自动控制原理实验一控制系统的阶跃响应
武大电气自动控制原理实验报告(90分精品)

2016~2017学年第一学期《自动控制原理》实验报告年级:201X 班号1X0X姓名:XXX 学号201X******XXX 成绩:教师:实验设备及编号:实验同组人名单:XXX 实验地点:电气工程学院自动控制原理实验室实验时间:2016年10月目录实验一典型环节的电路模拟 (1)一、实验目的 (1)二、实验设备 (1)三、实验内容 (1)四、实验思考题 (12)实验二二阶系统的瞬态响应 (13)一、实验目的 (13)二、实验设备 (13)三、实验内容 (13)四、实验分析 (17)五、实验思考题 (17)实验五典型环节和系统频率特性的测量 (19)一、实验目的 (19)二、实验设备 (19)三、实验内容 (19)四、实验分析 (23)五、实验思考题 (24)实验六线性定常系统的串联校正 (25)一、实验目的 (25)二、实验设备 (25)三、实验内容 (25)四、实验分析 (29)五、实验思考题 (29)实验七单闭环直流调速系统 (31)一、实验目的 (31)二、实验设备 (31)三、实验内容 (31)四、实验分析 (37)实验一 典型环节的电路模拟一、 实验目的1.熟悉 T HKKL-B 型模块化自控原理实验系统及“自控原理软件”的使用。
2.熟悉各典型环节的阶跃响应特性及其电路模拟。
3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。
二、 实验设备1.THKKL-B 型模块化自控原理实验系统实验平台,实验模块 C T01。
2.PC 机一台(含上位机软件)。
3.USB 接口线。
三、 实验内容1. 比例(P )环节根据比例环节的方框图,如图1-1所示,用 C T01 实验模块组建相应的模拟电路,如图1-2所示。
图1-1 比例环节方框图图1-2 比例环节的模拟电路图1-2中后一个单元为反相器,其中0R =200k 。
传递函数为o i U (s)G(s)==K U (s)。
比例系数 K=1 时,电路中的参数取:1R =100k ,2R =100k 。
《自动控制原理》自动控制PID实验报告

《自动控制原理》自动控制PID实验报告课程名称自动控制原理实验类型:实验项目名称:自动控制PID一、实验目的和要求1、学习并掌握利用MATLAB 编程平台进行控制系统复数域和频率域仿真的方法。
2、通过仿真实验研究并总结PID 控制规律及参数对系统特性影响的规律。
3、实验研究并总结PID 控制规律及参数对系统根轨迹、频率特性影响的规律,并总结系统特定性能指标下根据根轨迹图、频率响应图选择PID 控制规律和参数的规则。
二、实验内容和原理一)任务设计如图所示系统,进行实验及仿真程序,研究在控制器分别采用比例(P)、比例积分(PI)、比例微分(PD)及比例积分微分(PID)控制规律和控制器参数(Kp、Ki、Kd)不同取值时,控制系统根轨迹和阶跃响应的变化,总结pid 控制规律及参数变化对系统性能、系统根轨迹、系统阶跃响应影响的规律。
具体实验容如下:1、比例(P)控制,设计参数Kp 使得系统处于过阻尼、临界阻尼、欠阻尼三种状态,并在根轨迹图上选择三种阻尼情况的Kp 值,同时绘制对应的阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 的变化情况。
总结比例(P)控制的规律。
2、比例积分(PI)控制,设计参数Kp、Ki 使得由控制器引入的开环零点分别处于:1)被控对象两个极点的左侧;2)被控对象两个极点之间;3)被控对象两个极点的右侧(不进入右半平面)。
分别绘制三种情况下的根轨迹图,在根轨迹图上确定主导极点及控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 和Ki 的变化情况。
总结比例积分(PI)控制的规律。
3、比例微分(PD)控制,设计参数Kp、Kd 使得由控制器引入的开环零点分别处于:1)被控对象两个极点的左侧;2)被控对象两个极点之间;66 3)被控对象两个极点的右侧(不进入右半平面)。
分别绘制三种情况下的根轨迹图,在根轨迹图上确定控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 和Kd 的变化情况。
自动控制原理(3-1)

动态性能指标定义1
hh((tt))
AA
超超调调量量σσ%% ==
AA BB
110000%%
峰峰值值时时间间ttpp BB
上上 升升 时时间间ttrr
调调节节时时间间ttss
tt
动态性能指标定义2 h(t)
调节时间 ts
上升时间tr
t
动态性能指标定义3
h(t)
A
σ%=
A B
100%
B tr tp
一阶系统对典型输入的输出响应
输入信号
输出响应
1(t) 1-e-t/T t≥0
δ(t)
1 et T t 0
