七年级下册数学相交线知识点

合集下载

七年级下册数学平行线与相交线

七年级下册数学平行线与相交线

第一讲 两条直线的位置关系知识点一 :相交线、平行线的概念(1)相交线平行定义:若两条直线只有一个公共点,我们称这两条直线为相交线 (2)平行线定义:在同一平面内,不相交的两条直线叫做平行线(3)两套直线的位置关系:在同一平面内,两条直线的位置关系有相交和平行两种 (4)两条直线是指不重合的两条直线注意:1、两条直线在同一平面内2、我们有时说两条射线或线段平行,实际上是指它们所在的直线平行 知识点二:关于对顶角的定义和性质定义 对顶角:像这样直线AB 与直线CD 相交于O ,∠1与∠2有公共顶点,它们的两边互为反向延长线,这样的两个角叫做对顶角.注意:对顶角的判断条件:⎪⎩⎪⎨⎧无公共边有公共顶点两条直线相交另外,从对顶角的定义还可知:对顶角总是成对出现的,它们是互为对顶角;一个角的对顶角只有一个。

性质 同角或等角的对顶角相等。

一般题型 下列说法中,正确的是( ). A .有公共顶点,并且相等的角是对顶角 B .如果两个角不相等,那么它们一定不是对顶角 C .如果两个角相等,那么这两个角是对顶角 D .互补的两个角不可能是对顶角 练习 1、如图2-1,共有________对对顶角.图2-1知识点三: 互为余角、互为补角的概念及其性质定义:互为余角:如果两个角的和是直角,则这两个角互为余角. 互为补角:如果两个角的和是平角,则这两个角互为补角 钝角没有余角注意: 互为余角、互为补角只与角的度数有关,与角的位置无关. 性质 同角或等角的余角相等,同角或等角的补角相等一般例题 ⑴∵1∠和2∠互余,∴=∠+∠21_____(或2_____1∠-=∠) ⑵∵1∠和2∠互补,∴=∠+∠21_____(或2_____1∠-=∠)练习1、若∠α=50º,则它的余角是 ,它的补角是 。

若∠β=110º,则它的补角是 ,它的补角的余角是 。

2若∠1与∠2互余,∠3和∠2互补,且∠3=120º,那么∠1= 。

人教版七年级数学下册相交线与平行线知识点

人教版七年级数学下册相交线与平行线知识点

一相交线与平行线1.相交线➢关键词:邻补角、对顶角、同位角、内错角、同旁内角➢性质:对顶角相等..2.垂线➢关键词:垂直、垂足、➢定义:两条直线相交所成的四个角中;有一个角是直角时;就说这两条直线互相垂直.其中一条直线叫另一条直线的垂线;它们的交点叫垂足..➢性质:1在同一平面内;过一点有且只有一条直线与已知直线垂直.2直线外一点与直线上各点连结的所有线段中;垂线段最短.简称:垂线段最短.该垂线段的长度称为点到直线的距离..3.平行线➢定义:在同一个平面内;不相交的两条直线叫做平行线.平行用符号“//”表示..如图一;直线AB与CD是平行线;记作“AB//CD” ;读作“AB平行于CD”.在同一个平面内;两条直线的位置关系只有两种:相交或平行.图一➢判定:1同位角相等;两直线平行..2内错角相等;两直线平行..3 同旁内角互补;两直线平行..4 平行于同一直线的两直线平行..5垂直于同一直线的两直线平行..➢性质:1 两条平行线被第三条直线所截;同位角相等.2 两条平行线被第三条直线所截;内错角相等.3 两条平行线被第三条直线所截;同旁内角互补.4.命题➢定义:判断一件事情的语句;叫做命题.➢一般形态:1“如果……;那么…….”2“若……;则…….”3“倘若……;那么…….”➢分类:1正确的命题:如果题设成立;那么结论一定成立的命题.2如果题设成立;不能保证结论总是成立的命题.5. 数学名词➢定理:用推理的方法判断为正确的命题叫做定理;如“内错角相等;两直线平行”、“两直线平行;内错角相等”等等.➢公理:人们在长期实践中总结出来的得到人们公认的真命题;叫做公理;如“同位角相等;两直线平行”、“两直线平行;同位角相等”等.➢证明:判断一个命题的正确性的推理过程叫做证明.二平面直角坐标系1. 有序数对➢定义:有顺序的两个数a与b组成的数对a;b叫做有序数对..➢应用:找出平面上点的坐标..2. 平面直角坐标系➢平面直角坐标系:由平面内两条互相垂直、原点重合的数轴组成..水平的数轴称为 X轴或横轴;竖直的数轴称为y轴或纵轴..➢用坐标表示地理位置:➢用坐标表示平移:1一般地;在平面直角坐标系中;将点x;y向右或左平移 a个单位长度;可以得到对应点x+a;y或x-a;y;将点x;y 向上或下平移b个单位长度;可以得到对应点表示x;y+b或 x;y-b..2一般地;将一个图形一次沿两个坐标轴方向平移所得到的的图形;可以通过将原来的图形作一次平移得到..3一般地;在平面直角坐标系内;如果把一个图形各个点的横坐标都加或减去一个正数a;相应的新图形就是把原图形向上或向下平移a个单位长度..三二元一次方程组1.概念➢二元一次方程:含有两个未知数;并且未知数的指数都是1;像这样的方程叫做二元一次方程;一般形式是ax+by=ca≠0;b≠0..➢二元一次方程的解:一般地;使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解..➢二元一次方程组:把两个二元一次方程合在一起;就组成了一个二元一次方程组..➢二元一次方程组的解:一般地;二元一次方程组的两个方程的公共解叫做二元一次方程组的解..2.消元法➢定义:将未知数的个数由多化少;逐一解决的想法;叫做消元思想..➢代入消元:将一个未知数用含有另一个未知数的式子表示出来;再代入另一个方程;实现消元;进而求得这个二元一次方程组的解;这种方法叫做代入消元法;简称代入法..➢加减消元法:当两个方程中同一未知数的系数相反或相等时;将两个方程的两边分别相加或相减;就能消去这个未知数;这种方法叫做加减消元法;简称加减法..习题一一、选择题1. 如图;∠1和∠2是同位角的是A. ① ② B . ① ③ C . ② ③ D. ② ④① ② ③ ④2. 张雷同学从A 地出发沿北偏东500的方向行驶到B 地;再由B 地沿南偏西200的方向行驶到C 地;则∠ABC 的度数为A. 400B. 300C. 200D. 00 3.下列说法中;正确的是A. 相等的两个角是直角B. 同旁内角互补C. 一个角的补角一定是钝角D. 如果同位角不相等;两条直线一定不平行4.如图1;一个宽度相等的纸条;如图那么折叠一下;∠1等于 度A. 150º B . 120º C. 60º D. 75º5.点B-3;0在 上A 、 在x 轴的正半轴上B 、 在x 轴的负半轴上C 、 在y 轴的正半轴上D 、 在y 轴的负半轴上6.点C 在x 轴上方;y 轴左侧;距离x 轴2个单位长度;距离y 轴3个单位长度;则点C 的坐标为 A 、2;3 B 、 -2;-3 C 、 -3;2 D 、3;-2 7.若点Mx ;y 的坐标满足x +y =0;则点M 位于A .第二象限B .第一、三象限的夹角平分线上C .第四象限D .第二、四象限的夹角平分线上 8.某同学的座位号为2;4;那么该同学的所座位置是A 、 第2排第4列B 、 第4排第2列C 、 第2列第4排D 、 不好确定9.二元一次方程组32325x y x y -=⎧⎨+=⎩的解是A .3217 (23)0122x x x x B C D y y y y =⎧⎧===⎧⎧⎪⎪⎨⎨⎨⎨==-=⎩⎩⎪⎪=⎩⎩ 10.关于x;y 的二元一次方程组59x y kx y k +=⎧⎨-=⎩的解也是二元一次方程2x+3y=6的解;则k 的值是•A .k=-34 B .k=34 C .k=43 D .k=-43 11.如果方程组1x y ax by c +=⎧⎨+=⎩有唯一的一组解;那么a;b;c 的值应当满足A .a=1;c=1B .a ≠bC .a=b=1;c ≠1D .a=1;c ≠112.方程3x+y=7的正整数解的个数是A .1个B .2个C .3个D .4个2112121213.已知x;y 满足方程组45x m y m+=⎧⎨-=⎩;则无论m 取何值;x;y 恒有关系式是A .x+y=1B .x+y=-1C .x+y=9D .x+y=9 二 填空题1.如图1所示;点A 的坐标为_______;点B 的坐标为_______;点C 的坐标为_______;点D 的坐标为_______;2.如图2所示;添加条件:_______________只需写一个;可以使AB ∥CD;理由是___________________________.ODECBAOD ECBA3. 如图3;直线AB 、CD 相交于点O ;OE ⊥AB ;O 为垂足;如果∠EOD = 38°;则∠AOC = ;∠COB = .4.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________.5.a -b=2;a -c=12;则b -c 3-3b -c+94=________.6.已知32111x x y y ==-⎧⎧⎨⎨==⎩⎩和都是ax+by=7的解;则a=_______;b=______. 三、解答题:1.已知:如图;AD ∥BC ;∠D =100°;AC 平分∠BCD ;求∠DAC 的度数.2.已知y=3xy+x;求代数式2322x xy yx xy y+---的值.4321BAED C xy2341-1-2-3-4-3-2-12143(1)DC B A1 2 3。

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下相交线和平行线知识点总结本章介绍了平面内两条直线相交与平行的关系,重点探讨了两条直线相交时形成角的特征、两条直线互相垂直的特性、两条直线平行的条件和特征,以及有关图形平移变换的性质。

本文将对其中的重点知识点进行总结。

5.1 相交线1.邻补角与对顶角当两条直线相交时,所形成的四个角具有不同的关系。

其中,对顶角是具有特殊位置关系的两个角,它们的大小相等;邻补角则是互为反向延长线的两个角,它们的和为180度。

2.垂线垂线是指当两条直线相交时,其中一个角为直角的情况。

垂线具有两个性质:一是过一点只有一条直线与已知直线垂直;二是连接直线外一点与直线上各点的垂线段最短。

3.垂线的画法画垂线的方法有两种:一是过直线上一点画已知直线的垂线;二是过直线外一点画已知直线的垂线。

画法可采用“一靠二移三画”的方法。

4.点到直线的距离点到直线的距离是指直线外一点到这条直线的垂线段的长度。

记忆时应结合图形进行理解。

本章内容的重点是垂线和其性质、平行线的判定方法和性质、平移和其性质,以及这些知识点的组织运用。

在研究这些知识点时,需要注意记忆其定义和性质,掌握其画法和应用方法。

垂线是指从一个点垂直于一条直线或平面的线段,而垂线段则是垂线的长度。

它们都具有垂直的性质,可以用来计算点到直线的距离或两点间的距离。

点到直线的距离是特殊的两点(即已知点与垂足)间距离,而两点间的距离是点与点之间的长度。

线段和距离都是长度的概念,但线段是一种图形,不能等同于距离。

平行线是指在同一平面内不相交的两条直线,它们的位置关系只有两种:相交和平行。

判断两条直线的位置关系可以根据它们的公共点个数来确定,有且只有一个公共点时两直线相交,无公共点时两直线平行,两个或两个以上公共点时两直线重合。

平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。

同时,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

三线八角是指两条直线被第三条直线所截形成的八个角,包括同位角、内错角和同旁内角。

初一数学下册相交线与平行线基础知识点

初一数学下册相交线与平行线基础知识点

初一数学下册相交线与平行线基础知识点
相交线与平行线基础知识点
一、关于相交线
1. 相交线是指两个不同的直线在一个面上产生交叉;
2. 交叉点就是两条直线之间的公共点,表示相交的位置;
3. 相交的角的性质:(1)相交的角是对角线;(2)两个交叉点连接形成的夹角,称之为"夹角";(3)两条相交线各自交叉点形成的夹角是相等的,称为"交叉角";
4. 直角定理是建立在相交线上的,它讲的是,在三角形中,两边为直角时,斜边的平方等于两边相加的平方;
二、关于平行线
1. 平行线指的是两条以上的不同线段,他们没有交叉点;
2. 两条平行线之间形成的夹角就是“平行角”,这个夹角的大小一般都是0°;
3. 对行定理:两条平行直线与一条横线所包围的锐角几何体,对边之和等于邻边之和;
4. 三角形相似定理也是建立在平行线这一基础上的,两个三角形的定义有两个平行直线,这时三角形的边长相等,那么两个三角形也是相似的。

初一下册数学相交线与平行线的知识点

初一下册数学相交线与平行线的知识点

开学已经有几天了,新的第一章知识掌握的怎么样了呢这一单元主要是概念和性质定理一定要理解清楚,可以在这篇文章梳理一下,一定能帮到你!一、相交线1.邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。

⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。

2.垂线⑴定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

符号语言记作:如图所示:AB⊥CD,垂足为 O⑵垂线性质 1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质 2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

简称:垂线段最短。

3.垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。

注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。

画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。

4.点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

应该结合图形进行记忆。

如图,PO⊥AB,同 P 到直线 AB 的距离是 PO 的长。

PO 是垂线段。

PO 是点 P 到直线 AB所有线段中最短的一条。

现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。

5.如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念。

七年级下册数学第五章相交线与平行线

七年级下册数学第五章相交线与平行线

七年级下册数学第五章相交线与平行线
以下是七年级下册数学第五章相交线与平行线的知识点:
1. 相交线:相交线是指两条直线在同一个平面内交于一点。

在相交线中,我们主要研究的是对顶角和邻补角。

对顶角相等,邻补角互补。

同时,我们还学习到了垂线,即直线与给定直线垂直,且交于一点。

2. 平行线:平行线是指两条直线在同一平面内,且不相交。

平行线具有传递性,即如果a平行于b且b平行于c,那么a平行于c。

此外,我们还学习了平行线的性质和判定方法。

3. 平行线的性质:平行线的性质包括同位角相等、内错角相等、同旁内角互补等。

这些性质是平行线的基本性质,也是解决相关问题的关键。

4. 平行线的判定方法:平行线的判定方法包括同位角相等、内错角相等、同旁内角互补等。

通过这些判定方法,我们可以确定两条直线是否平行。

5. 平行线的应用:平行线在几何学中有着广泛的应用,如证明两个三角形相似或全等、解决角度和距离的问题等。

同时,在现实生活中,平行线也有很多应用,如建筑、道路规划等。

以上是关于七年级下册数学第五章相交线与平行线的主要知识点,掌握这些知识点有助于更好地理解几何学中的基本概念和性质,提高解决问题的能力。

七年级下册数学相交线课堂笔记

七年级下册数学相交线课堂笔记

七年级下册数学相交线课堂笔记一、基本概念相交线:在同一平面内,如果两条直线有且仅有一个公共点,那么这两条直线叫做相交线。

这个公共点叫做两直线的交点。

对顶角:两条直线相交,形成的相对的两个角叫做对顶角。

对顶角的特点是:对顶角相等。

邻补角:两条直线相交,除了对顶角外,还有其他的两个角,它们有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,叫做邻补角。

