第8章 组合化学.
药物化学》电子教案

药物化学电子教案第一章:药物化学概述1.1 课程介绍药物化学的定义和发展历程药物化学的研究内容和目标药物化学在药物研发中的应用1.2 药物的化学结构与生物活性关系药物的化学结构分类生物活性与化学结构的关系药物的构效关系分析第二章:药物的合成反应2.1 药物合成反应类型合成反应的分类和特点常见合成反应的机理和应用2.2 药物合成反应实例药物合成反应的具体案例分析反应条件的选择和优化药物合成反应的工业化生产第三章:药物的代谢反应3.1 药物代谢的途径和酶系药物代谢的分类和特点药物代谢酶系的组成和作用3.2 药物代谢反应实例药物代谢反应的具体案例分析影响药物代谢的因素药物代谢反应在药物设计中的应用第四章:药物的药效学4.1 药物的吸收、分布和排泄药物的吸收途径和影响因素药物的分布规律和分布器官药物的排泄机制和影响因素4.2 药物的药效学参数药物的生物利用度药物的半衰期和作用时间药物的安全性和毒性第五章:药物设计原理5.1 药物设计的策略和方法药物设计的理论基础和原则药物设计的计算方法和软件工具5.2 药物设计实例药物设计的具体案例分析药物设计的挑战和限制药物设计的未来发展趋势第六章:药物化学合成方法学6.1 有机合成策略碳骨架的合成功能团转化立体化学控制6.2 现代合成方法绿色化学合成催化和生物催化高通量合成技术第七章:药物的化学稳定性7.1 药物降解途径水解、氧化和光降解糖基化和脱糖基化酰胺键的水解和其他键的断裂7.2 稳定性的表征和测定降解速率和动力学影响稳定性的因素稳定性的评价和控制第八章:药物的生物利用度8.1 生物利用度的概念生物利用度的定义和重要性影响生物利用度的因素生物利用度的测定方法8.2 药物的剂型设计固体剂型和液体剂型药物释放技术和控释系统剂型对生物利用度的影响第九章:药物的化学毒性9.1 药物的毒性机制毒性作用的类型和分级毒性作用的代谢途径毒性作用的预测和评估9.2 药物安全性和风险管理药物安全性的监测和评估药物不良反应的报告和处理药物的风险管理和药物政策第十章:药物化学研究的现代技术10.1 计算机辅助药物设计分子对接和分子动力学模拟药效团筛选和构效关系研究在药物设计中的应用10.2 高通量筛选和组合化学高通量筛选技术组合化学在药物发现中的应用药物筛选库的构建和筛选策略10.3 药物化学研究的其他技术核磁共振和质谱技术X射线晶体学和光谱学自动化合成和分析技术第十一章:药物化学在药物开发中的应用11.1 药物发现的步骤和策略靶标识别和验证先导化合物发现和优化药物候选物的选择和评估11.2 药物化学在药物开发中的作用药物化学在药物设计中的重要性药物化学在药物合成和优化中的作用药物化学在药物安全性和毒性评估中的角色第十二章:药物化学在临床实践中的应用12.1 药物治疗的原理和方法药物治疗的基本原则药物的选择和剂量调整药物治疗方案的设计和实施12.2 药物化学在药物治疗中的应用药物化学在药物代谢和药效学评估中的应用药物化学在药物副作用和相互作用分析中的应用药物化学在个体化药物治疗和精准医疗中的应用第十三章:药物化学在药物监管和政策制定中的应用13.1 药物监管的基本概念和机构药物监管的定义和目的世界卫生组织和各国药物监管机构的角色药物监管的基本原则和法规13.2 药物化学在药物监管中的应用药物化学在药物审批和上市中的应用药物化学在药物质量和安全监控中的应用药物化学在药物政策和药品可及性制定中的应用第十四章:药物化学在药物研究和教育中的应用14.1 药物化学教育和培训药物化学教育的目标和内容药物化学培训项目和课程设计药物化学教育技术和教学方法14.2 