T
t
t-T(1-e-t/T) t≥0
1 t2
1 t 2 Tt T 2 (1 et T ) t 0
2
2
由表可见,单位脉冲 响应与单位阶跃响应 的一阶导数、单位斜 坡响应的二阶导数、 单位加速度响应的三 阶导数相等。
自动控制原理
朱亚萍 zhuyp@ 杭州电子科技大学自动化学院
第三章 线性系统的时域分析法
3.1 系统时间响应的性能指标 3.2 一阶系统的暂态响应 3.3 二阶系统的暂态响应 3.4 高阶系统的暂态响应 3.5 线性系统的稳定性分析 3.6 控制系统的稳态误差 3.7 利用MATLAB对控制系统进行时域分析
超调量σ%:指响应的最大偏离量h(tp)与终值 h(∞)的差与终值h(∞)比的百分数,即
% h(tp ) h() 100%
h()
在实际应用中,常用的动态性能指标多为上升 时间tr、调整时间ts和超调量σ%。 用上升时间tr或峰值时间tp评价系统的响应速度; 用超调量σ%评价系统的阻尼程度;
自控原理实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 掌握典型环节的数学模型及其在控制系统中的应用。
3. 熟悉控制系统的时间响应和频率响应分析方法。
4. 培养实验操作技能和数据处理能力。
二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。
本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。
2. 控制系统:开环控制系统和闭环控制系统。
3. 时间响应:阶跃响应、斜坡响应、正弦响应等。
4. 频率响应:幅频特性、相频特性等。
三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用示波器观察并记录各个环节的阶跃响应曲线。
- 分析并比较各个环节的阶跃响应曲线,得出结论。
2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。
- 分析并比较各个环节的频率响应特性,得出结论。
3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。
- 使用示波器观察并记录二阶系统的阶跃响应曲线。
- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。
4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。
- 使用示波器观察并记录系统的稳态响应曲线。
- 计算并分析系统的稳态误差。
五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。
- 积分环节:K=1,阶跃响应曲线如图2所示。
自控原理课程实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 熟悉自动控制系统的典型环节,包括比例环节、积分环节、比例积分环节、惯性环节、比例微分环节和比例积分微分环节。
3. 通过实验,验证自动控制理论在实践中的应用,提高分析问题和解决问题的能力。
二、实验原理自动控制原理是研究自动控制系统动态和稳态性能的学科。
本实验主要围绕以下几个方面展开:1. 典型环节:通过搭建模拟电路,研究典型环节的阶跃响应、频率响应等特性。
2. 系统校正:通过在系统中加入校正环节,改善系统的性能,使其满足设计要求。
3. 系统仿真:利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。
三、实验内容1. 典型环节实验(1)比例环节:搭建比例环节模拟电路,观察其阶跃响应,分析比例系数对系统性能的影响。
(2)积分环节:搭建积分环节模拟电路,观察其阶跃响应,分析积分时间常数对系统性能的影响。
(3)比例积分环节:搭建比例积分环节模拟电路,观察其阶跃响应,分析比例系数和积分时间常数对系统性能的影响。
(4)惯性环节:搭建惯性环节模拟电路,观察其阶跃响应,分析时间常数对系统性能的影响。
(5)比例微分环节:搭建比例微分环节模拟电路,观察其阶跃响应,分析比例系数和微分时间常数对系统性能的影响。
(6)比例积分微分环节:搭建比例积分微分环节模拟电路,观察其阶跃响应,分析比例系数、积分时间常数和微分时间常数对系统性能的影响。
2. 系统校正实验(1)串联校正:在系统中加入串联校正环节,改善系统的性能,使其满足设计要求。
(2)反馈校正:在系统中加入反馈校正环节,改善系统的性能,使其满足设计要求。
3. 系统仿真实验(1)利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。
(2)根据仿真结果,优化系统参数,提高系统性能。
