战略选择矩阵

战略选择矩阵
战略选择矩阵

战略选择矩阵

战略选择矩阵的定义

战略选择矩阵是一种知道企业进行战略管理的模型。企业应结合自身的优劣势和内外部资源的运用状况,选择合适的战略。该战略矩阵如下图:

战略选择矩阵的内容

在象限Ⅰ中,企业会认为自己当前的生产经营业务的增长机会有限或风险太大,可以采用纵向整合战略来减少原材料或顾客渠道方面的不确定性所带来的风险。企业也可以采用联合型多种经营战略,既能投资获利,又不用转移对原有经营业务的注意力。

在象限Ⅱ中,企业常采用较为保守的克服劣势的办法。在保持基本使命不变的情况下,企业在内部将一种经营业务转向另一种经营业务,加强有竞争优势的经营业务的发展。企业可以采用压缩战略,精简现有业务。实际上,压缩也是起着一种转变战略的作用,即从提高工作效率,消除浪费中获得新的优势。如果某种业务已经是成功的重大障碍,或者克服劣势所费巨大,或者成本效益太低,就必须考虑采取分离战略,把这种业务分离出去,同时获得补偿。当经营业务已经徒然耗费组织资源,有导致破产的危险时,就可以考虑清算战略。

在象限Ⅲ中,企业如果认为能利用这四种战略,建立获利能力并希望从内部增强竞争优势,,就可以进行选择。集中既市场渗透,全力倾注于现有的产品和市场,力求通过再投入资源,增强优势以巩固自己的地位。市场开发和产品开发都是要扩展业务,前者适用预先有产品拥有新顾客群的情况,后者适用于现有顾客对企业现有产品的相关产品感兴趣的情况。产品开发也适用于拥有专门技术或其他竞争优势的条件。

在象限Ⅳ中,企业通过积极扩大要业务范围来增强竞争优势,会需要选用一种注重外部的战略。横向整合可以使企业迅速增加产出能力。同心型多种经营业务与新业务密切相关,可以使企业平稳而协调的发展。合资经营也是从外部增加资源能力的战略,可以使企业将优势拓展到原来不敢独自进入的竞争领域。合作者的生产、技术、资金或营销能力可以大大减少金融投资,并增加企业获利的可能性。

影响战略选择的因素分析

公司战略态势的选择会对企业的未来产生重大的影响,因而这一决策必须时非常慎重的。在实际工作中,企业管理者往往在经过对各项可能的战略态势进行全面评价以后,发现好几种方案都是可以选择的,在这种情况下,会有一些因素会对最后决策产生影响,这些因素在不同的企业和不同的环境中起到的影响作用是不同的,但了解这些因素对企业管理者制定合适的战略方案来说时非常必要的。总的来说,企业的影响因素有:

1,企业过去的战略。对大多数企业来说,过去的战略常常被当成战略选择过程的起点,这样,一个很自然的结果是,进入考虑范围的战略数量会受到企业过去战略的限制。由于企业管理这是过去战略的制定者和执行者,因此,他们常常不倾向于改动这些既定战略,这就要求企业在必要时撤换某些管理人员,以削弱失败的目前战略对企业未来战略的影响。

2,管理者对风险的态度。企业管理者对风险的态度影响着企业战略态势的选择。风险承担者一般采取一种进攻性的战略,以便在被迫对环境的变化做出反应之前做出主动的反应。风险回避者一般采取一种防御性战略,只有环境迫使他们做出反应使他们才不得不这样做。风险回避者相对来说更注重过去的战略,而风险承担者则有着更为广泛的选择。

3,企业对外部环境的依赖性。企业总是生存在一个受到股东、竞争者、客户、政府、行业协会和社会的影响之中。企业对这些环境力量中的一个或多个因素的依赖程度也影响着企业战略管理的过程。对环境的较高的依赖程度通常会减少企业在其战略选择过程中的灵活性。此外,当企业对外部环境的依赖性特别大时,企业还会不得不邀请外部环境中的代表参加战略态势的选择。

4,企业文化和内部权势关系。任何企业都存在着或强或弱的文化。企业文化和战略态势的选择是一个动态并衡,相互影响的过程。企业在选择战略态势时不可避免的要受到企业文化的影响。企业未来战略的选择只有充分考虑到与目前的企业文化和未来预期的企业文化相互包容和相互促进的情况下才能被成功的实施。另一方面,企业中总存在着一些非正式的组织。由于种种原因,某些组织成员会支持某些战略,反对另一些战略。这些成员的看法有时甚至能够影响战略的选择,因此在现实的企业中,战略态势的决策或多或少的都会打上这些力量的烙印。