药物化学在研究和教育中的合作与交流药物化学研究的国际合作和交流项目药物化学教育和研究的学术组织和会议药物化学教育和研究的创新与挑战第十五章:药物化学的未来趋势和发展15.1 药物化学研究的创新和技术发展药物化学研究的新技术和方法药物化学在药物发现和开发中的新策略药物化学研究的国际趋势和挑战15.2 药物化学的社会影响和伦理问题药物化学与公共健康和社会福祉的关系药物化学研究和应用中的伦理问题药物化学研究对环境的影响和可持续发展重点和难点解析本文档为您提供了一部关于药物化学的电子教案,内容涵盖了药物化学的基本概念、合成反应、代谢反应、药效学、药物设计等多个方面。
大学化学课程教学大纲

兴义民族师范学院生物与化学学院《大学化学》课程教学大纲生物与化学学院有机化学教研室制订二○一四年八月《大学化学》课程教学大纲课程名称:大学化学课程类别:专业必修课考核类别:考试适用对象:本科适用专业:非化学类专业总学时、学分:72学时4学分一、课程教学目的通过对《大学化学》课程的学习,掌握现代化学的的基本知识和理论,了解化学在社会发展和科技进步中的作用。
了解化学在其发展过程中与其他学科相互渗透的角色,培养学生用现代化学的观点去观察和分析工程技术上遇到的化学问题,并能和化学工作者解决之,为今后继续学习和工作打下必要的化学基础。
二、课程教学要求以高中化学和物理教学大纲教学为起点,用现代化学的基本知识和原理为基础,渗透与化学密切相关而又被社会特别关注的环境、能源、材料和生命等学科的交叉内容。
1.化学基本理论部分。
包括原子结构与元素周期系、分子结构、晶体结构及化学反应的基本原理。
这一部分要求建立正确的概念,学会进行有关的近似计算,依据基本概念、一般规律和计算结果对化学反应的方向、限度,物质的物理、化学性质进行粗略分析、判断。
2.化学基本知识部分。
包括化学与环境保护、化学与能源、无机材料、有机高分子材料、化学与生命、化学研究的新领域等在科学技术和社会文明中的重大而又贴近生活的相对独立的课题。
这一部分要求把对元素周期律、元素单质及化合物性质的理解与科学技术、生产生活的若干知识联系起来,使学生们看到他们身边的化学世界。
三、先修课程高中化学、高中物理四、课程教学重、难点教学重点:原子结构与元素周期系、分子结构、晶体结构、化学反应的基本原理。
教学难点:用杂化轨道理论判断分子构型,分子间作用力影响物质的物理性质,晶体与非晶体的区别,化学反应的基本原理。
五、课程教学方法(或手段)采用多媒体教学六、课程教学内容第1章原子结构与元素周期系(8学时)一、教学内容(一)人类对原子结构的认识过程;(二)核外电子运动的波粒二象性;(三)核外电子运动状态的近代描述;(四)各种元素的原子核外电子排布;(五)原子结构与元素性质的关系。
无机合成简明教程复习笔记(考研+期末)

无机合成简明教程复习笔记一、第一章●无机合成十大热点/前沿领域1.特种结构无机材料的制备2.软化学合成●硬化学:在超高温、超高压、强辐射、无重力、仿地心、仿宇宙等条件下探索新物质合成●软化学:采取迂回步骤,在较温和条件下实现化学反应过程,以制备相关材料的化学领域●方法:前驱体法、溶胶-凝胶法、溶剂热合成法、插入反应、离子交换过程、熔体(助溶剂)法、酶促合成骨骼和人齿反应、拓扑化学过程及一些电化学过程●特点●不需用高纯金属作原料●制成的合金是具有一定颗粒度的粉末,在使用时无需碾碎●产品本身具有高活性●产品具有良好的表面性质和优良的吸放氢性能●合成方法简单●有可能降低成本●为废旧储氢合金的回收再生开辟了新途径3.极端条件下合成4.杂化材料的制备5.特殊聚集态材料合成6.特种功能材料的分子设计●概念:其指开展特定结构无机化合物或功能无机材料的分子设计、裁剪与分子工程学的研究●步骤:以特定的功能为导向➡️在分子水平上实现结构设计和构建➡️研究分子构建的形成和组装规律➡️对特定性能的材料进行定向合成7.