四、实验步骤1. 搭建模拟电路:根据实验内容,搭建相应的模拟电路,并连接好测试设备。
自动控制原理实验典型环节及其阶跃响应,二阶系统阶跃

实验一、典型环节及其阶跃响应实验目的1、学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2、学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。
实验内容构成下述典型环节的模拟电路,并测量其阶跃响应。
比例环节的模拟电路及其传递函数示图2-1。
G(S)=-R2/R1惯性环节的模拟电路及其传递函数示图2-2。
G(S)=-K/TS+1 K=R2/R1 ,T=R2*C积分环节的模拟电路及其传递函数示图2-3。
G(S)=1/TS T=RC微分环节的模拟电路及其传递函数示图2-4。
G(S)=-RCS比例加微分环节的模拟电路及其传递函数示图2-5。
G(S)=-K(TS+1) K=R2/R1 T=R2C比例加积分环节的模拟电路及其传递函数示图2-6。
G(S)=K(1+1/TS) K=R2/R1,T=R2C软件使用1、打开实验课题菜单,选中实验课题。
2、在课题参数窗口中,填写相应AD,DA或其它参数。
3、选确认键执行实验操作,选取消键重新设置参数。
实验步骤1、连接被测量典型环节的模拟电路及D/A、A/D连接,检查无误后接通电源。
2、启动应用程序,设置T和N。
参考值:T=0.05秒,N=200。
3、观测计算机屏幕示出的响应曲线及数据记录波形及数据(由实验报告确定)。
实验报告1、画出惯性环节、积分环节、比例加微分环节的模拟电路图,用坐标纸画出所有记录的惯性环节、积分环节、比例加微分环节的响应曲线。
2、由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由电路计算的结果相比较。
实验二二阶系统阶跃响应一、实验目的1、研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频ωn 对系统动态性能的影响,定量分析ζ和ωn与最大超调量Mp和调节时间 ts 之间的关系。
2、进一步学习实验仪器的使用方法。
3、学会根据系统阶跃响应曲线确定传递函数。
二、实验原理及电路典型二阶系统的闭环传递函数为其中ζ和ωn对系统的动态品质有决定的影响。
自动控制原理课后习题答案解析

第一章引论1-1 试描述自动控制系统基本组成,并比较开环控制系统和闭环控制系统的特点。
答:自动控制系统一般都是反馈控制系统,主要由控制装置、被控部分、测量元件组成。
控制装置是由具有一定职能的各种基本元件组成的,按其职能分,主要有给定元件、比较元件、校正元件和放大元件。
如下图所示为自动控制系统的基本组成。
开环控制系统是指控制器与被控对象之间只有顺向作用,而没有反向联系的控制过程。
此时,系统构成没有传感器对输出信号的检测部分。
开环控制的特点是:输出不影响输入,结构简单,通常容易实现;系统的精度与组成的元器件精度密切相关;系统的稳定性不是主要问题;系统的控制精度取决于系统事先的调整精度,对于工作过程中受到的扰动或特性参数的变化无法自动补偿。
闭环控制的特点是:输出影响输入,即通过传感器检测输出信号,然后将此信号与输入信号比较,再将其偏差送入控制器,所以能削弱或抑制干扰;可由低精度元件组成高精度系统。
闭环系统与开环系统比较的关键,是在于其结构有无反馈环节。
1-2 请说明自动控制系统的基本性能要求。
答:自动控制系统的基本要求概括来讲,就是要求系统具有稳定性、快速性和准确性。
稳定性是对系统的基本要求,不稳定的系统不能实现预定任务。
稳定性通常由系统的结构决定与外界因素无关。
对恒值系统,要求当系统受到扰动后,经过一定时间的调整能够回到原来的期望值(例如恒温控制系统)。
对随动系统,被控制量始终跟踪参量的变化(例如炮轰飞机装置)。
快速性是对过渡过程的形式和快慢提出要求,因此快速性一般也称为动态特性。
在系统稳定的前提下,希望过渡过程进行得越快越好,但如果要求过渡过程时间很短,可能使动态误差过大,合理的设计应该兼顾这两方面的要求。
准确性用稳态误差来衡量。
在给定输入信号作用下,当系统达到稳态后,其实际输出与所期望的输出之差叫做给定稳态误差。
显然,这种误差越小,表示系统的精度越高,准确性越好。
当准确性与快速性有矛盾时,应兼顾这两方面的要求。
自动控制原理第三章习题参考答案

Y (s) 1 1 600 ( s) 12 ( ) 2 R( s ) s 10 s 60 s 70 s 600
n 600 24.5
70 70 1.43 2 n 2 24 .5
3-7 简化的飞行控制系统结构图如下,试选择参数K1和Kt, 使系统的ωn=6,ξ=1
S2+5=0
S3 16/3 S2 5
S1 10 S0 25
s1, 2 5 j
有1对纯虚根,系统临界稳定。
3-13单位反馈系统的开环传递函数为:
K (0.5s 1) G( s) 2 s( s 1)(0.5s s 1)
确定使系统稳定的K值范围。 解:闭环传递函数为:
K (0.5s 1) ( s) 0.5s 4 1.5s 3 2 s 2 (1 0.5 K ) s K K ( s 2) 4 s 3s 3 4 s 2 ( 2 K ) s 2 K
K 速度误差系数: P lim sG ( s ) 10
s 0
速度误差:
1 e ss 0.1 Kp
3-11 已知系统的特征方程为:
3s 4 10 s 3 5s 2 s 2 0
用劳斯判据确定系统的稳定性 解:列劳斯列表 S4 3 5 2
S3 10
S2 4.7 S1 -3.26
1
2
S0 2 第1列符号变化两次, 说明有两个正根,系统不稳定。
3-12 已知Βιβλιοθήκη 统的特征方程如下,试求系统在S右半平面的根 数及虚根值。
(1) s 3s 12 s 24 s 32 s 48 0
5 4 3 2
S5 1 S4 3 S3 4 S2 12
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验设备 G(s)二 %分子多项式系数 %分母多项式系数 %构造传递函数并显示 %赋增益值,标量 %赋零点值,向量 %赋极点值,向量 %零极点模型转换成多项式模型 %构造传递函数并显示 实验一控制系统的阶跃响应 一、实验目的 1. 掌握控制系统多项式模型和零极点模型的建立方法及它们之间的相互转换 2 •观察学习控制系统的单位阶跃响应。 3 •记录单位阶跃响应曲线。 4 •掌握时间响应分析的一般方法。 5•分析系统阶跃响应曲线与传递函数参数的对应关系。 PC机,MATLAB仿真软件。 三、实验内容 1 •作以下二阶系统的单位阶跃响应曲线 10 2 s 2s 10
2 .分别改变该系统的和二,观察阶跃响应曲线的变化 3 •作该系统的脉冲响应曲线 四、实验原理 1.建立系统模型 在MATLAB下,系统数学模型有三种描述方式,在本实验中只用到多项式 模型和零极点模型。 (1) 多项式模型 num表示分子多项式的系数,den表示分母多项式的系数,以行向量的方式 输入。例如,程序为 nu m=[0 1 3]; den=[1 2 2 1]; prin tsys (num, den) (2) 零极点模型 z表示零点,p表示极点,以行向量的方式输入,k表示增益。例如,程序为 k=2; z=[1]; P=[-1 2 -3]; [num, den]=zp2tf(z, p, k); prin tsys( num, den) (3) 相关MATLAB函数 函数tf(num, den)用来建立控制系统的多项式模型; 函数zpk(z, p, k)用来建立控制系统的零极点模型; [n um, den ]=zp2tf (z, p, k) %零极点模型转换成多项式模型 [z, p, k]=tf2zp (n um, de n) %多项式模型转换成零极点模型 [num, den]=ord2(侧E) %用来建立二阶系统标准模型 G(s) = 10 2 s 2s 10 2. 控制系统的单位阶跃响应 (1) 给定系统传递函数的多项式模型,求系统的单位阶跃响应。 函数格式1: step(num, den) %给定num,den,求系统阶跃响应,时间向 量t的范围自动设定。 函数格式2: step(num, den, t) %时间向量t的范围可以由人工给定(如 t=0:0.1:10). 函数格式3: [y, x]=step(num, den) %返回变量格式。计算所得的输出 y、 状态x及时间向量t返回至MATLAB命令窗口,不做图。 (2) 给定特征多项式系数向量,计算系统的闭环根、阻尼比、无阻尼振荡频率。 函数格式:damp(de n)
五、实验步骤
1 •二阶系统为
(2)键入 并作记录。 damp (den),计算系统的闭环根、阻尼比、无阻尼振荡频率,
程序: clear;close
num=[10]; %多项式分子系数 den=[1,2,10]; %多项式分母系数 step (n um,de n); %系统阶跃响应
figure(1) %绘图
ti tle( 'G(s) 的阶跃响应')
(1)键人程序 观察并纪录阶跃响应曲线
Figixe i Rift Edk View Took 筒 rdg Heip 塔 程序: clear;close num=[10]; den=[1,2,10]; damp(den)
%多项式分子系数 %多项式分母系数 %计算系统的闭环根,阻尼比,无阻尼振荡频率 计算结果如下: Eigenvalue Damping Freq. (rad/s)
