2021年湖南省永州市初中毕业学业考试模拟数学试题(四)(word版含答案)
湖南省永州市2021版中考数学试卷A卷(模拟)

湖南省永州市2021版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七上·融安期中) 下列各组数中,数值相等的是()A . 32和23B . -23和(-2)3C . -32和(-3)2D . -(3×2)2和-3×222. (2分)有理数a、b、c满足a+b+c=0,abc=-9,则a、b、c中负数的个数是()A . 0 ;B . 1 ;C . 2 ;D . 3 ;3. (2分)某几何体的三视图如图所示,则组成该几何体共用了()小方块。
A . 12块B . 9块C . 7块D . 6块4. (2分)(2019·碑林模拟) 如图,已知矩形ABCD中,BC=2AB,点E在BC边上,连接DE、AE,若EA平分∠BED,则的值为()A .B .C .D .5. (2分) (2019九上·镇江期末) 下列说法正确的是()A . 某种彩票的中奖机会是则买100张这种彩票一定会中奖B . 为了解全国中学生的睡眠情况,应该采用普查的方式C . 一组数据3,4,5,5,5,6,10的平均数大于中位数D . 同时抛掷两枚均匀的硬币,出现一枚正面朝上且另一枚反面朝上的概率是6. (2分) (2015七下·滨江期中) 在早餐店里,王伯伯买5个馒头,3个包子,老板少收2元,只要5元.李太太买了11个馒头,5个包子,老板以售价的九折优惠,只要9元.若设馒头每个x元,包子每个y元,则下列哪一个二元一次方程组可表示题目中的数量关系?()A .B .C .D .7. (2分) (2018九上·金华月考) 已知抛物线过、、、四点,则与的大小关系是()A . >B . =C . <D . 不能确定8. (2分)已知a,b为实数,则解可以为– 2 < x < 2的不等式组是()A .B .C .D .9. (2分)(2017·南宁模拟) 如图,直线AB与半径为2的⊙O相切于点C,点D,E,F是⊙O上三个点,EF∥AB,若EF=2 ,则∠EDC的度数为()A . 60°B . 90°C . 30°D . 75°10. (2分)把方程x2﹣3x=10左边配成一个完全平方式,方程两边应同加上()A . 9x2B .C . 9D .11. (2分)已知P(3,4)与Q(x,y)关于原点对称,则线段PQ=()A . 6B . 8C . 10D . 712. (2分)⊙O的半径r=10cm,圆心到直线l的距离OM=8cm,在直线l上有一点P,且PM=6cm,则点p().A . 在⊙O内B . 在⊙O上C . 在⊙O外D . 可能在⊙O内也可能在⊙O外二、填空题 (共6题;共8分)13. (1分) (2015七下·衢州期中) 用科学记数法表示0.00000041=________.14. (1分)如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则cosD=________ .15. (1分)在Rt△ABC中,∠C=90°,AC=1,AB=2,则sinA=________16. (3分)观察下面一列数:﹣1,2,﹣3,4,﹣5,6,﹣7,…将这列数排成下列形式:按照上述规律排下去,那么第10行从左边数第9个数是________;数﹣201是第________行从左边数第________个数.17. (1分) (2019八下·鄂城期末) 点P是菱形ABCD的对角线AC上的一个动点,已知AB=1,∠ADC=120°, 点M,N分别是AB,BC边上的中点,则△MPN的周长最小值是________.18. (1分)燃灯佛舍利塔(简称燃灯塔)是通灯塔的高度.他先测量出燃灯塔落在地面上的影长为12米,然后在同一时刻立一根高2米的标杆,测得标杆影长为0.5米,那么燃灯塔高度为________米.三、解答题 (共7题;共74分)19. (5分)(2017九上·哈尔滨期中) 先化简,再求代数式的值,其中.20. (15分)(2018·高邮模拟) 某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择那种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)21. (13分)(2018·益阳模拟) 在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分组频数频率第一组(0≤x<15)30.15第二组(15≤x<30)6a第三组(30≤x<45)70.35第四组(45≤x<60)b0.20(1)频数分布表中a=________,b=________,并将统计图补充完整________;(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?22. (10分)(2017·南漳模拟) 如图,在平面直角坐标系xOy中,一次函数y1=ax+b的图象分别与x,y轴交于点B,A,与反比例函数y2= 的图象交于点C,D,CE⊥x轴于点E,tan∠ABO= ,OB=4,OE=2.(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出当x<0且y1<y2时x的取值范围.23. (6分) (2017八下·洪山期中) B于E,交CD于F,连接DE、BF(1)求证:四边形DEBF是平行四边形;(2)当EF与BD满足条件________时,四边形DEBF是菱形.24. (15分)如图S2-2,在Rt△ABC中,∠C=90°,AC=20 cm , BC=15 cm.现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB向点B方向运动.如果点P的速度是4 cm/s,点Q的速度是2 cm/s,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动的时间为ts,求:(1)用含t的代数式表示Rt△CPQ的面积S;(2)当t=3秒时,这时,P、Q两点之间的距离是多少?(3)当t为多少秒时,S=S△ABC?25. (10分) (2017八下·重庆期中) 如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共8分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共74分)19-1、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、第11 页共11 页。