仿生合成●概念:其指在分子水平上模拟生物的功能,将生物的功能原理用于化学,借以改善现有的和创造崭新的化学原理和工艺科学●仿生膜●选择性通透作用●低能耗、低成本和单极效率高●适合热敏物质分离●应用广泛、装置简单、操作方便、不污染环境8.纳米粉体材料制备●化学制备方法●水热-溶剂热法●热分解法●微乳液法●高温燃烧合成法●模板合成法●电解法●化学沉淀法●化学还原法●溶胶-凝胶法●避免高温引起相分离9.组合化学●其是一门将化学合成、组合理论、计算机辅助设计及机器人结合为一体的技术●基本思想和主要过程●设想和定义●选择相关元素●构建化合物库●并行处理技术●加工过程●高通量分析●将新材料及合成与分析数据送交用户10.绿色合成●方法和实例●热化学循环分解水●水热-溶剂热合成●超临界二氧化碳和成●绿色电解合成●低热固相合成●固相合成四个阶段●扩散●反应●成核●生长●五个特点●具有潜伏期●无化学平衡●拓扑化学控制原理●分步反应●嵌入反应●定义:指在制造和应用化学产品时有效利用原料(最好可再生),消除废物和避免使用有毒的、危险的试剂与溶剂●核心和主要特点(原子经济反应)●无毒无害原料,可再生资源●环境友好产品,回归自然,废物回收利用●无毒无害催化剂●无毒无害溶剂二、第二章●Ellingham 图1.吉布斯-亥姆霍兹方程2.如何理解:设(x,y)( x,y分别为两种物质),位于金属氧化物线段之下的温度区间,x可用于还原金属氧化物,而本身被还原为y3.应用●古代制铜器●金属锌制备●耦合反应1.概念:原来不能单独自发进行的反应A,在反应B的帮助下合并,合并在一起的总反应可以进行,这种情况称之为耦合反应2.应用实例●单质磷的制备●四氯化钛的制备●氧化法制备硫酸铜●泡佩克斯图1.概念:它是相关电对的电极材料-参加反应各物种浓度-温度-溶液酸度图●电极反应类型●既有氢离子或氢氧根离子参加,又有电子参加,这时的泡佩克斯图为一直线,斜率为(-m/n)*0.059,截距为E池●电极反应只有电子得失,没有氢离子或氢氧根离子参加,其图形为平行于横坐标的直线●电极反应有氢离子或氢氧根离子参加,但没有电子得失,其图形为平行于纵坐标的直线2.性质●直线上方为氧化态的稳定区,下方为还原态的稳定区●直线左边是物种离子的稳定区,右边是沉淀的稳定区3.应用●判断氧化还原反应进行的方向和顺序●对角线规律●两条直线间的距离越大,E池越大,➡️G越负,则反应自发进行的趋势越大●对同时存在的几个反应,氧化还原反应进行的顺序可按直线之间距离的大小排序(从大到小)●确定水的稳定区●如图,凡是泡佩克斯图落在j-k之间的氧化剂或还原剂都不会与水反应●可判断物种在水中存在的区域,或者提供制备的条件●湿法冶金中的应用●在电化学中的应用●热力学相图1.一致熔融化合物2.不一致熔融化合物三、第三章●低温合成1.物态●物质的第四态:等离子态,升高温度(数百万度)●物质的第五态:波色-爱因斯坦凝聚(超导态和超流态),温度低至临界温度2.低温温区划分●普冷区:环境温度到120k●深冷区:120k到绝对零度●普冷与低温的分界线:123k3.低温获得●恒温低温浴●制冷产生低温P78●低温恒温器●储存液化气体装置●高压气体钢瓶●气体钢瓶的颜色●气体钢瓶的安全使用●原因:钢瓶内部填充的气体压力很大,并且有的气体具有可燃性和助燃性,故钢瓶具有一定的易燃易爆性●注意点●气瓶必须连接压力调节器,经降压后,再流出使用●安装调节器,配管一定要用合适的,安装后试接口,不漏气方可使用●保持清洁,防污秽侵入,防漏气●小心使用,不可过度用力●易燃气体钢瓶应装单向阀门,防止回火●避免和电器电线接触,以免产生电弧使气体受热发生危险●瓶内气体不可用尽,即压力表指压不可为0,否则可能混入空气,重装气体时会有危险●气体附近必须有灭火器➡️,且工作场所通风良好4.