-1.00e+000 + 3.00e+000i 3.16e-001 3.16e+000 -1.00e+000 - 3.00e+000i 3.16e-001 3.16e+000 闭环根为: s1=-1+3j,s2=-1-3j 阻尼比:Z =0.316 无阻尼振荡频率:3 n=3.16 (3)键入 [y, x, t]=step (num, den) %返回变量输出y与时间t (变量x为状态变 量矩阵) [y , t'] % 显示输出向量 y 与时间向量 t(t 为自动向量) 记录实际测取的峰值大小CnaX(t p)、峰值时间tp、调节时间ts,并与理论值 相比较 ans =
0 0 0.0133 0.0525 0.0509 0.1049 0.1096 0.1574 0.1856 0.2098 0.2752 0.2623 0.3749 0.3148 0.4809 0.3672 0.5899 0.4197 0.6987 0.4721 0.8045 0.5246 0.9049 0.5770 0.9977 0.6295 1.0814 0.6820 1.1546 0.7344 1.2165 0.7869 1.2666 0.8393 1.3048 0.8918 1.3312 0.9443 1.3463 0.9967 1.3509 1.0492 1.3459 1.1016 1.3324 1.1541 1.3116 1.2065 1.2847 1.2590 1.2531 1.3115 1.2180 1.3639 1.1807 1.4164 1.1425 1.4688 1.1043 1.5213 1.0672 1.5738 1.0321 1.6262 0.9996 1.6787 0.9704 1.7311 0.9448 1.7836 0.9233 1.8361 0.9059 1.8885 0.8926 1.9410 0.8835 1.9934 0.8783 2.0459 0.8769 2.0983 0.8787 2.1508 0.8836 2.2033 0.8910 2.2557 0.9005 2.3082 0.9116 2.3606 0.9240 2.4131 0.9371 2.4656 0.9505 2.5180 0.9639 2.5705 0.9769 2.6229 0.9892 2.6754 1.0005 2.7278 1.0107 2.7803 1.0197 2.8328 1.0272 2.8852 1.0332 2.9377 1.0378 2.9901 1.0410 3.0426 1.0427 3.0951 1.0432 3.1475 1.0425 3.2000 1.0408 3.2524 1.0381 3.3049 1.0348 3.3573 1.0309 3.4098 1.0265 3.4623 1.0219 3.5147 1.0172 3.5672 1.0125 3.6196 1.0079 3.6721 1.0036 3.7246 0.9997 3.7770 0.9961 3.8295 0.9930 3.8819 0.9904 3.9344 0.9883 3.9869 0.9867 4.0393 0.9856 4.0918 0.9850 4.1442 0.9848 4.1967 0.9851 4.2491 0.9857 4.3016 0.9867 4.3541 0.9878 4.4065 0.9892 4.4590 0.9908 4.5114 0.9924 4.5639 0.9940 4.6164 0.9957 4.6688 0.9973 4.7213 0.9988 4.7737 1.0002 4.8262 1.0014 4.8786 1.0025 4.9311 1.0034 4.9836 1.0041 5.0360 1.0047 5.0885 1.0051 5.1409 1.0053 5.1934 1.0053 5.2459 1.0052 5.2983 1.0050 5.3508 1.0047 5.4032 1.0042 5.4557 1.0038 5.5082 1.0032 5.5606 1.0027 5.6131 1.0021 5.6655 1.0015 5.7180 1.0009 5.7704 1.0004 5.8229 0.9999 5.8754 0.9995 5.9278 0.9991 5.9803 理论值计算: Xcm= 1+e-Zn / "z *z =1.3535 峰值时间 tp=n /V(- Z 2 * 3 n=1.0472 过渡时间:ts=( ± 5%)=3/ Z 3 n=3.0022 过渡时间:ts=( ± 2%)=4/ Z 3 n=4.0029
实际值 理论值 峰值 Cma[1.3509
1.3535
峰值时间tp 1.0491 1.0472
过渡时间 t s
±5% [2.5399 3.0022
「
±2% 3.5889 4.0029 理论值与实际值比较,峰值和过渡时间,理论值比实际值大,但在峰值时间上比 实际值短
2•修改参数,分别实现 =1, =2的响应曲线,并作记录。 程序为: