∠CEF =∠ACD +∠CDE ,∠CFE =∠B +∠BDF ,∴∠CDE =∠BDF ,∵∠ACD =∠B ∽ ,∴△CED △BFD ,∴CE CD =BF BD ,,∴a 4×307=8−a 10+3×307a =247∴CF =2473.【正确答案】(1)证明:连接OA ,由圆周角定理得,∠ACB =∠ADB , ∵∠ADE =∠ACB ,∴∠ADE =∠ADB ,∵BD 是直径, ∴∠DAB =∠DAE =90°, 在△DAB 和△DAE 中,,{∠BAD =∠EADDA =DA∠BDA =∠EDA ∴△DAB ≌△DAE ,∴AB =AE ,又∵OB =OD , ∴OA ∥DE ,又∵AH ⊥DE ,∴OA ⊥AH ,∴AH 是⊙O 的切线(2)解:由(1)知,∠E =∠∠DBE =∠ACD , ∴∠E =∠ACD ,∴AE =AC =AB =6.在Rt △ABD 中,AB =6,BD =8,∠ADE =∠ACB ,∴sin ∠ADB = = ,即sin ∠ACB = 683434(3)证明:由(2)知,OA 是△BDE 的中位线,∴OA ∥DE ,OA = DE .12∴△CDF ∽△AOF , ∴ = = , CD AO DF OF 23∴CD = OA = DE ,即CD = CE ,231314∵AC =AE ,AH ⊥CE ,∴CH =HE = CE ,12∴CD = CH ,12∴CD =DH .4.【正确答案】(1)证明:∵四边形ABCD 是圆内接四边形,∴∠ECB=∠BAD.(2)证明:连结OB ,OD ,在△ABO 和△DBO 中, ,∴△ABO ≌△DBO (SSS ),{AB =BDBO =BOOA =OD ∴∠DBO=∠ABO ,∵∠ABO=∠OAB=∠BDC ,∴∠DBO=∠BDC , ∴OB ∥ED ,∵BE ⊥ED ,∴EB ⊥BO , ∴BE 是⊙O 的切线5.【正确答案】(1)证明:连接OE 、EC ,∵AC 是⊙O 的直径,∴∠AEC=∠BEC=90°,∵D 为BC 的中点,∴ED=DC=BD ,∴∠1=∠2,∵OE=OC ,∴∠3=∠4,∴∠1+∠3=∠2+∠4,即∠OED=∠ACB ,∵∠ACB=90°,∴∠OED=90°,∴DE 是⊙O 的切线(2)解:由(1)知:∠BEC=90°,∵在Rt △BEC 与Rt △BCA 中,∠B=∠B ,∠BEC=∠BCA ,∴△BEC ∽△BCA ,∴ = ,BE BC BC BA ∴BC 2=BE•BA ,∵AE :EB=1:2,设AE=x ,则BE=2x ,BA=3x ,∵BC=6,∴62=2x•3x ,解得:x= ,6即AE= 66.【正确答案】(1)解:(1)直线BC 与⊙O 相切;连结OD ,如图所示,∵OA=OD ,∴∠OAD=∠ODA ,∵∠BAC 的角平分线AD 交BC 边于D ,∴∠CAD=∠OAD ,∴∠CAD=∠ODA ,∴OD ∥AC ,∴∠ODB=∠C=90°,即OD ⊥BC .又∵直线BC 过半径OD 的外端,∴直线BC 与⊙O 相切.(2)解:①设OA=OD=r ,在Rt △BDO 中,∠B=30°,∴OB=2r ,在Rt △ACB 中,∠B=30°,∴AB=2AC=6,∴3r=6,解得r=2.②在Rt △ACB 中,∠B=30°,∴∠BOD=60°.∴.∴所求图形面积为.7.【正确答案】(1)证明:如图,方法1:连接OD 、CD .∵BC 是直径,∴CD ⊥AB .∵AC=BC .∴D 是AB 的中点.∵O 为CB 的中点,∴OD ∥AC .∵DF ⊥AC ,∴OD ⊥EF .∴EF 是圆O 的切线.方法2:∵AC=BC ,∴∠A=∠ABC ,∵OB=OD ,∴∠DBO=∠BDO ,∵∠A+∠ADF=90°∴∠EDB+∠BDO=∠A+∠ADF=90°.即∠EDO=90°,∴OD ⊥ED∴EF 是圆O 的切线.(2)解:连BG .∵BC 是直径,∴∠BDC=90°.∴CD= =8.AC 2−AD 2∵AB•CD=2S △ABC =AC•BG ,∴BG= = = .AB ⋅CD AC 9610485∴CG= = .BC 2−BG 2145∵BG ⊥AC ,DF ⊥AC ,∴BG ∥EF .∴∠E=∠CBG ,∴cos ∠E=cos ∠CBG= = .BG BC 24258.【正确答案】(1)解:∵△ABC 是等边三角形,∴∠ACB=∠ACE=60°,∴∠ADE=180°﹣∠ACE=120°(2)解:∵⊙O 的直径是AC , ∴∠AEC=90°,即AE ⊥BC .又∵AB=AC ,∴∠BAE=∠CAE .∵2∠BCF=∠BAC ,∴∠BCF=∠CAE .∵∠CAE+∠ECA=90°,∴∠BCF+∠ECA=90°,即∠ACF=90°.又AC 是直径,∴直线CF 是⊙O 的切线9.【正确答案】(1)证明:如图,连接OG.∵EG=EK ,∴∠KGE=∠GKE=∠AKH ,又OA=OG ,∴∠OGA=∠OAG , ∵CD ⊥AB ,∴∠AKH+∠OAG=90°,∴∠KGE+∠OGA=90°,∴EF 是⊙O 的切线.(2)解:①∵AC ∥EF ,∴∠E=∠C , 又∠C=∠AGD ,∴∠E=∠AGD ,又∠DKG=∠CKE ,∴△KGD ∽△KGE.②连接OG ,如图所示.∵,AK= ,cosC =4510设 ,∴ , ,则 cosC =45=CHAC =kCH =4k AC =5k AH =3k KE=GE ,AC ∥EF ,∴CK=AC=5k ,∴HK=CK -CH=k.在Rt △AHK 中,根据勾股定理得AH 2+HK 2=AK 2,即 , , , ,则 ,(3k)2+k 2=(10)2k =1CH =4AC =5AH =3设⊙O 半径为R ,在Rt △OCH 中,OC=R ,OH=R -3k ,CH=4k ,由勾股定理得:OH 2+CH 2=OC 2, ,∴(R−3)2+42=R 2R =256在Rt △OGF 中,,∴ ,cosC =cos∠GOF =45=OG OF OF =12524∴BF =OF−OB =12524−256=252410.【正确答案】(1)解:如图,连接OA ,OD ,OE ,∵AB 是⊙O 的切线,点D 为切点,∴∠ADO=90°,∵AD=AE ,OD=0E ,AO=AO ,∴△AOD ≌△AOE ,∴∠ADO=∠AEO=90°,∴AC 是⊙O 的切线,点E 为切点;(2)解:根据题意,四边形BCHG 的周长为BC+CH+BG+HG , ∵ , ,∠A =90°AB =AC =4∴∠B=∠C=45°,BC=4 ,2∵∠ADO=∠AEO=90°,OD=0E ,∴∠DOB=∠EOC=45°,△BOD ≌△COE ,∴OB=OC ,BD=CE ,∴∠EOD=90°,∠AOB=90°,∠BAO=45°,∴BD=OD=DA=CE= AB=2,12∵AB ,AC ,GH 都是⊙O 的切线,∴HF=HE ,GD=GF ,∴四边形BCHG 的周长为BC+CE+EH+GH+BD+GD =BC+CE+BD+GH+HF+FG = BC+CE+BD+2GH =4+4 +2GH ,2∵GH 是变量,∴四边形BCHG 的周长不是定值,这个结论不符合题意;∵AB ,AC ,GH 都是⊙O 的切线,根据切线长定理,得GO 平分∠DOF ,HO 平分∠EOF ,∴∠GOH=∠GOF+∠HOF= ∠DOF+ ∠EOF= (∠DOF+∠EO )121212= ∠EOD ,12∵∠EOD=90°,∴∠GOH=45°,是个定值,故该结论符合题意(3)解:根据题意,GD=GF=x-2,HE=HF=y-2, ∴GH=x+y-4,AG=4-x ,AH=4-y ,在直角三角形AGH 中, ,AG 2+AH 2=GH 2∴ ,(x−2)2+(y−2)2=(x +y−4)2整理,得y= ,且2<x <4,8x 当x=y 时,∴AG=AH ,∴AG :AB=AH :AC ,∴GH ∥BC ,∴OF ⊥GH ,∵BG=CH ,∠B=∠C ,BO=CO ,∴△BOG ≌△COH ,∴GO=HO ,∴GF=FH ,∴A ,F ,O 三点一线,∴∠DOF=∠EOF , ∴弧DF=弧EF ,故点F 是弧DE 的中点.11.【正确答案】(1OD ,∵AB 是直径,∴∠ADB =90°,又∵AB =AC ,∴BD =CD ,∠BAD =∠CAD ,∵AO =BO ,BD =CD ,∴OD ∥AC ,∵DM ⊥AC ,∴OD ⊥MN ,又∵OD 是半径,∴MN 是⊙O 的切线;(2)证明:∵AB =AC , ∴∠ABC =∠ACB ,∵∠ABC+∠BAD =90°,∠ACB+∠CDM =90°,∴∠BAD =∠CDM ,∵∠BDN =∠CDM ,∴∠BAD =∠BDN ,又∵∠N =∠N ,∴△BDN ∽△DAN ,∴,BN DN =DNAN ∴DN 2=BN•AN =BN•(BN+AB )=BN•(BN+AC );(3)解:∵BC =6,BD =CD , ∴BD =CD =3,∵cosC = = ,35CD AC ∴AC =5,∴AB =5,∴AD = = =4,AB 2−BD 225−9∵△BDN ∽△DAN ,∴ = = ,BN DN =DN AN BD AD 34∴BN = DN ,DN = AN ,3434∴BN = ( AN )= AN ,3434916∵BN+AB =AN ,∴ AN+5=AN 916∴AN = ,807∴DN = AN = .3460712.【正确答案】(1)证明:连接OC ,OE ,∵OC=OE ,∴∠OEC=∠OCE ,∵E 是 的中点,AB ∴ ,AE =BE ∴∠AOE=∠BOE=90°,∴∠OEC+∠ODE=90°,∵PC=PD ,∴∠PCD=∠PDC ,∵∠PDC=∠ODE ,∴∠PCD=∠ODE ,∴∠PCD+∠OCD=∠ODE+∠OEC=90°,∴OC ⊥PC ,∴PC 是⊙O 的切线;(2)解:连接AC ,BE ,BC , ∵∠ACD=∠DBE ,∠CAD=∠DEB ,∴△ACD ∽△EBD ,∴,AD DE =CDBD ∴CD•DE=AD•BD=(AO-OD )(AO+OD )=AO 2-OD 2;∵AB 为⊙O 的直径,∴∠ACB=90°,∵∠PCO=90°,∴∠ACP=∠BCO ,∵∠BCO=∠CBO ,∴∠ACP=∠PBC ,∵∠P=∠P ,∴△ACP ∽△CBP ,∴ ,PC PB =PA PC ∴PC 2=PB•PA=(PD+DB )(PD-AD )=(PD+OD+OA )(PD+OD-OA )=(PD+OD )2-OA 2=PD 2+2PD•OD+OD 2-OA 2,∵PC=PD ,∴PD 2=PD 2+2PD•OD+OD 2-OA 2,∴OA 2-OD 2=2OD•PD ,∴CD•DE=2OD•PD ;∵AB=8,∴OA=4,由CD•DE=AO 2-OD 2;∵CD•DE=15,∴15=42-OD 2,∴OD=1(负值舍去),∴AD=3,由CD•DE=2OD•PD ,∴PD= ,CD•DE 2OD =152∴PA=PD-AD= .9213.