低温的测量●蒸气压温度计●低温热电偶●低温热电阻温度计5.应用●稀有气体合成●KrF2的低温放电合成● XeO4的低温水解合成●在高氙酸盐中缓慢滴入零下五摄氏度的浓硫酸,生成四氧化氙气体●真空升华得纯品,储存于零下78摄氏度的冷凝容器中●XeF2的低温光化学合成P84●RnF2的光化学合成●金属,非金属同液氨的反应●碱金属及其化合物同液氨的反应●U型汞鼓泡管主要作为液氨蒸发的出口,并在所有的液氨蒸发后,阻止气体进入杜瓦瓶●碱土金属同液氨反应●某些化合物在液氨中的反应●非金属同液氨的反应●液氨中配合物的生成●低温下挥发性化合物的合成●二氧化三碳的合成●氯化氰的合成●磷化氢的合成●实验结束时不断的使氢气通过烧瓶,同时使烧瓶中的物质冷却,直至磷完全凝固。
药物设计答案(总)

作业0 导论1. 名词解释①药物发现就是新药研究和开发的过程,包括以生命科学为基础的某种疾病和治疗靶点确定的基础和可行性分析研究;与药理学有关的先导物体外检测的生物模型和方法学的建立,以及药代血河安全性研究;制剂学;专利申请以及人体Ⅰ、Ⅱ、Ⅲ、Ⅳ试验和上市销售。
②药物设计仅包括基础研究和可行性分析涉及的先导化合物发现过程,即通常所讲的药物设计。
③受体生物体的细胞膜上或细胞以能与某些外来物质结合并产生某种生物作用的特异性大分子结构。
④配基能与受体产生特异性结合(分子识别)的生物活性物质(包括信息分子和药物)。
⑤合理药物设计根据药物发现过程中基础研究所揭示的药物作用靶点(受体),再参考其源性配体或天然药物的化学结构特征,根据配体理化性质寻找和设计合理的药物分子,以便有效发现、达到和选择性作用于靶点的又具药理活性的先导物;或根据靶点3D结构直接设计活性配体。
⑥组合化学用数学组合法或均匀与混合交替轮作方式,顺序同步地共价连接结构上相关构件,批量合成不同分子实体,不需确证单一化合物的结构而建立有序变化的化合物库。
⑦高通量筛选运用计算机控制的高敏化和专一性筛选模型,对大量化合物的药效进行微量样品的自动化测定。
⑧高涵筛选在保持细胞结构和功能完整性的前提下,尽可能同时检测被筛样品对细胞的生长、分化、迁移、凋亡、代途径及信号传导等多个环节的影响,从单一实验中获取多种相关信息,确定其生物活性和潜在毒性。
⑨外消旋转换将已上市的外消旋体药物再开发成为单一对映体药物。
2. 简答题①简述药物发现的基本阶段。
共包括6个阶段。
基础研究阶段:对疾病进行生命科学的基础研究,发现致病机理确定疾病的多种靶点及相关的新化学实体(NCE);可行性分析:考察基础研究成果的可靠性、有效性及适应市场的价格能力;项目研究(临床前):以先导化合物为候选药物,进行药学、药理和毒理学等方面的研究,以求发现可进行临床研究的研究中新药(IND);非临床开发:是根据项目研究判断候选药物能否做研究中新药,并向药物管理法定部门申请临床研究的总体评价,也是一个决策过程。
第8章 组合化学

Combinatorial Chemistry
Generation of Compound Libraries
HTS
Library
8.1.1 组合化学的基本原理 在同一个化学反应体系中加入不同的结构单元, 利用这些结构单元的排列组合,系统的合成大量的化 合物。 1个化学家用组合化学方法2~6周的工作量=10个 化学家用传统化学方法花费一年的时间来完成。
筛选8000---12 000个化合物
费用:10亿美元
组合化学
将化学合成、组合理论、计算机辅助设计结