2021年湖南省永州市初中毕业学业考试模拟数学试题(一)(word版含答案)

2021年初中毕业学业考试模拟数学试卷(一)(考试用时:120分钟满分: 150分)一.选择题(每小题4分,共40分)1.12021-的相反数是()A.-2017 B.2017 C.12021-D.120212.当2<a<3时,代数式|a﹣3|+|2﹣a|的值是()A.﹣1 B.1 C.3 D.﹣33.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间 B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试 D.了解全市中小学生每天的零花钱4.如图,两个大小不同的实心球在水平面靠在一起组成如图所示的几何体,则该几何体的左视图是()A.两个外切的圆B.两个内切的圆C.两个内含的圆D.一个圆5.下列运算正确的是()A.a3+a3=a6 B.2(a+1)=2a+1 C.(ab)2=a2b2 D.a6÷a3=a26.如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B的度数为()A.80°B.40°C.60°D.50°7.把x3﹣16x分解因式,结果正确的是()A.x(x2﹣16) B.x(x﹣4)2 C.x(x+4)2 D.x(x+4)(x﹣4)8.sin60°的值等于()A.B.C.D.9.如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?( )A.向北直走700米,再向西直走100米B.向北直走100米,再向东直走700米C.向北直走300米,再向西直走400米D.向北直走400米,再向东直走300米10.下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.若﹣x3y a与x b y是同类项,则a+b的值为12.如图,AB是池塘两端,设计一方法测量AB的距离,取点C,连接AC、BC,再取它们的中点D、E,测得DE=15米,则AB= 米13.方程2x+3=7的解。
2021年中考数学试题及解析:湖南永州-解析版

湖南省永州市2021年中考数学试卷一、填空题(本大题共8小题,每小题3分,共24分)1、(2021•永州)的倒数是2021.考点:倒数。
专题:计算题。
分析:根据倒数的意义,乘积为1的两个数互为倒数.所以求一个数的倒数即用1除以这个数,所得的商即是.解答:解:的倒数为:1÷=2021,故答案为:2021.点评:此题考查的知识点是倒数,关键是要明确倒数的意义,要求一个数的倒数即用1除以这个数.2、(2021•永州)根据第六次全国人口普查公布的数据,按标准时间2021年11月1日0时登记的大陆人口约为1339000000人,将1339000000用科学记数法表示为 1.339×109人.考点:科学记数法—表示较大的数。
专题:推理填空题。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:1 339 000 000人=1.339×109人.故答案为:1.339×109人.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、因式分解:m2﹣m=m(m﹣1).考点:因式分解-提公因式法。
专题:计算题。
分析:式子的两项含有公因式m,提取公因式即可分解.解答:解:m2﹣m=m(m﹣1)故答案是:m(m﹣1).点评:本题主要考查了提取公因式分解因式,正确确定公因式是解题的关键.4、(2021•永州)永州市新田县的龙家大院至今已有930多年历史,因该村拥有保存完好的“三堂九井二十四巷四十八栋”明清建筑,而申报为中国历史文化名村.如图是龙家大院的一个窗花图案,它具有很好的对称美,这个图案是由:①正六边形;②正三角形;③等腰梯形;④直角梯形等几何图形构成,在这四种几何图形中既是轴对称图形又是中心对称图形的是①(只填序号).考点:中心对称图形;轴对称图形。
(中考精品卷)湖南省永州市中考数学真题(解析版)

永州市2022年初中学业水平考试数学试卷温馨提示:1、本试卷包括试题卷和答题卡.考生作答时,选择题和非选择题均须作答在答题卡上,在本试卷上作答无效.考生在答题卡上按答题卡中注意事项的要求答题.2、考试结束后,将本试卷和答题卡一并交回.3、本试题卷共6页,如有缺页,请申明.4、本试题卷共三道大题,26个小题.满分150分,考试时量120分钟.一、选择题(本大题共10个小题,每小题4分,共40分.每个小题只有一个正确选项,请将正确的选项填涂到答题卡上)1. 如图,数轴上点E对应的实数是( )A. 2-B. 1-C. 1D. 2【答案】A【解析】【分析】根据数轴上点E所在位置,判断出点E所对应的值即可;【详解】解:根据数轴上点E所在位置可知,点E在-1到-3之间,符合题意的只有-2;故选:A.【点睛】本题主要考查数轴上的点的位置问题,根据数轴上点所在位置对点的数值进行判断是解题的关键.2. 下列多边形具有稳定性的是( )A. B. C.D.【答案】D【解析】【分析】利用三角形具有稳定性直接得出答案.【详解】解:三角形具有稳定性,四边形、五边形、六边形都具有不稳定性,故选D .【点睛】本题考查三角形的特性,牢记三角形具有稳定性是解题的关键.3. 剪纸是我国具有独特艺术风格的民间艺术,反映了劳动人民对现实生活的深刻感悟.