5,时期性。时期性指允许进行战略态势决策前的时间限制。时间限制的压力不仅减少了能够考虑的战略方案的数量,而且也限制了可以用于评价的方案的信息和数量。有研究表明,在时间的压力下,人们倾向于把否定的因素看得比肯定的因素更重要,因而往往做出更加具有防御性的策略。时期性的第二点包括战略规划取得长短,即战略的时期着眼点。战略规划期长,则外界环境的预测相对复杂,因而在作战略选择时的不确定性因素更多,这会使战略方案的决策的复杂性大大增加。

6,竞争者的反应。在战略态势的选择中,还必须分析和预计竞争对手对本企业不同战略方案的反应,企业必须对竞争对手的反击能力做出恰当的估计。在寡头垄断的市场结构中,或者市场上存在着一个极为强大的竞争者时,竞争者反应对战略选择的影响更为重要。

矩阵的运算及其运算规则

矩阵基本运算及应用 牛晨晖 在数学中,矩阵是一个按照长方阵列排列的或集合。矩阵是高等代中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、、光学和中都有应用;中,制作也需要用到矩阵。矩阵的运算是领域的重要问题。将为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则 简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的.

1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或.特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB. 1.2.3典型举例 已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知

? 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即. (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和. 1.3.2典型例题 设矩阵 计算 解是的矩阵.设它为

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

矩阵的各种运算详解.

一、矩阵的线性运算 定义1 设有两个矩阵和,矩阵与的和记作, 规定为 注:只有两个矩阵是同型矩阵时,才能进行矩阵的加法运算. 两个同型矩阵的和,即为两个矩阵对应位置元素相加得到的矩阵. 设矩阵记 , 称为矩阵的负矩阵, 显然有 . 由此规定矩阵的减法为 . 定义2 数与矩阵A的乘积记作或, 规定为 数与矩阵的乘积运算称为数乘运算. 矩阵的加法与矩阵的数乘两种运算统称为矩阵的线性运算. 它满足下列运算规律:设都是同型矩阵,是常数,则 (1) (2) ; (3) (4) (5) (6) (7) (8) 注:在数学中,把满足上述八条规律的运算称为线性运算. 二、矩阵的相乘 定义3设 矩阵与矩阵的乘积记作, 规定为

其中,( 记号常读作左乘或右乘. 注: 只有当左边矩阵的列数等于右边矩阵的行数时, 两个矩阵才能进行乘法运算. 若,则矩阵的元素即为矩阵的第行元素与矩阵的第列对应元素乘积的和. 即 . 矩阵的乘法满足下列运算规律(假定运算都是可行的): (1) (2) (3) (4) 注: 矩阵的乘法一般不满足交换律, 即 例如, 设则 而 于是且 从上例还可看出: 两个非零矩阵相乘, 可能是零矩阵, 故不能从必然推出 或 此外, 矩阵乘法一般也不满足消去律,即不能从必然推出例如, 设 则 但 定义4如果两矩阵相乘, 有 则称矩阵A与矩阵B可交换.简称A与B可换. 注:对于单位矩阵, 容易证明 或简写成 可见单位矩阵在矩阵的乘法中的作用类似于数1. 更进一步我们有 命题1设是一个n阶矩阵,则是一个数量矩阵的充分必要条件是与任何n阶矩阵可换。

命题2设均为n阶矩阵,则下列命题等价: (1) (2) (3) (4) 三、线性方程组的矩阵表示 设有线性方程组 若记 则利用矩阵的乘法, 线性方程组(1)可表示为矩阵形式: (2) 其中矩阵称为线性方程组(1)的系数矩阵. 方程(2)又称为矩阵方程. 如果是方程组(1)的解, 记列矩阵 则 , 这时也称是矩阵方程(2)的解; 反之, 如果列矩阵是矩阵方程(2)的解, 即有矩阵等式 成立, 则即也是线性方程组(1)的解. 这样, 对线性方程组(1)的讨论便等价于对矩阵方程(2)的讨论. 特别地, 齐次线性方程组可以表示为 将线性方程组写成矩阵方程的形式,不仅书写方便,而且可以把线性方程组的理论与矩阵理论联系起来,这给线性方程组的讨论带来很大的便利. 四、矩阵的转置 定义6把矩阵的行换成同序数的列得到的新矩阵, 称为的转置矩阵, 记作(或 ). 即若 则

数组运算法则

认识一维数组和二维数组。理清概念很重要,不要混淆数组、数组公式。 第一,一维数组和二维数组的定义 单行或单列的数组,我们称为一维数组。 多行多列(含2行2列)的数组是二维数组。 第二,数组和数组公式的区别 数组,就是元素的集合,按行、列进行排列。 数组公式:就是包含有数组运算的公式。ctrl+shift+enter,三键结束,这个过程就是告诉excel请与数组运算的方式来处理本公式,反馈一个信息,就是在公式的外面添加一对花括号。 第三,一维数组和二维数组的运算规律 1、单值x与数组arry运算 执行x与arry中每一个元素分别运算并返回结果,也就是与arry本身行列、尺寸一样的结果。 比如:2*{1,2;3,4;5,6},执行2*1、2*2、2*3……2*6运算,并返回3行2列的二维数组结果{2,4;6,8;10,12},如下图所示: 数组中行和列分别用逗号、分号来间隔。逗号表示行,行之间的关系比较紧密,用逗号分割;列之间,关系相对比较疏远一点,用分号分割。 又比如:"A"&{"B","C"}返回{"AB","AC"}。"A"={"B","A","C"}返回{FALSE,TRUE,FALSE} 2、同向一维数组运算 执行arry1与arry2对应位置的元素分别运算并返回结果。要求arry1与arry2尺寸必须相同,否则多余部分返回#N/A错误。 比如: {1;2;3}*{4;5;6}返回{4;10;18}; {1,2,3,4}*{4,5,6}返回{4,10,18,#N/A},如下图所示: 3、异向一维数组运算 arry1的每一元素与arry2的每一元素分别运算并返回结果,得到两个数组的行数*列数个元素,也就是M行数组与N列数组运算结果为M*N的矩阵数组。 比如:{1;2;3}*{4,5,6,7,8},执行1*4、1*5、……1*8、2*4、2*5……3*8,返回{4,5,6,7,8;8,10,12,14,16;12,15,18,21,24}

矩阵的定义及其运算规则

矩阵的定义及其运算规则 1、矩阵的定义 一般而言,所谓矩阵就是由一组数的全体,在括号()内排列成m行n 列(横的称行,纵的称列)的一个数表,并称它为m×n阵。 矩阵通常是用大写字母 A 、B …来表示。例如一个m 行n 列的矩阵可以简记为: ,或 。即: (2-3) 我们称(2-3)式中的为矩阵A的元素,a的第一个注脚字母,表示矩阵的行数,第二个注脚字母j(j=1,2,…,n)表示矩阵的列数。 当m=n时,则称为n阶方阵,并用表示。当矩阵(a ij)的元素仅有一行或一列时,则称它为行矩阵或列矩阵。设两个矩阵,有相同的行数和相同的列数,而且它们的对应元素一一相等,即,则称该两矩阵相等,记为A=B。 2、三角形矩阵 由i=j的元素组成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素。 如果在方阵中主对角线一侧的元素全为零,而另外一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵。例如,以下矩阵都是三角形矩阵: ,,,。 3、单位矩阵与零矩阵 在方阵中,如果只有的元素不等于零,而其他元素全为零,如: 则称为对角矩阵,可记为。如果在对角矩阵中所有的彼此

都相等且均为1,如:,则称为单位矩阵。单位矩阵常用E来表示,即: 当矩阵中所有的元素都等于零时,叫做零矩阵,并用符号“0”来表示。 4、矩阵的加法 矩阵A=(a ij)m×n和B=(b ij)m×n相加时,必须要有相同的行数和列数。如以C=(c ij)表示矩阵A及B的和,则有: m ×n 式中:。即矩阵C的元素等于矩阵A和B的对应元素之和。 由上述定义可知,矩阵的加法具有下列性质(设A、B、C都是m×n矩阵): (1)交换律:A+B=B+A (2)结合律:(A+B)+C=A+(B+C) 5、数与矩阵的乘法 我们定义用k右乘矩阵A或左乘矩阵A,其积均等于矩阵中的所有元素都乘上k之后所得的矩阵。如: 由上述定义可知,数与矩阵相乘具有下列性质:设A、B都是m×n矩阵,k、h为任意常数,则: (1)k(A+B)=kA+kB (2)(k+h)A=kA+hA (3)k(hA)=khA

矩阵的基本运算法则

矩阵的基本运算法则 1、矩阵的加法 矩阵加法满足下列运算规律(设A 、B 、C 都是m n ?矩阵,其中m 和n 均为已知的正整数): (1)交换律:+=+A B B A (2)结合律:()()++++A B C =A B C 注意:只有当两个矩阵为同型矩阵(两个矩阵的行数和列数分别相等)时,这两个矩阵才能进行加法运算。 2、数与矩阵相乘 数乘矩阵满足下列运算规律(设A 、B 是m n ?矩阵,λ和μ为数): (1)结合律:()λμλμ=A A (2)分配律:()λμλμ+=+A A A (3)分配律:()λλλ+=+A B A B 注意:矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算。 3、矩阵与矩阵相乘 矩阵与矩阵的乘法不满足交换律、但是满足结合律和分配率(假设运算都是可行的): (1)交换律:≠AB BA (不满足) (2)结合律:()()=AB C A BC (3)结合律:()()()λλλλ==其中为数AB A B A B (4)分配律:()(),+=++=+A B C AB AC B C A BA CA 4、矩阵的转置 矩阵的转置满足下述运算规律(假设运算都是可行的,符号()T g 表示转置): (1)()T T =A A