邻补角的特点是:邻补角互补。

二、性质与定理对顶角性质:如果两条直线相交,那么它们所形成的对顶角相等。

即,如果∠1和∠2是对顶角,那么∠1 = ∠2。

邻补角性质:如果两个角是邻补角,那么它们的角度和等于180°。

即,如果∠1和∠2是邻补角,那么∠1 + ∠2 = 180°。

三、证明与应用证明对顶角性质:假设两条直线相交于点O,形成对顶角∠AOC和∠BOD。

为了证明∠AOC = ∠BOD,我们可以考虑旋转其中一条直线使其与另一条直线重合。

通过这样的旋转,我们可以看到∠AOC和∠BOD实际上是同一个角,因此它们的角度相等。

应用邻补角性质:在日常生活中,我们经常利用邻补角性质来解决问题。

例如,当我们想要知道一个直角三角形的两个锐角的角度时,我们可以利用邻补角性质来快速得出答案。

如果一个直角三角形的一个锐角是40°,那么另一个锐角就是180°- 90°- 40°= 50°。

四、练习题与解析题目:如果∠1 = 70°,∠2和∠1是邻补角,那么∠2的度数是多少?解析:根据邻补角性质,我们知道∠1和∠2的角度和为180°。

因此,∠2的度数= 180°- ∠1的度数= 180°- 70°= 110°。

题目:如果∠A和∠B是对顶角,且∠A = 55°,那么∠B的度数是多少?解析:根据对顶角性质,我们知道对顶角相等。

因此,∠B的度数= ∠A的度数= 55°。

人教版七年级数学下册相交线,垂线(基础)知识讲解

人教版七年级数学下册相交线,垂线(基础)知识讲解

相交线,垂线(基础)知识讲解【学习目标】1.了解两直线相交所成的角的位置和大小关系,理解邻补角和对顶角概念,掌握对顶角的性质;2.理解垂直作为两条直线相交的特殊情形,掌握垂直的定义及性质;3.理解点到直线的距离的概念,并会度量点到直线的距离;4.能依据对顶角、邻补角及垂直的概念与性质,进行简单的计算.【要点梳理】知识点一、邻补角与对顶角1.邻补角:如果两个角有一条公共边,并且它们的另一边互为反向延长线,那么具有这种关系的两个角叫做互为邻补角.要点诠释:(1)邻补角的定义既包含了位置关系,又包含了数量关系:“邻”指的是位置相邻,“补”指的是两个角的和为180°.(2)邻补角是成对出现的,而且是“互为”邻补角.(3)互为邻补角的两个角一定互补,但互补的两个角不一定互为邻补角.(4)邻补角满足的条件:①有公共顶点;②有一条公共边,另一边互为反向延长线.2.对顶角及性质:(1)定义:由两条直线相交构成的四个角中,有公共顶点没有公共边(相对)的两个角,互为对顶角.(2)性质:对顶角相等.要点诠释:(1)由定义可知只有两条直线相交时,才能产生对顶角.(2)对顶角满足的条件:①相等的两个角;②有公共顶点且一角的两边是另一角两边的反向延长线.【高清课堂:相交线两条直线垂直】知识点二、垂线1.垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.要点诠释:⊥;(1)记法:直线a与b垂直,记作:a b直线AB和CD垂直于点O,记作:AB⊥CD于点O.(2) 垂直的定义具有二重性,既可以作垂直的判定,又可以作垂直的性质,即有:∠=°判定90AOCCD⊥AB.性质2.垂线的画法:过一点画已知直线的垂线,可通过直角三角板来画,具体方法是使直角三角板的一条直角边和已知直线重合,沿直线左右移动三角板,使另一条直角边经过已知点,沿此直角边画直线,则所画直线就为已知直线的垂线(如图所示).要点诠释:(1)如果过一点画已知射线或线段的垂线时,指的是它所在直线的垂线,垂足可能在射线的反向延长线上,也可能在线段的延长线上.(2)过直线外一点作已知直线的垂线,这点与垂足间的线段为垂线段.3.垂线的性质:(1)在同一平面内,过一点有且只有一条直线与已知直线垂直.(2)连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.要点诠释:(1)性质(1)成立的前提是在“同一平面内”,“有”表示存在,“只有”表示唯一,“有且只有”说明了垂线的存在性和唯一性.(2)性质(2)是“连接直线外一点和直线上各点的所有线段中,垂线段最短.”实际上,连接直线外一点和直线上各点的线段有无数条,但只有一条最短,即垂线段最短.在实际问题中经常应用其“最短性”解决问题.4.点到直线的距离:定义:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.要点诠释:(1)点到直线的距离是垂线段的长度,是一个数量,不能说垂线段是距离;(2)求点到直线的距离时,要从已知条件中找出垂线段或画出垂线段,然后计算或度量垂线段的长度.【典型例题】类型一、邻补角与对顶角1.如图所示,M、N是直线AB上两点,∠1=∠2,问∠1与∠2,∠3与∠4是对顶角吗? ∠1与∠5,∠3与∠6是邻补角吗?【答案与解析】解:∠1和∠2,∠3和∠4都不是对顶角.∠1与∠5,∠3与∠6也都不是邻补角.【总结升华】牢记两条直线相交,才能产生对顶角或邻补角.举一反三:【变式】判断正误:(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角. ()(2)如果两个角相等,那么这两个角是对顶角.()(3)有一条公共边的两个角是邻补角. ()(4)如果两个角是邻补角,那么它们一定互补. ()(5)有一条公共边和公共顶点,且互为补角的两个角是邻补角.()【答案】(1)×(2)×(3)×(4)√(5)×,反例:∠AOC为120°,射线OB为∠AOC的角平分线,∠AOB与∠AOC互补,且有边公共为AO,公共顶点为O,但它们不是邻补角.2.如图所示,直线AB、CD相交于点O,∠1=65°,求∠2、∠3、∠4的度数【答案与解析】解:∵∠1是∠2的邻补角,∠1=65°,∴∠2=180°-65°=115°.又∵∠1和∠3是对顶角,∠2与∠4是对顶角∴∠3=∠1=65°,∠4=∠2=115°.【总结升华】 (1)两条直线相交所成的四个角中,只要已知其中一个角,就可以求出另外三角;(2)求出∠2后用“对顶角相等”,求∠3和∠4.举一反三:【变式】(2015•梧州)如图,已知直线AB与CD交于点O,ON平分∠DOB,若∠BOC=110°,则∠AON的度数为度.【答案】145.解:∵∠BOC=110°,∴∠BOD=70°,∵ON为∠BOD平分线,∴∠BON=∠DON=35°,∵∠BOC=∠AOD=110°,∴∠AON=∠AOD+∠DON=145°.3. 任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?根据这种位置关系将它们分类.【答案与解析】解:如图,任意两条相交直线,两两相配共组成6对角,在这6对角中,它们的位置关系有两种:①有公共顶点,一边重合,另一边互为反向延长线;②有公共顶点,角的两边互为反向延长线.这6对角为∠1与∠2,∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4,∠3与∠4,其中∠1=∠3,∠2=∠4,∠1+∠2=180°,∠3+∠4=180°,∠1+∠4=180°,∠2+∠3=180°.在位置上∠1与∠3,∠2与∠4是对顶角,∠1与∠2,∠3与∠4,∠l与∠4,∠2与∠3是邻补角.【总结升华】两条相交的直线,两两相配共组成6对角,这6对角中有:4对邻补角,2对对顶角类型二、垂线4.下列语句中,正确的有 ( )①一条直线的垂线只有一条;②在同一平面内,过直线上一点有且仅有一条直线与已知直线垂直;③两直线相交,则交点叫垂足;④互相垂直的两条直线形成的四个角一定都是直角.A.0个 B.1个 C.2个 D.3个【答案】C【解析】正确的是:②④【总结升华】充分理解垂直的定义与性质.举一反三:【变式1】直线l外有一点P,则点P到直线l的距离是( ).A.点P到直线l的垂线的长度.B.点P到直线l的垂线段.C.点P到直线l的垂线段的长度.D.点P到直线l的垂线.【答案】C5.(2015•河北模拟)如图,已知点O在直线AB上,CO⊥DO于点O,若∠1=145°,则∠3的度数为()A.35°B.45°C.55°D.65°【答案】C.【解析】解:∵∠1=145°,∴∠2=180°﹣145°=35°,∵CO⊥DO,∴∠COD=90°,∴∠3=90°﹣∠2=90°﹣35°=55°.【总结升华】本题考查了垂线和邻补角的定义;弄清两个角之间的互补和互余关系是解题的关键.【高清课堂:相交线403101经典例题3】举一反三:【变式】如图, 直线AB和CD交于O点, OD平分∠BOF, OE ⊥CD于点O, ∠AOC=40 ,则∠EOF=_______.【答案】130°.6.(2016春•抚州校级期中)如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点 B.B点 C.C点 D.D点【思路点拨】根据垂线段最短可得答案.【答案】A.【解析】解:根据垂线段最短可得:应建在A处,故选:A.【总结升华】此题主要考查了垂线段的性质,关键是掌握从直线外一点到这条直线所作的垂线段最短.举一反三:【变式】(1)用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?(2)经过直线l上一点A画l的垂线,这样的垂线能画出几条?(3)经过直线l外一点B画l的垂线,这样的垂线能画出几条?【答案】解:(1)能画无数条;(2)能画一条;(3)能画一条.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册数学相交线知识点
相交线是数学中极为常见的知识点,它主要涉及到直线、线段、射线等几何概念,是研究数学的一个重要组成部分。

七年级下册数学中相交线的概念是:两条线段或射线相交,其交点就是他们的公共点。

首先,研究相交线,要掌握几何图形的基本知识,例如点、线、面等概念。

学生需要熟悉直线、线段、射线等几何图形,了解它们之间的区别和特点,以及它们之间的关系。

其次,研究相交线,要掌握如何判断两条线段或射线是否相交,并确定相交点。

学生应该熟悉确定相交点的基本方法,即求解解析方程组,并能够解决不同类型的相交问题,如两条线段或射线的相交点。

最后,研究相交线时,要掌握如何应用相交线的知识,应用到实际的几何图形和问题中。

这样,学生才能学以致用,达到解决实际问题的目的。

总之,研究七年级下册数学中的相交线知识点,要掌握几何图形的基本概念,熟悉如何判断两条线段或射线是否相交,并有效地解决不同类型的相交问题,以及将知识应用到实际问题中,从而提高解决实际问题的能力。

只有掌握相交线的知识点,才能更好地掌握数学知识,并在研究数学方面取得更大的进步。

相关文档
最新文档