下列剪纸图形中,是中心对称图形的有( )① ② ③ ④A. ①②③B. ①②④C. ①③④D. ②③④ 【答案】A【解析】【分析】根据中心对称图形的定义判断即可;【详解】解:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;∴是中心对称图形的是:①②③;故选:A .【点睛】本题主要考查中心对称图形的定义,掌握中心对称图形的定义是解题的关键. 4. 水州市大力发展“绿色养殖”,单生猪养殖2021年共出栏7791000头,同比增长29.33%,成为湖南省生猪产业发展高地和标杆、将数7791000用科学记数法表示为( )A. 3779110⨯B. 577.9110⨯C. 67.79110⨯D. 70.779110⨯【答案】C【解析】【分析】根据科学记数法的表示形式为a ×10n ,其中1≤|a |<10,n 为整数,确定a 、n 的值即可.【详解】解:由题意知:7791000=67.79110⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n ,其中1≤|a |<10,n 为整数,正确确定a 的值以及n 的值是解题的关键.5. 下列各式正确的是( )= B. 020= C. 321a a -= D. ()224--=【答案】D【解析】【分析】利用二次根式性质化简、零指数幂、合并同类项、有理数减法运算即可判断。
湖南省永州市新田县重点名校2021-2022学年中考试题猜想数学试卷含解析

2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示的四张扑克牌背面完全相同,洗匀后背面朝上,则从中任意翻开一张,牌面数字是3 的倍数的概率为()A.14B.13C.12D.342.如图,直线AB 与▱ MNPQ 的四边所在直线分别交于A、B、C、D,则图中的相似三角形有()A.4 对B.5 对C.6 对D.7 对3.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A.1101002x x=+B.1101002x x=+C.1101002x x=-D.1101002x x=-4.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.5.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为()A.20°B.35°C.45°D.70°6.下列图形中,可以看作中心对称图形的是( )A.B.C.D.7.如图,在⊙O中,O为圆心,点A,B,C在圆上,若OA=AB,则∠ACB=()A.15°B.30°C.45°D.60°8.如图,PA、PB切⊙O于A、B两点,AC是⊙O的直径,∠P=40°,则∠ACB度数是()A.50°B.60°C.70°D.80°9.桌面上有A、B两球,若要将B球射向桌面任意一边的黑点,则B球一次反弹后击中A球的概率是()A.17B.27C.37D.4710.下列图案中,是轴对称图形的是()A.B.C.D.11.若31x-与4x互为相反数,则x的值是()A.1 B.2 C.3 D.412.某校航模小分队年龄情况如表所示,则这12名队员年龄的众数、中位数分别是()年龄(岁)12 13 14 15 16人数 1 2 2 5 2A.2,14岁B.2,15岁C.19岁,20岁D.15岁,15岁二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一组数据:1,2,a,4,5的平均数为3,则a=_____.14.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大、小和尚各有,人,则可以列方程组__________.15.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).16.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.17.若关于x的分式方程2233x mx x-=--有增根,则m的值为_____.18.空气质量指数,简称AQI,如果AQI在0~50空气质量类别为优,在51~100空气质量类别为良,在101~150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数共占总天数的百分比为______%.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边DE=0.4m ,EF=0.2m ,测得边DF 离地面的高度AC=1.5m ,CD=8m ,求树高.20.(6分)已知:如图,在平面直角坐标系xOy 中,抛物线23y ax bx =++的图像与x 轴交于点A (3,0),与y 轴交于点B ,顶点C 在直线2x =上,将抛物线沿射线 AC 的方向平移,当顶点C 恰好落在y 轴上的点D 处时,点B 落在点E 处.(1)求这个抛物线的解析式;(2)求平移过程中线段BC 所扫过的面积;(3)已知点F 在x 轴上,点G 在坐标平面内,且以点 C 、E 、F 、G 为顶点的四边形是矩形,求点F 的坐标.21.(6分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少. 球两红一红一白 两白 礼金券(元) 18 24 18 (1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.22.(8分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?23.(8分)观察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…第④个等式为;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.24.(10分)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上且AB=12cm(1)若OB=6cm.①求点C的坐标;②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;(2)点C与点O的距离的最大值是多少cm.25.