合一体, 在短时间内将不同构建单元(building
block),根据组合原理,系统反复地共价连接,
从而产生大批的分子多样性群体,形成化合物库,
通过高通量药效筛选,得到可能的有目标性能的 化合物结构的一类策略和方法。
筛选量越大
比较的范围越广
越可能获得品质优异的药物
8.4 多样性导向合成 (DOS)
关键:化合物库中的生物相关性和多样性 Schreiber于2000 年提出, 以高通量方式产生
“类天然产物” 的化合物,正向合成分析。
正向合成分析法
合成是从单一的起始原料出发,以简便易行 的方法合成结构多样、构造复杂的化合物集合体,
Optimise a self-folding structure
Generate self-assembled aggregates
Dynamic Combinatorial Chemistry
Some possible directions
Use a ligand to make an ideal receptor
NIH Roadmap
/
Roadmap for Medical Research in the 21st Century Includes: Molecular Libraries and Imaging
药物化学第8章 解热镇痛药、非甾体抗炎药及抗痛风药题库

第8章解热镇痛药、非甾体抗炎药及抗痛风药选择题每题1分(d) 3-苯基-4-(4-甲磺酰苯基)-1,4-二氢一呋喃-2-酮具有下列化学结构的药物是_______。
(a) 阿司匹林(b) 安乃近(c) 吲哚美辛(d) 贝诺酯具有下列化学结构的药物是_______。
(a) 依托度酸(b) 丙磺舒(c) 甲氧苄啶(d) 别嘌醇下列药物中,哪个具有3,5-吡唑烷二酮的基本结构_______。
(d) 与乙醇在浓硫酸存在下成具有香味的酯化学结构为下列的药物与下面_______药物作用相似。
(a) 苯巴比妥(b) 肾上腺素(c) 布洛芬(d) 依他尼酸下面_______药物在常用剂量中,仅具有解热、镇痛作用,不具有消第8章解热镇痛药、非甾体抗炎药及抗痛风药填空题1 每空1分第8章解热镇痛药、非甾体抗炎药及抗痛风药概念题每题2分第8章解热镇痛药、非甾体抗炎药及抗痛风药问答与讨论题每题4分试比较前列腺素、血栓素和白三烯的化学结构和生理作用。
试叙述阿司匹林作用机理(含反应的使用及对反应机制的深刻理解。
说明萘丁美酮对胃肠刺激较小原因及该设计方法意义为非酸性前体药物,其本身无抑制环氧合酶COX活性,小肠吸收后,经肝脏首过效应代谢为活性代谢药物,即原药6-甲氧基-2-萘乙酸(类似萘普生)起作用,由此对COX有选择性抑制作用,不影响血小板聚集和肾功能不受损害,用于治疗风湿性关节炎,因不含有酸基,对胃肠道粘膜刺激小,不良反应低。
阿司匹林可能含有什么杂质?主要杂质种类及来源:主要杂质是未反应完第8章解热镇痛药、非甾体抗炎药及抗痛风药合成/代谢/反应/设计题每题6分1,2各占1分,3,4为2分以无水糖精钠合成吡罗昔康1,2,3,4,5,6各为1分以4-甲基苯乙酮合成塞来昔布1,2,3 各占2分完成塞来昔布代谢反应1. 2.3.1,2,3 每个各2分完成布洛芬代谢反应1.1分2.1分3.1分4.1分5.2分完成双氯芬酸的氧化代谢反应1. 2. 3.4.1,2各1分,3,4各2分完成芬不芬的代谢反应1. 2.3. 4.51,2,3,4各1分,5为2分请写出萘普生合成路线前三步每步1分,后两步3分写出扑热息痛的合成路线每步3分,试剂1分,产物2分。
组合化学——精选推荐

组合化学1、前言组合化学是一门将组合理论应用于化学合成的技术。
组合化学合成方式有着传统化学合成所没有的优点。
组合化学可用于化合物尤其是肽链的合成。
组合化学可以一次性合成大量结构相似的分子以供筛选。
而如果只用传统方法去合成,那么所需时间必定很长。
正因为组合化学这个特点,使得合成化合物周期大大缩短。
当然,组合化学在制药领域的广泛应用也使得药物的研发周期大大缩短。
为药物的研发带来了福音。
2.正文组合化学是一门将化学合成、组合理论、计算机辅助设计于结合一体,并在短时间内将不同构建模块用巧妙构思,根据组合原理,系统反复连接,从而产生大批的分子多样性群体,形成化合物库(compound library),然后,运用组合原理,以巧妙的手段对库成分进行筛选优化,得到可能的有目标性能的化合物结构的科学[1]。
组合化学合成技术已经给传统的有机合成化学带来了革命性的变化,是近年来科学上取得的重要成就之一[2]。
组合化学也有狭义和广义之分。
狭义组合化学通常所指的是1984 年由Geysen 提出的大量化合物之合成策略, 即组合合成,它是合成大量新化合物的有力工具。
狭义组合化学可以定义为平行、系统、反复地共价连接不同结构的“构建单元”(Building blocks) , 得到大量合成化合物进行高通量筛选的一类策略与方法。
这个方法可以一次性或批量地获得很大数量的类似化合物—化合物库( Chemical library ) 以供高通量筛选, 寻找先导化合物。
采用这种方法, 可以大大增加找到具有化学家所希望的特殊性能的化合物的机会[3]。
组合化学的出现,给化学合成带来了极大的便利。
它的应用已经遍及化学领域,药物学也不例外。
那么组合化学在药物开发方面有哪些实际应用呢?当美国人Houghten通过组合化学合成一些多肽后,世人开始正视这种化学合成方式,组合化学也就开始蓬勃兴起4。
白介素是一种重要的药物,于是组合化学就利用这门学科自己的特点以及分子配体结合位点合成了一系列配体,并经过纯化,得到了理想的白介素一1受体拮抗剂[5]。
第八章酶的定向进化

改进方法
其它改组方法
交错延伸重组( 交错延伸重组 StEP : Stagger extension process) 随机引物体外重组( 随机引物体外重组 RPR: Random2priming in vitro recombination) 临时模板随机嵌合生长( 临时模板随机嵌合生长 RACHITT : Random chimeragenesis on transient templates)
定向进化的历史
1 萌芽阶段 首先在分子水平上进行改造 单一分子的是 Sol Spiegelman在20世纪60年代,利用RNA噬 菌体Q进行的试验,目的是证明达尔文的自然 选择也可在非细胞体进行. 病毒基因组 Q复制酶扩增 DNA突变库 复制快的保留(能被Q酶选择识别的)
2奠基阶段
1981年,Hall B G等报道了他们定向改变了 大肠杆菌K12中的第二半乳糖苷酶的底物专 一性,开发出对几种糖苷键有水解能力的酶. HallB G等利用lacz缺陷型的菌株为宿主菌, 分别在含有某种碳源的培养基上培养.从酶 的自发突变库中筛选出分别可以水解半乳糖, 乳果糖,乳糖酸的突变酶,而野生型的酶不 能水解这些底物.
第八章 酶的定向进化
8.1 简介
通常可通过两条途径获得具有新功能和特性 的酶 一是从大量未知的生物种系中寻找; 二是改造现有已知的酶.
人工改造之定点突变
首先分析蛋白质的三维空间结构,搞清结构 与功能的关系,然后采用定点突变技术改变 蛋白质中的个别氨基酸残基,从而得到新的 蛋白质,理性化设计. 定点突变技术对天然酶蛋白的催化活性,抗 氧化性,底物特异性,热稳定性及拓宽酶反 应的底物范围,改进酶的别构效应等进行了 成功的改造.