【正确答案】(1)证明:∵AD 为的直径,BE =CE ,⊙O ∴,AD ⊥BC ∴,∠AEC =90°∵,DF ∥BC ∴,∠ADF =∠AEC =90°∴,且OD 是的半径,DF ⊥AD ⊙O ∴DF 是的切线;⊙O (2)解:连接CD ,∵,AB =6,sin∠BAD =13∴CE =BE =2,∴,AE =AB 2−BE 2=42∵,AD ⊥BC ∴AC =AB =6,∵,cos∠CAD =AE AC =AC AD ∴,426=6AD ∴,AD =922∵,tan∠CAD =DF AD =CEAE ∴,DF922=242∴(注:答案不唯一,可利用两个三角形相似进行解答).DF =9414.【正确答案】(1,OD ∵在中,,,RtΔABC ∠BAC =90°∠C =30°∴,AB =12BC∵是的中点,∴,D BC BD =12BC∴,∴,AB =BD ∠BAD =∠BDA ∵,∴,OA =OD ∠OAD =∠ODA ∴,即,∠ODB =∠BAO =90°OD ⊥BC(2);或23π13ππ15.【正确答案】(1)证明:如图1,连接OG .∵EF 切⊙O 于G ,∴OG ⊥EF ,∴∠AGO+∠AGE=90°,∵CD ⊥AB 于H ,∴∠AHD=90°,∴∠OAG+∠AKH=90°,∵OA=OG ,∴∠AGO=∠OAG ,∴∠AGE=∠AKH ,∵∠EKG=∠AKH ,∴∠EKG=∠AGE ,∴KE=GE(2)证明:设∠FGB=α,∵AB 是直径,∴∠AGB=90°,∴∠AGE=∠EKG=90°﹣α,∴∠E=180°﹣∠AGE﹣∠EKG=2α,∵∠FGB= ∠ACH ,12∴∠ACH=2α,∴∠ACH=∠E ,∴CA ∥FE(3)解:作NP ⊥AC 于P .∵∠ACH=∠E ,∴sin ∠E=sin ∠ACH= ,AH AC =35设AH=3a ,AC=5a ,则CH= ,tan ∠CAH= ,AC 2−CH 2=4a CH AH =43∵CA ∥FE ,∴∠CAK=∠AGE ,∵∠AGE=∠AKH ,∴∠CAK=∠AKH ,∴AC=CK=5a ,HK=CK﹣CH=4a ,tan ∠AKH= =3,AK= ,AH HK AH 2+HK 2=10a ∵AK= ,10∴ ,10a =10∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四边形BGKH 中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG ,∵∠ACN=∠ABG ,∴∠AKH=∠ACN ,∴tan ∠AKH=tan ∠ACN=3,∵NP ⊥AC 于P ,∴∠APN=∠CPN=90°,在Rt △APN 中,tan ∠CAH=,设PN=12b ,则AP=9b ,PN AP =43在Rt △CPN 中,tan ∠ACN= =3,PNCP ∴CP=4b ,∴AC=AP+CP=13b ,∵AC=5,∴13b=5,∴b= ,∴CN= = = .513PN 2+CP 2410⋅b 20131016.【正确答案】(1)解:如图 ,作 的垂直平分线,交 于 ,以 为半径作⊙O , 1BC BC O OB 则 ⊙O 即为所作;OD OE(2)解:如图2,连接,,∵O BC D AC是的中点,是的中点,∴OD△ACB是的中位线,∴OD//AB,∴∠COD=∠B∠DOE=∠OEB,,∵OE=OB,∴∠OEB=∠B,∴∠COD=∠DOE,∵OC=OE OD=OD,,∴△OCD△OED(SAS)≌,∴∠OED=∠OCD=90°,∵OE⊙O是的半径,∴DE⊙O是的切线;(3)解:如图2,,∵OB =OE ,∴∠OEB =∠B =30° ,∴∠COE =∠OEB +∠B =60°由(2)知: ≌ ,△OCD △OED ,∴∠COD =∠DOE =30° ,∵BC =6 ,∴OC =3 中, ,Rt △OCD CD =3 与 、 组成的阴影部分面积∴⊙O DE DC .=2S △OCD −S 扇形OCE =2×12×3×3−60π×32360=33−3π2。