(10分)某化工材料经销公司购进一种化工材料若干千克,价格为每千克40元,物价部门规定其销售单价不高于每千克70元,不低于每千克40元.经市场调查发现,日销量y(千克)是销售单价x(元)的一次函数,且当x=70时,y =80;x=60时,y=1.在销售过程中,每天还要支付其他费用350元.求y与x的函数关系式,并写出自变量x的取值范围;求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;当销售单价为多少元时,该公司日获利最大?最大利润是多少元?26.(12分)如图,Rt ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线交CB的延长线于点E,交AC于点F.(1)求证:点F是AC的中点;(2)若∠A=30°,AF=3,求图中阴影部分的面积.27.(12分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:6≈2.449,结果保留整数)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】根据题意确定所有情况的数目,再确定符合条件的数目,根据概率的计算公式即可.【详解】解:由题意可知,共有4种情况,其中是 3 的倍数的有6和9,∴是 3 的倍数的概率21 42 =,故答案为:C.【点睛】本题考查了概率的计算,解题的关键是熟知概率的计算公式.2、C【解析】由题意,AQ∥NP,MN∥BQ,∴△ACM∽△DCN,△CDN∽△BDP,△BPD∽△BQA,△ACM∽△ABQ,△DCN∽△ABQ,△ACM∽△DBP,所以图中共有六对相似三角形.故选C.3、A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:1102 x+=100x,故选A.4、A【解析】分析:根据从上面看得到的图形是俯视图,可得答案.详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A.点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.5、B【解析】解:∵OC平分∠AOB,∴∠AOC=∠BOC=12∠AOB=35°,∵CD∥OB,∴∠BOC=∠C=35°,故选B.6、B【解析】根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.【点睛】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、B【解析】根据题意得到△AOB是等边三角形,求出∠AOB的度数,根据圆周角定理计算即可.【详解】解:∵OA=AB,OA=OB,∴△AOB是等边三角形,∴∠AOB=60°,∴∠ACB=30°,故选B.【点睛】本题考查的是圆周角定理和等边三角形的判定,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.8、C【解析】连接BC ,根据题意PA ,PB 是圆的切线以及P 40∠=︒可得AOB ∠的度数,然后根据OA OB =,可得CAB ∠的度数,因为AC 是圆的直径,所以ABC 90∠=︒,根据三角形内角和即可求出ACB ∠的度数。
★试卷4套汇总★湖南省永州市2021年中考数学检测试题

2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下
颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A.49 B.13 C.29 D.19 2.已知(ACBC)ABC,用尺规作图的方法在BC上确定一点P,使PAPCBC,则符合要求的
作图痕迹是( )
A. B.
C. D. 3.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,
DE=2,则EF的长为( )
A.4 B..5 C.6 D.8 4.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为( )
A.30° B.15° C.10° D.20° 5.如图,如果从半径为9cm的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成 一个圆锥(接缝处不重叠),那么这个圆锥的高为 A.6cm B.35cm C.8cm D.53cm 6.一、单选题 如图: 在ABC中,CE平分ACB,CF平分ACD,且//EFBC交AC于M,若5CM,则
22CECF等于( )
A.75 B.100 C.120 D.125 7.如图,直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α的余角等于( )
A.19° B.38° C.42° D.52° 8.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于( )
A.125 B.95 C.65 D.165 9.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为13,在第一象限
内把线段AB缩小后得到线段CD,则点C的坐标为( )
A.(2,1) B.(2,0) C.(3,3) D.(3,1) 10.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是( ) A. B. C. D. 二、填空题(本题包括8个小题) 11.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=34x-3与x轴、y轴分别交于点A、B,
【永州中考试题】2021永州中考数学试卷及答案解析

【永州中考试题】2021永州中考数学试卷及答案解析
更多湖南地区中考试题信息请点击《2021湖南各市中考试卷及答案解析汇总》!