实例
Stemmer 等从不同种微生物中选择编码头孢 菌素酶的4 个同源基因, 对它们进行单独进化 和同源重组进化, 来对这两种进化模式进行比 较.在对单基因进化得到的突变酶中, 对头孢 羟羧氧胺的抗性最高的增加了8 倍, 而采用 Family shuffling 的方法使抗性比其中两种微 生物来源的天然酶提高270 倍, 比另两种酶提 高了540 倍.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
筛选8000---12 000个化合物
费用:10亿美元
组合化学
将化学合成、组合理论、计算机辅助设计结
合一体, 在短时间内将不同构建单元(building
block),根据组合原理,系统反复地共价连接,
从而产生大批的分子多样性群体,形成化合物库,
通过高通量药效筛选,得到可能的有目标性能的 化合物结构的一类策略和方法。
Combinatorial Chemistry
Generation of Compound Libraries
HTS
Library
8.1.1 组合化学的基本原理 在同一个化学反应体系中加入不同的结构单元, 利用这些结构单元的排列组合,系统的合成大量的化 合物。 1个化学家用组合化学方法2~6周的工作量=10个 化学家用传统化学方法花费一年的时间来完成。
(2)平行合成法(使用频率最高) 原理:一个底物和多个反应物反应。
C1 若干步
A 底物
B
C2
中间产物
C3
进 一 步 合 成
X
新发现的先导化合物用来设计新底物模板
传统的合成法
A
B
C
纯化、结 构验证
纯化、结 构验证
平行合成法 特点:
1. 可在固相或液相中进行;
2. 化合物库不需纯化,只需简单的结构 验证即可进行筛选; 3. 快速、化合物数目大。
组合化学
不同的构建单元A和Bn
A1-nB1-n
Combinatorial Synthesis
O (A) Cl H + H2N (B) (A) N (B) O
A1 A2 A3
B1 B2
A1B1 A2B1
A1B2 A2B2
A1B3 A2B3
B3
A3B1
A3B2
Dynamic Combinatorial Chemistry
Some possible directions
Use a ligand to make an ideal receptor
Use a receptor to make an ideal ligand
Optimise a self-folding structure
组合化学的特点
– a large number of different compounds
– simultaneously
– under identical reaction – in a systematic manner
传统合成
A +
B
AB
AB被单独合成,反应产物将通过重 结晶、蒸馏或色谱法得到分离纯化。
第8章 组合化学与多样性导向合成
本章内容
1 组合化学的基本原理和技术 2 3 4 5
小分子生物活性数据库
高通量筛选 多样性导向合成
应用
8.1 组合化学 Combinatorial Chemistry
化学的中心任务
创造新的有各种功能的化学物质;
发展有效方法获得尽可能纯的单一的化合物
化学方法筛选小分子药物 研发时间:10年
Generate self-assembled aggregates
Dynamic Combinatorial Chemistry
Some possible directions
Use a ligand to make an ideal receptor
Use a receptor to make an ideal ligand
Optimise a self-folding structure
Generate self-assembled aggregates
Dynamic Combinatorial Chemistry
Some possible directions
Use a ligand to make an ideal receptor
方法
组分混分法 混合试剂法
组分混分法 建立在固相合成技术上的组合合成方法。 过程: 将固相单体分成相等的几份
每一份固相分别与一个不同的氨基酸相连
均匀混合所有组分
组分混分法
树脂
Split 1. Coupling Mix (3 products) Split 2. Coupling (9 products)
化合物库A3B3组合组合化学反应 产率高
纯度高
依赖于一些技术,如固相合成。
组合化学围绕某一核心结构,侧链上变化不同的取代基
The game with the large numbers !!!
库的大小:几十到几十万
影响合成化合物总量的因素:
建构单元数 反应步骤数
Dynamic Combinatorial Chemistry
生物活性筛选
8.1.3 组合化学的应用
组合化学
细胞和 分子生物学
化合物构效关系
优化
临床 需求
靶点
靶标组合 分子库
先导 化合物
v
v
v
v
氨基酸:3种 二 肽:9种
三 肽: 27种
四 肽: 81种
Biomolecular Synthesizer
茶叶袋法
聚乙烯小袋作为固相树脂珠合成的容器,小网 眼方便试剂进出。
茶叶袋
树脂珠
混合试剂法
1986年,Geysen提出组合库的方法。 每一步反应都在构建单元混合物的反应器中 进行,要求反应机理和反应动力学明确。
Some possible directions
Use a ligand to make an ideal receptor
Use a receptor to make an ideal ligand
Optimise a self-folding structure
Generate self-assembled aggregates
发现新的活性化合物且活性得到证实
新发现的先导化合物和构效关系研究设计新底物模板
制备新的化合物库
(3)固相有机反应 Solid-Phase Organic Synthesis 目标化合物通过结合链与不溶性的固相载体连 接,在特定条件下断开,得到溶液中的化合物。
树脂
树脂
树脂
溶液得到的化合物
纯度测定 结构分析
Use a receptor to make an ideal ligand
Optimise a self-folding structure
Generate self-assembled aggregates
8.1.2 组合化学的核心技术
平行 合成
组合 合成
固相有 机反应
核心技术
(1)组合合成