中考数学与圆的切线相关的证明与计算

中考数学与圆的切线相关的证明与计算圆的切线:经过半径的外端并且垂直于这条半径的直线是圆的切线 .一、圆的切线的判定及相关计算1.如图,以△ABC 的边AB 为直径作⊙O,与BC 交于点D,点E 是弧BD 的中点,连接AE 交BC 于点F,∠ACB=2∠BAE .求证:AC 是⊙O 的切线.例题1图【分析】连接AD,利用等弧所对圆周角相等及∠ACB=2∠BAE 可得到∠BAD=∠BCA,再结合直径所对圆周角为直角即可得证.证明:如解图,连接AD.例题1解图∵点E 是弧BD 的中点,∴弧BE =弧DE,∴∠1=∠2 .∵∠BAD=2∠1, ∠ACB=2∠1,∴∠ACB=∠BAD.∵AB为⊙O 直径,∴∠ADB=∠ADC=90°.∴∠DAC+∠C=90°.∵∠C=∠BAD,∴∠DAC+∠BAD=90°.∴∠BAC=90°,即AB⊥AC. 又∵AB 是⊙O 的直径,∴AC 是⊙O 的切线.证明切线的常用方法:1.直线与圆有交点,“连半径,证垂直”.(1) 图中有90°角时,证垂直的方法如下:①利用等角代换:通过互余的两个角之间的等量代换得证;②利用平行线性质证明垂直:如果有与要证的切线垂直的直线,则证明半径与这条直线平行即可;③利用三角形全等或相似:通过证明切线和其他两边围成的三角形与含90°的三角形全等或相似得证.(2)图中无90°角时:利用等腰三角形的性质,通过证明半径为所在等腰三角形底边的中线或角平分线,再根据“三线合一”的性质得证.2.直线与圆无交点,“作垂线,证相等”.2.如图,在Rt△ABC 中,∠C=90°,⊙O 是△ABC 的外接圆,点D 在⊙O 上,且弧AD=弧CD , 过点D 作CB 的垂线,与CB 的延长线相交于点E,并与AB 的延长线相交于点F .(1) 求证:DF 是⊙O 的切线;(2) 若⊙O 的半径R=5,AC=8,求DF 的长.例题2图【解析】(1) 证明:如解图,连接DO 并延长,与AC 相交于点P.例题2解图∵弧AD = 弧CD,∴DP⊥AC.∴∠DPC=90°.∵DE⊥BC,∴∠CED=90°.∵∠C=90°.∴∠ODF=90°,而点D 在⊙O 上,∴DF 是⊙O 的切线;(2) 解:例题2解图∵∠C=90°,R=5,∴AB=2R=10.在Rt△ABC 中,根据勾股定理可得,BC=6 .∵∠DPC+∠C=180°,∴PD∥CE.∴∠CBA=∠DOF.∵∠C=∠ODF,∴△ABC ∽△FOD.∴CA / DF = BC / OD , 即8 / DF = 6 / 5 ,∴DF = 20 / 3 .类型二、切线性质的相关证明与计算3.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,过点B 作⊙O 的切线DE,与AC 的延长线交于点D,作AE⊥AC 交DE 于点E .(1) 求证:∠BAD=∠E;(2) 若⊙O 的半径为5,AC=8,求BE 的长.例题3图【解析】(1) 证明:∵⊙O 与DE 相切于点B,AB 为⊙O 的直径,∴∠ABE=90°.∴∠BAE+∠E=90°.又∵∠DAE=90°,∴∠BAD+∠BAE=90°.∴∠BAD=∠E;(2) 解:如解图,连接BC.例题3解图∵AB 为⊙O 的直径,∴∠ACB=90°,∵AC=8,AB=2 ×5=10 .∴在Rt△ACB 中,根据勾股定理可得BC = 6 .又∵∠BCA=∠ABE=90°,∠BAD=∠E,∴△ABC ∽△EAB .∴AC / EB = BC / AB , 即8 / EB = 6 / 10 ,∴BE=40 / 3 .4.如图,⊙O 的半径OA=6,过点A 作⊙O 的切线AP,且AP=8,连接PO 并延长,与⊙O交于点B、D,过点B 作BC∥OA,并与⊙O 交于点C,连接AC、CD.(1) 求证:DC∥AP;(2) 求AC 的长.例题4图【解析】(1) 证明:∵AP 是⊙O 的切线,∴∠OAP=90°.∵BD 是⊙O 的直径,∴∠BCD=90°.∵OA∥CB,∴∠AOP=∠DBC,∴∠BDC=∠APO.∴DC∥AP;(2) 解:∵AO∥BC,OD=OB,例题4解图∴如解图,延长AO 交DC 于点E,则AE⊥DC,OE=1/2 BC,CE=1/2 CD.在Rt△AOP 中,根据勾股定理可得:OP=10.由(1) 知,△AOP∽△CBD,∴BD/OP = BC/OA = CD/AP , 即12/10 = BC/6 = DC/8 ,∴BC = 36/5 , DC = 48/5 .∴OE = 18/5 , CE = 24/5 , AE = OA + DE = 6 + 18/5 = 48/5 ,在Rt△AEC 中,根据勾股定理可得:AC = 24√5 / 5 .5.如图,AC 是⊙O 的直径,AB 是⊙O 的一条弦,AP 是⊙O 的切线.作BM=AB,并与AP 交于点M,延长MB 交AC 于点E,交⊙O 于点D,连接AD.(1) 求证:AB=BE;(2) 若⊙O 的半径R=5,AB=6,求AD 的长.例题5图【解析】(1) 证明:∵AP 是⊙O 的切线,∴∠EAM=90°,∴∠BAE+∠MAB=90°,∠AEM+∠AME=90°. 又∵AB=BM,∴∠MAB=∠AMB,∴∠BAE=∠AEB,∴AB=BE;(2) 解:如解图,连接BC.例题5解图∵AC 是⊙O 的直径,∴∠ABC=∠EAM=90°,在Rt△ABC 中,AC=10,AB=6,根据勾股定理可得:BC = 8 . 由(1) 知,∠BAE=∠AEB,∴△ABC∽△EAM,∴∠C=∠AME,AC/EM = BC/AM , 即10/2 = 8/AM ,∴AM = 48/5 .又∵∠D=∠C,∴∠D=∠AMD.∴AD=AM=48/5 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考复习专题--------圆的切线的判定与性质知识考点:1、掌握切线的判定及其性质的综合运用,在涉及切线问题时,常连结过切点的半径,切线的判定常用以下两种方法:一是连半径证垂直,二是作垂线证半径。