第一步,了解孩子中考前的成绩,推算中考时能够达到的区排名。
具体做法是:
首先,根据中考一模所在城区的分数段,结合加分情况折算区排名。
如果有的学校存在明显严判的情况,可适当提高一些名次。
其次,判断中考成绩的稳定性。
对于不擅长临场发挥,波动较大的中考学生,排名要相对估低一些。
最后,根据初三以来历次大考的成绩,判断中考成绩总体趋势上升还是下降,并以此适当提高或降低名次。
第二步,根据区排名找到对应学校。
在确定孩子所处的区排名之后,根据历年中考分数段以及各学校中考录取最低分,推算孩子是否能够进入目标校的录取区间。
第三步,确定八个志愿。
八个中考志愿应合理拉开档次。
具体来说:
第一中考志愿:比最优中考成绩所对应的学校更高一个档次。
第二中考志愿:与最优成绩相对应。
第三至六志愿:正常水平所对应的学校。
第七中考志愿:中考最差成绩对应的学校。
第八志愿:比最差成绩对应学校低一档次的学校(即发挥失常也能‘兜底’的学校)。
需要注意的是,如果中考考生平时考试排名稳定,学校区间度可密集些;如果中考成绩起伏较大,学校区间要拉开,确保最后兜底。
感谢您的阅读,祝您生活愉快。
2021年湖南省永州市初中毕业学业考试模拟数学试题(三)(word版含答案)

2021年永州市初中毕业学业考试模拟数学试卷(三)(考试用时:120分钟满分: 150分)一.选择题(每小题4分,共40分)1.如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作()A.﹣3m B.3m C.6m D.﹣6m2.购买2个单价为a元的面包和5瓶单价为b元的饮料,所需钱数为()A.(2a+b)元B.3(a+b)元C.(5a+2b)元D.(2a+5b)元3.下列计算正确的是()A.4a﹣3a=a B.2a•4a=8a C.a2•a3=a6D.(3a)2=6a24.如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.5.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣26.如图,AB∥CD,AD=CD,∠1=70°,则∠2的度数是()A.20° B.35° C.40° D.70°7.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC 的度数为()A.40° B.50° C.80° D.100°8.如图,某飞机在空中A处探测到它的正下方地平面上目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的仰角α=30°,则飞机A与指挥台B的距离为()A. 1200m B. 1200m C. 1200m D. 2400m9.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△A B′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B 的大小是()A.32° B.64° C.77° D.87°10.某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)选修课 A B C D E F 人数40 60 100根据图表提供的信息,下列结论错误的是()A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少二.填空题(共8小题,每小题4分,满分32分)11.若关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根,则m的值可能是(写出一个即可).12.计算﹣3= .13.甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是(填“甲”或“乙”)14.一个扇形的半径为3cm,面积为π cm2,则此扇形的圆心角为度.15.如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为.16. 如图,直线a、b被直线c所截,若满足,则a、b平行.17.一个两位数,十位上的数字比个位上的数字的平方小3,如果把这个数的个位数字与十位数字交换,那么所得到的两位数比原来的数小27,则原来的两位数是18.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为P n,则点P3的坐标是;点P2017的坐标是.三、解答题(78分)19.(12分)(1)计算:22﹣3125+0201(2021)()12cos 604----• (2)解方程:6331+=x x 20. (8分)先化简,再求值:﹣÷,其中x=. 21.(8分)根据图中的信息,求梅花鹿和长颈鹿现在的高度.22.(8分)为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A ,B ,C 依次表示这三个诵读材料),将A ,B ,C 这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小明诵读《论语》的概率是 ;(2)请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.23.(8分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON ,使点N 在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD ,使正方形ABCD 面积等于(1)中等腰直角三角形MON 面积的4倍,并将正方形ABCD 分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD 面积没有剩余(画出一种即可).24.(10分)如图1,▱ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.(1)求证:四边形EGFH是平行四边形;(2)如图2,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外).25.(10分)AB,CD是⊙O的两条弦,直线AB,CD互相垂直,垂足为点E,连接AD,过点B 作BF⊥AD,垂足为点F,直线BF交直线CD于点G.(1)如图1,当点E在⊙O外时,连接BC,求证:BE平分∠GBC;(2)如图2,当点E在⊙O内时,连接AC,AG,求证:AC=AG;(3)如图3,在(2)条件下,连接BO并延长交AD于点H,若BH平分∠ABF,AG=4,tan ∠D=,求线段AH的长.26.(12分)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作y轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.参考答案:1.D 2.D 3.A 4. B 5.D 6.C 7.C 8.D 9.C 10.D11.如0 12. 13. 甲 14.40 15. (4,4)16. 如∠1=∠2 (符合要求即可) 17. 63 18. (8,3),(3,0)19.解:(1)原式=4﹣5+1﹣16×21=﹣8;(2)去分母得:x+6=9x ,解得:x=3,经检验x=3是分式方程的解.20.解:原式=﹣•=﹣=. 将x=代入得,原式=222122-=+ 21.解:设梅花鹿的高度是xm ,长颈鹿的高度是ym ,根据题意得:,解得:, 答:梅花鹿的高度是1.5m ,长颈鹿的高度是5.5m .22.解:(1)∵诵读材料有《论语》,《三字经》,《弟子规》三种,∴小明诵读《论语》的概率=,故答案为:;(2)列表得:小明小亮ABCA(A ,A ) (A ,B ) (A ,C ) B(B ,A ) (B ,B ) (B ,C ) C (C ,A ) (C ,B ) (C ,C ) 由表格可知,共有9种等可能性结果,其中小明和小亮诵读两个不同材料结果有6种. 所以小明和小亮诵读两个不同材料的概率=.23.解:(1)如图1所示;(2)如图2、3所示;24.解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,在△OAE 与△OCF中,∴△OAE≌△OCF,∴OE=OF,同理OG=OH,∴四边形EGFH是平行四边形;(2)解:与四边形AGHD面积相等的所有平行四边形有▱GBCH,▱ABFE,▱EFCD,▱EGFH;∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∵EF∥AB,GH∥BC,∴四边形GBCH,ABFE,EFCD,EGFH为平行四边形,∵EF过点O,GH过点O,∵OE=OF,OG=OH,∴▱GBCH,▱ABFE,▱EFCD,▱EGFH,▱ACHD它们面积=▱ABCDA的面积,∴与四边形AGHD面积相等的所有平行四边形有▱GBCH,▱ABFE,▱EFCD,▱EGFH.25.解:(1)证明:如图1,∵四边形ABCD内接于⊙O,∴∠D+∠ABC=180°,∵∠ABC+∠EBC=180°,∴∠D=∠EBC,∵GF⊥AD,AE⊥DG,∴∠A+∠ABF=90°,∠A+∠D=90°,∴∠ABE=∠D,∵∠ABF=∠GBE,∴∠GBE=∠EBC,即BE平分∠GBC;(2)证明:如图2,连接CB,∵AB⊥CD,BF⊥AD,∴∠D+∠BAD=90°,∠ABG+∠BAD=90°,∴∠D=∠ABG,∵∠D=∠ABC,∴∠ABC=∠ABG,∵AB⊥CD,∴∠CEB=∠GEB=90°,在△BCE 和△BGE中,∴△BCE≌△BGE(ASA),∴CE=EG,∵AE⊥CG,∴AC=AG;(3)解:如图3,连接CO并延长交⊙O于M,连接AM,∵CM是⊙O的直径,∴∠MAC=90°,∵∠M=∠D,tanD=,∴tanM=,∴=,∵AG=4,AC=AG,∴AC=4,AM=3,∴MC==5,∴CO=,过点H作HN⊥AB,垂足为点N,∵tanD=,AE⊥DE,∴tan∠BAD=,∴=,设NH=3a,则AN=4a,∴AH==5a,∵HB平分∠ABF,NH⊥AB,HF⊥BF,∴HF=NH=3a,∴AF=8a,cos∠BAF===,∴AB==10a,∴NB=6a,∴tan∠ABH===,过点O作OP⊥AB垂足为点P,∴PB=AB=5a,tan∠ABH==,∴OP=a,∵OB=OC=,OP2+PB2=OB2,∴25a2+a2=,∴解得:a=,∴AH=5a=.26.解:(1)由A(4,0),可知OA=4,∵OA=OC=4OB,∴OA=OC=4,OB=1,∴C(0,4),B(﹣1,0).设抛物线的解析式是y=ax2+bx+x,则,解得:,则抛物线的解析式是:y=﹣x2+3x+4;(2)存在.第一种情况,当以C为直角顶点时,过点C作CP1⊥AC,交抛物线于点P1.过点P1作y轴的垂线,垂足是M.∵∠ACP1=90°,∴∠MCP1+∠ACO=90°.∵∠ACO+∠OAC=90°,∴∠MCP1=∠OAC.∵OA=OC,∴∠MCP1=∠OAC=45°,∴∠MCP1=∠MP1C,∴MC=MP1,设P(m,﹣m2+3m+4),则m=﹣m2+3m+4﹣4,解得:m1=0(舍去),m2=2.∴﹣m2+3m+4=6,即P(2,6).第二种情况,当点A为直角顶点时,过A作AP2,AC交抛物线于点P2,过点P2作y轴的垂线,垂足是N,AP交y轴于点F.∴P2N∥x轴,由∠CAO=45°,∴∠OAP=45°,∴∠FP2N=45°,AO=OF.∴P2N=NF,设P2(n,﹣n2+3n+4),则n=(﹣n2+3n+4)﹣1,解得:n1=﹣2,n2=4(舍去),∴﹣n2+3n+4=﹣6,则P2的坐标是(﹣2,﹣6).综上所述,P的坐标是(2,6)或(﹣2,﹣6);(3)连接OD,由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.由(1)可知,在直角△AOC中,OC=OA=4,则AC==4,根据等腰三角形的性质,D是AC的中点.又∵DF∥OC,∴DF=OC=2,∴点P的纵坐标是2.则﹣x2+3x+1=2,解得:x=,∴当EF最短时,点P的坐标是:(,0)或(,0).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年永州市初中毕业学业考试模拟数学试卷(四)(考试用时:120分钟满分: 150分)一.选择题(每小题4分,共40分)1.若等式0□1=﹣1成立,则□内的运算符号为()A.+ B.﹣C.×D.÷2.下列说法正确的是()A. 了解飞行员视力的达标率应使用抽样调查B. 一组数据3,6,6,7,9的中位数是6C. 从2000名学生中选200名学生进行抽样调查,样本容量为2000D. 一组数据1,2,3,4,5的方差是103.如图所示的几何体是由五个小正方体组合而成的,它的俯视图是()A. B. C. D.4.下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)5.下列运算正确的是()A.π﹣3.14=0 B.+=C.a•a=2a D.a3÷a=a26.求1+2+22+23+…+22021的值,可令S=1+2+22+23+…+22021,则2S=2+22+23+24+…+22022,因此2S ﹣S=22022﹣1.仿照以上推理,计算出1+5+52+53+…+52021的值为()A.52021﹣1 B.52022﹣1 C.2022514-D.2021514-7.如图,已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,梯形中位线EF与对角线BD 相交于点M,且BD⊥CD,则MF的长为()A. 1.5 B.3C.3.5 D.4.58.已知⊙O的半径r=3,设圆心O到一条直线的距离为d,圆上到这条直线的距离为2的点的个数为m,给出下列命题:①若d>5,则m=0;②若d=5,则m=1;③若1<d<5,则m=3;④若d=1,则m=2;⑤若d<1,则m=4.其中正确命题的个数是()A.1 B.2 C.4 D.59.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个B.2个C.3个D.4个10.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5 B.2.8 C.3 D.3.2二.填空题(每小题3分,共24分)11.不等式3+2x>5的解集是.12.图中是对顶角量角器,用它测量角的原理是.13.如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD= cm.14.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC= 度。
15. 关于x 的一元二次方程ax 2﹣3x ﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a 的取值范围是 。
16. 方程2310x x -+=的解是。
17. 如图,在矩形ABCD 中,AB=6cm ,点E 、F 分别是边BC 、AD 上一点,将矩形ABCD 沿EF 折叠,使点C 、D 分别落在点C′、D′处.若C′E ⊥AD ,则EF 的长为 6cm .18.如图,矩形ABCD 中,F 是DC 上一点,BF ⊥AC ,垂足为E ,=,△CEF 的面积为S1,△AEB 的面积为S2,则的值等于 .三.解答题(共8小题,共78分)19.(12分)(1)计算:2﹣1﹣3tan 30°+(2017﹣)0+(2)先化简,再求值:(x+3)(x ﹣3)+2(x 2+4),其中x=.20.(8分)已知关于x 的方程041222=+-n mx x ,其中m 、n 等腰三角形的腰和底边长。
①说明这个方程有两个不相等的实数根。
②若方程的两实数根的差的绝对值是8,且等腰三角形的面积是16,求m ,n 的值。
21.(9分)某中学为了了解八年级学生体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A ,B ,C ,D 四个等级,请根据两幅统计图中的信息,回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?22.(7分)图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.23.(8分)如图,在▱ABCD中,AE⊥BC,交边BC于点E,点F为边CD上一点,且DF=BE.过点F作FG⊥CD,交边AD于点G.求证:DG=DC.24.(10分)如图,点A(3,5)关于原点O的对称点为点C,分别过点A,C作y轴的平行线,与反比例函数y=(0<k<15)的图象交于点B,D,连接AD,BC,AD与x轴交于点E(﹣2,0).(1)求k的值;(2)直接写出阴影部分面积之和.25.(10分)如图①,半径为R,圆心角为n°的扇形面积是S扇形=,由弧长l=,得S扇形==••R=lR.通过观察,我们发现S扇形=lR类似于S三角形=×底×高.类比扇形,我们探索扇环(如图②,两个同心圆围成的圆环被扇形截得的一部分交作扇环)的面积公式及其应用.(1)设扇环的面积为S扇环,的长为l1,的长为l2,线段AD的长为h(即两个同心圆半径R与r的差).类比S梯形=×(上底+下底)×高,用含l1,l2,h的代数式表示S扇环,并证明;(2)用一段长为40m的篱笆围成一个如图②所示的扇环形花园,线段AD的长h为多少时,花园的面积最大,最大面积是多少?26.(12分)已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x﹣1 (1)求证:点P在直线l上;(2)当m=﹣3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,∠ACM=∠PAQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.参考答案:1.B 2.B 3.D 4.A 5.D 6. C 7.B 8.C 9.A 10.B 11. x >1 12. 对顶角相等 13.8 14.52 15. 49-<a <﹣2 16. 123535,22x x +-==17. 6cm 18.19.解:(1)原式=1﹣3×+1+2=;(2)解:原式=x 2﹣9+2x 2+8=3x 2﹣1,当x=时,原式=6﹣1=5.20.解:①∵ m 、n 等腰三角形的腰和底边长,∴2m >n 又∵Δ=2222244114)2(4n m n m ac b -=⨯⨯--=-∴224n m ∴Δ>0 ∴方程有两个不相等的实数根.②由题意得8||21=-x x ∴64)(221=-x x ∴644)(21221=-+x x x x 由韦达定理得:m x x 221=+,22141n x x =∴64414)2(22=⨯-n m 即44122=-n m ∵等腰三角形的面积是16 如图∴16412122=-⨯⨯n m n ∴n =8 代入44122=-n m 得24=m ∴24=m n =821.解:(1)10÷20%=50(名).答:本次抽样调查共抽取了50名学生; (2)50﹣10﹣20﹣4=16(名).答:测试结果为C 等级的学生有16名; 如图所示:(3)700×=56(名).答:估计该中学八年级学生中体能测试结果为D 等级的学生有56名.22.解:(1)如图①,符合条件的C点有5个:;(2)如图②,正方形ABCD即为满足条件的图形:;(3)如图③,边长为的正方形ABCD的面积最大..23.证明:∵四边形ABCD为平行四边形,∴∠B=∠D,AB=CD,∵AE⊥BC,FG⊥CD,∴∠AEB=∠GFD=90°,在△AEB和△GFD中,,∴△AEB≌△GFD,∴AB=DC,∴DG=DC.24.解:(1)∵A(3,5)、E(﹣2,0),∴设直线AE的解析式为y=kx+b,则,解得:,∴直线AE的解析式为y=x+2,∵点A(3,5)关于原点O的对称点为点C,∴点C的坐标为(﹣3,﹣5),∵CD∥y轴,∴设点D的坐标为(﹣3,a),∴a=﹣3+2=﹣1,∴点D的坐标为(﹣3,﹣1),∵反比例函数y=(0<k<15)的图象经过点D,∴k=﹣3×(﹣1)=3;(2)如图:∵点A和点C关于原点对称,∴阴影部分的面积等于平行四边形CDGF的面积,∴S阴影=4×3=12.25.解:(1)S扇环=(l1﹣l2)h,证明:设大扇形半径为R,小扇形半径为r,圆心角度数为n,则由l=,得R=,r=所以图中扇环的面积S=×l1×R﹣×l2×r=l1•﹣l2•=(l12﹣l22)=(l1+l2)(l1﹣l2)=••(R ﹣r)(l1﹣l2)=(l1﹣l2)(R﹣r)=(l1+l2)h,故猜想正确.(2)解:根据题意得:l1+l2=40﹣2h,则S扇环=(l1+l2)h=(40﹣2h)h=﹣h2+20h=﹣(h ﹣10)2+100∵﹣1<0,∴开口向下,有最大值,当h=10时,最大值是100,即线段AD的长h为10m时,花园的面积最大,最大面积是100m2.26.解:(1)证明:∵y=x2﹣2mx+m2+m﹣1=(x﹣m)2+m﹣1,∴点P的坐标为(m,m ﹣1),∵当x=m时,y=x﹣1=m﹣1,∴点P在直线l上;(2)解:当m=﹣3时,抛物线解析式为y=x2+6x+5,当y=0时,x2+6x+5=0,解得x1=﹣1,x2=﹣5,则A(﹣5,0),当x=0时,y=x2+6x+5=5,则C(0,5),可得解方程组,解得或,则P(﹣3,﹣4),Q(﹣2,﹣3),作ME⊥y轴于E,PF⊥x轴于F,QG⊥x轴于G,如图,∵OA=OC=5,∴△OAC为等腰直角三角形,∴∠ACO=45°,∴∠MCE=45°﹣∠ACM,∵QG=3,OG=2,∴AG=OA﹣OG=3=QG,∴△AQG为等腰直角三角形,∴∠QAG=45°,∵∠APF=90°﹣∠PAF=90°﹣(∠PAQ+45°)=45°﹣∠PAQ,∵∠ACM=∠PAQ,∴∠APF=∠MCE,∴Rt△CME∽Rt△PAF,∴=,设M(x,x2+6x+5),∴ME=﹣x,CE=5﹣(x2+6x+5)=﹣x2﹣6x,∴=,整理得x2+4x=0,解得x1=0(舍去),x2=﹣4,∴点M的坐标为(﹣4,﹣3);(3)解:解方程组得或,则P(m,m﹣1),Q (m+1,m),∴PQ2=(m+1﹣m)2+(m﹣m+1)2=2,OQ2=(m+1)2+m2=2m2+2m+1,OP2=m2+(m ﹣1)2=2m2﹣2m+1,当PQ=OQ时,2m2+2m+1=2,解得m1=,m2=;当PQ=OP时,2m2﹣2m+1=2,解得m1=,m2=;当OP=OQ时,2m2+2m+1=2m2﹣2m+1,解得m=0,综上所述,m的值为0,,,,.。