2、掌握切线长定理的灵活运用,掌握三角形和多边形的内切圆,三角形的内心。

精典例题:一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD.求证:PA与⊙O相切.例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M求证:DM与⊙O相切.例4 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上.求证:DC是⊙O的切线例5 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP.求证:PC是⊙O的切线.例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE与△CFG的外接圆相切.二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA 是⊙O的半径就行了,简称:“作垂直;证半径”例7 如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.例8 已知:如图,AC,BD与⊙O切于A、B,且AC∥BD,若∠COD=900.求证:CD是⊙O的切线.[习题练习]例1如图,AB是⊙O的弦(非直径),C、D是AB上两点,并且OC=OD,求证:AC=BD.例2已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,与AC•交于点E,求证:△DEC为等腰三角形.例3如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交BAB•的延长线于D ,求证:AC=CD .例4如图20-12,BC 为⊙O 的直径,AD ⊥BC ,垂足为D ,AB AF =,BF 和AD 交于E , 求证:AE=BE .例5如图,AB 是⊙O 的直径,以OA 为直径的⊙O 1与⊙O 2的弦相交于D ,DE ⊥OC ,垂足为E .(1)求证:AD=DC .(2)求证:DE 是⊙O 1的切线.例6如图,已知直线MN 与以AB 为直径的半圆相切于点C ,∠A=28°.(1)求∠ACM 的度数.(2)在MN 上是否存在一点D ,使AB ·CD=AC ·BC ,说明理由. 例7如图,在Rt △ABC 中,∠C=90°,AC=5,BC=12,⊙O 的半径为3. (1)若圆心O 与C 重合时,⊙O 与AB 有怎样的位置关系? (2)若点O 沿CA 移动,当OC 等于多少时,⊙O 与AB 相切?19.如图,Rt△ABC 内接于⊙O,AC=BC ,∠BAC 的平分线AD 与⊙0交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连结CD ,G 是CD 的中点,连结0G .(1)判断0G 与CD 的位置关系,写出你的结论并证明;(2)求证:AE=BF ;(3)若3(2OG DE ⋅=-,求⊙O 的面积。

为⋂BC 的中点,OE12、如图,割线ABC 与⊙O 相交于B 、C 两点,D 为⊙O 交BC 于F ,DE 交AC 于G ,∠ADG =∠AGD 。

(1)求证:AD 是⊙O 的切线;(2)如果AB =2,AD =4,EG =2,求⊙O 的半径。

13、如图,在△ABC 中,∠ABC =900,O 是AB 上一点,以O 为圆心,OB 为半径的圆与AB 交于点E ,与AC 切于点D ,AD =2,AE =1,求BCD S ∆。

1如图,等腰三角形ABC 中,AC =BC =10,AB =12。

以BC 为直径作⊙O 交AB 于点D ,交AC 于点G ,DF ⊥AC ,垂足为F ,交CB 的延长线于点E 。

(1)求证:直线EF 是⊙O 的切线; (2)求CF :CE 的值。

2如图,AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线AD 交⊙点E ,OE 交AD 于点F .⑴求证:DE 是⊙O 的切线;⑵若AC AB =3如图,Rt ABC △中,90ABC ∠=°,以AB 为直径作O ⊙交DE . (1)求证:直线DE 是O ⊙的切线; (2)连接OC 交DE 于点F ,若OF CF =,求tan ACO ∠4.如图,点O 在∠APB 的平分线上,⊙O 与PA 相切于点C .(1) 求证:直线PB 与⊙O 相切; (2) PO 的延长线与⊙O 交于点E .若⊙O 的半径为3,PC=4已知:如图,在Rt ABC △中,90C ∠=,点O 在AB 上,以O AB 分别交于点D E ,,且CBD A ∠=∠.(1)判断直线BD 与O 的位置关系,并证明你的结论; (2)若:8:5AD AO =,2BC =,求BD 的长. 解:(1) (2)如图18,四边形ABCD 内接于O ,BD 是O 的直径,BDE ∠. (1)求证:AE 是O 的切线;(2)若301cm DBC DE ∠==,,求BD 的长.如图所示,ABC △是直角三角形,90ABC ∠=,以E ,点D 是BC 边的中点,连结DE . (1)求证:DE 与O 相切;(2)若O ,3DE =,求AE .24、如图,AB 是⊙O 的直径,∠BAC=30°,M 是OA 于点N ,交BC 的延长线于点E ,直线CF 交EN 于点F ,且∠ECF=∠E. (1)证明CF 是⊙O 的切线;(2)设⊙O 的半径为1,且AC=CE ,求MO 的长.【例1】如图,AC 为⊙O 的直径,B 是⊙O 外一点,AB 交⊙O 于E 点,过E 点作⊙O 的切线,交BC 于D 点,DE =DC ,作EF ⊥AC 于F 点,交AD 于M 点。

(1)求证:BC 是⊙O 的切线; (2)EM =FM 。

证明:【例2】如图,△ABC 中,AB =AC ,O 是BC 的中点,以O 为圆心的圆与AB 相切于点D 。

求证:AC 是⊙O 的切线。

【例3】如图,已知AB 是⊙O 的直径,BC 为⊙O 的切线,切点为B ,OC 平行于弦AD ,OA =r 。

(1)求证:CD 是⊙O 的切线; (2)求OC AD ⋅的值; (3)若AD +OC =r 29,求CD 的长。

探索与创新:【问题一】如图,以正方形ABCD 的边AB 为直径,在正方形内部作半圆,圆心为O ,CG 切半圆于E ,交AD 于F ,交BA 的延长线于G ,GA =8。

(1)求∠G 的余弦值; (2)求AE 的长。

【问题二】如图,已知△ABC 中,AC =BC ,∠CAB =α(定值),⊙O 的圆心O 在AB 上,并分别与AC 、BC 相切于点P 、Q 。

(1)求∠POQ ;(2)设D 是CA 延长线上的一个动点,DE 与⊙O 相切于点M ,点E 在CB 的延长线上,试判断∠DOE 的大小是否保持不变,并说明理由。

圆的切线证明及线段长求解在在中考中的常见题型1、已知:如图,在矩形ABCD 中,点O 在对角线BD 上,以OD 的长为半径的⊙O 与AD ,BD 分别交于点E 、点F ,且∠ABE =∠DBC . •例1图321MFO ED CBA 例2图E O D CB A•例3图321O D CB A•问题一图G FEO DCBAQP CBA(第24题) EB 图18A文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.N MOFCBACF(1)判断直线BE 与⊙O 的位置关系,并证明你的结论; (2)若33sin =∠ABE ,2=CD ,求⊙O 的半径. 2、已知:如图,⊙O 的半径OC 垂直弦AB 于点H ,连接BC ,过点A 作弦AE ∥BC ,过点C 作CD ∥BA 交EA 延长线于点D ,延长CO 交AE 于点F . (1)求证:CD 为⊙O 的切线;(2)若BC =5,AB =8,求OF 的长.3、如图,ABC ∆是等腰三角形,AC AB =,以AC 为 直径的⊙O 与BC 交于点D ,AB DE ⊥,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为2,1=BE ,求A cos 的值. 4、已知:如图,AB 是O ⊙的直径,BC 切O 于B ,AC 交O ⊙于P ,D 为BC 边的中点,连结DP .(1) DP 是O ⊙的切线; (2) 若3cos 5A =, O ⊙的半径为5, 求DP 的长. 5、如图,在ABC △中,AB AC =,AE 是角平分线,BM 平分ABC ∠交AE 于点M ,经过B M ,两点的O ⊙交BC 于 点G ,交AB 于点F ,FB 恰为O ⊙的直径. (1)求证:AE 与O ⊙相切;(2)当14cos 3BC C ==,时,求O ⊙的半径.6、如图,AB 是O ⊙的直径,30BAC ∠=︒,M 是OA 上一点,过M 作AB 的垂线交AC 于点N,交BC 的延长线于点E,直线CF 交EN 于点F,且.ECF E ∠=∠ (1)证明CF 是O ⊙的切线(2) 设⊙O 的半径为1.且AC=CE,求MO 的长.7、如图,已知AB 为⊙O 的直径,DC 切⊙O 于点C ,过D 点作 DE ⊥,垂足为E ,DE 交AC 于点F . 求证:△DFC 是等腰三角形.8、在Rt △AFD 中,∠F =90°,点B 、C 分别在AD 、FD 上,以AB 为直径的半圆O 过点C ,联结AC ,将△AFC 沿AC 翻折得△AEC ,且点E 恰好落在直径AB 上.(1)判断:直线FC 与半圆O 的位置关系是OF E DC B AEOB HC AD FFC DO第3题图O PCD BOBGE CM FF OED C BA (9题图)_______________;并证明你的结论.(2)若OB =BD =2,求CE 的长.9、已知:如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 分别交BC 、AC 于点D 、E , 联结EB 交OD 于点F . (1)求证:OD ⊥BE ; (2)若DE=5,AB=5,求AE 的长.10、如图所示,AB 是⊙O 的直径,OD ⊥弦BC 于点F ,且交⊙O 于点E ,若∠AEC =∠ODB .(1)判断直线BD 和⊙O 的位置关系,并给出证明; (2)当AB =10,BC =8时,求BD 的长.11、已知:AB 是⊙O 的弦,OD ⊥AB 于M 交⊙O 于点D ,CB ⊥AB 交AD 的延长线于C .(1)求证:AD =DC ;(2)过D 作⊙O 的切线交BC 于E ,若DE =2,CE=1,求⊙O 的半径.12、如图,AB 为⊙O 的直径,AD 平分BAC ∠交⊙O 于点D ,AC 交AC DE ⊥的延长线于点E ,B B F A ⊥交AD 的延长线于点F ,(1)求证:DE 是⊙O 的切线;(2)若,3=DE ⊙O 的半径为5,求BF 的长.13、如图,等腰三角形ABC 中,AC =BC =6,AB =8.以BC 为直径作⊙O 交AB 于点D ,交AC 于点G ,DF ⊥AC ,垂足为F ,交CB 的延长线于点E .(1)求证:直线EF 是⊙O 的切线; (2)求sin ∠E 的值.14、如图,AB 为半圆O 的直径,点C 在半圆O 上,过点O 作BC的平行线交AC 于点E ,交过点A 的直线于点D,且BAC D ∠=∠.(1)求证:AD 是半圆O 的切线;(2)若2=BC ,2=CE ,求AD 的长. 15、已知:如图,在△ABC 中,AB=BC ,D 是AC 中点,BE 平分∠ABD 交AC 于点E ,点O 是AB 上一点,⊙O 过B 、E 两点, 交BD 于点G ,交AB 于点F . (1)求证:AC 与⊙O 相切;(2)当BD=2,sinC=12时,求⊙O 的半径.16、如图,AB 是⊙O 的直径,点C 在⊙O 上,M 是 BC ⌒的中点,OM 交⊙O 的 切线BP 于点P .(1)判断直线PC 和⊙O 的位置关系,并证明你的结论.(2)若sin ∠BAC=0.8,⊙O 的半径为2, 求线段PC 的长.AF D O EBGCA CE O BD FO F EDCB A17、如图,在⊙O 中,AB 是直径,AD 是弦,∠ADE = 60°,∠C = 30°. (1)判断直线CD 是否为⊙O 的切线,并说明理由; (2)若CD = 33 ,求BC 的长.18、已知,如图,直线MN 交⊙O 于A,B 两点,AC 是直径, AD 平分∠CAM 交⊙O 于D ,过D 作DE⊥MN 于E .(1)求证:DE 是⊙O 的切线;(2)若6DE =cm ,3AE =cm ,求⊙O 的半径.19、已知:如图,AB 为⊙O 的直径,弦OD AC //,BD 切⊙O 于B ,联结CD . (1)判断CD 是否为⊙O 的切线,若是请证明;若不是请说明理由. (2)若2=AC ,6=OD ,求⊙O 的半径.20、如图,⊙O 的直径AB=4,C 、D 为圆周上两点,且四边形OBCD 是菱形,过点D 的直线EF ∥AC ,交BA 、BC 的延长线于点E 、F . (1)求证:EF 是⊙O 的切线;(2)求DE 的长.21、已知:在⊙O 中,AB 是直径,AC 是弦, 于点E ,过点C 作直线FC ,使∠FCA=∠AOE,AB 的延长线于点D.(1)求证:FD 是⊙O 的切线; (2)设OC 与BE 相交于点G ,若OG =2,求⊙O半径的长;(3)在(2)的条件下,当OE =3时,求图中阴部分的面积.22、已知:如图,点A 是⊙O 上一点,半径OC 的延长线与过点A 的直线交于点B ,BC OC =,OB AC 21=. (1)求证:AB 是⊙O 的切线; (2)若︒=∠45ACD ,2=OC ,求弦CD 的长.23、如图,点D 是⊙O 直径CA 的延长线上一点,点B 在⊙O 上,且AB =AD =AO . (1)求证:BD 是⊙O 的切线;(2)若点E 是劣弧BC 上一点,弦AE 与BC 相交于点F ,且CF =9,cos∠BFA =32,求EF 的长.24、如图,已知AB 为⊙O 的弦,C 为⊙O 上一点,∠C =∠BAD ,且BD ⊥AB 于B . (1)求证:AD 是⊙O 的切线;(2)若⊙O 的半径为3,AB =4,求AD 的长.25、已知:如图,AB 是⊙O 的直径,E 是AB 延长线上的一点,D 是⊙O 上的一点,且AD 平分∠FAE ,ED ⊥AF 交AF 的延长线于点C .(1)判断直线CE 与⊙O 的位置关系,并证明你的结论; (2)若AF ∶FC =5∶3,AE =16,求⊙O 的直径AB 的长.26、已知:如图,在△ABC 中,AB = AC ,点D 是边BC 的中点.以BD 为直径作圆O ,交边AB 于点P ,联结PC ,交AD 于点E .(1)求证:AD 是圆O 的切线;O BCAOFEDCBAFB DEO ACABC DOF O EDCAB AC F (2)若PC 是圆O 的切线,BC = 8,求DE 的长. 27、已知:如图,在△ABC 中,90ACB ∠=,∠ABC 的平分线BD 交AC 于点D ,DE ⊥DB 交AB 于点E ,过B 、D 、E 三点作⊙O . (1)求证:AC 是⊙O 的切线;(2)设⊙O 交BC 于点F ,连结EF ,若BC =9, CA =12.求EFAC的值.28、在Rt △ABC 中,∠C=90, BC =9, CA =12,∠ABC 的平分线BD 交AC于点D ,DE ⊥DB 交AB 于点E ,⊙O 是△BDE 的外接圆,交BC 于点F (1)求证:AC 是⊙O 的切线; (2)联结EF ,求EFAC的值 14、如图,AB 是半圆(圆心为O )的直径,OD 是半径,BM 切半圆于B ,OC 与弦AD 平行且交BM 于C 。

相关文档
最新文档