(2)()T T T +=+A B A B (3)()T T λλ=A A (4)()T T T =AB B A 5、方阵的行列式 由A 确定A 这个运算满足下述运算法则(设A 、B 是n 阶方阵,λ为数): (1)T =A A (2)n λλ=A A (3)=AB A B 6、共轭矩阵 共轭矩阵满足下述运算法则(设A 、B 是复矩阵,λ为复数,且运算都是可行的): (1)+=+A B A B (2)λλ=A A (3)=AB AB 7、逆矩阵 方阵的逆矩阵满足下述运算规律: (1)若A 可逆,则1-A 亦可逆,且()11--=A A (2)若A 可逆,数0λ≠,则λA 可逆,且()111 λλ--=A A (3)若A 、B 为同阶矩阵且均可逆,则AB 亦可逆,且()111---=AB B A 参考文献: 【1】线性代数(第五版),同济大学

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵就是一个按照长方阵列排列得复数或实数集合、矩阵就是高等代数学中得常见工具,也常见于统计分析等应用数学学科中、在物理学中,矩阵于电路学、力学、光学与量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵得运算就是数值分析领域得重要问题。将矩阵分解为简单矩阵得组合可以在理论与实际应用上简化矩阵得运算。在电力系统方面,矩阵知识已有广泛深入得应用,本文将在介绍矩阵基本运算与运算规则得基础上,简要介绍其在电力系统新能源领域建模方面得应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统得紧密结合。 1矩阵得运算及其运算规则 1。1矩阵得加法与减法 1、1、1运算规则 设矩阵,,?则 ?简言之,两个矩阵相加减,即它们相同位置得元素相加减!?注意:只有对于两个行数、列数分别相等得矩阵(即同型矩阵),加减法运算才有意义,即加减运算就是可行得. 1。1、2运算性质 满足交换律与结合律

交换律;?结合律. 1.2矩阵与数得乘法 ?1。2、1运算规则?数乘矩阵A,就就是将数乘矩阵A中得每一个元素,记为或.?特别地,称称为得负矩阵。 1。2、2运算性质?满足结合律与分配律?结合律:(λμ)A=λ(μA);(λ+μ)A=λA+μA.?分配律:λ(A+B)=λA+λB. 1、2、3典型举例?已知两个矩阵 满足矩阵方程,求未知矩阵、?解由已知条件知 1、3矩阵与矩阵得乘法 ?1。3.1运算规则?设,,则A与B得乘积就是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即. (2) C得第行第列得元素由A得第行元素与B得第列元素对应相乘,再取乘积之与、 1、3、2典型例题

矩阵乘积的运算法则的证明

矩阵乘积的运算法则的证明 矩阵乘积的运算法则 1 乘法结合律:若n m C A ?∈,p n C B ?∈ , q p C C ?∈,则C AB BC A )()(=. 2 乘法左分配律:若A 和B 是两个n m ?矩阵,且C 是一个p n ?矩阵,则BC AC C B A +=+)(. 3 乘法右分配律:若A 是一个n m ?矩阵,并且B 和C 是两个p n ?矩阵,则BC AC C B A +=+)(. 4 若α是一个标量,并且A 和B 是两个m n ?矩阵,则B A B A ααα+=+)(. 证明 1 ①先设n 阶矩阵为)(ij a A =,)(ij b B =, )(ij c C =,)(ij d AB =,)(ij e BC = )(ij f ABC =,)()(ij g BC A =,有矩阵的乘法得: 故对任意n j i 2,1,=有: =ij g 故)()(BC A C AB = ②再看 mn ik a A )(= ,np kj b B )(=,pq jt c C )(=, mp ij d AB )(= , nq kt e BC )(= , mq it g BC A )()(=, 有矩阵的乘法得: 故对任意的,2,1m i = ,2,1p j = ,2,1n k = q t 2,1=有: 6nt in t i t i e a e a e a +++= 2211 =ij g 故)()(BC A C AB = 证明 2 设ij A 表示矩阵A 的第i 行,第j 列上的元素,则有

=ij ij BC AC )()(+ 故证出矩阵乘法左分配律. 证明 3 同理矩阵乘法左分配律可得 = []ij C B A )(+ 故证出矩阵乘法左分配律. 证明 4 设????????????==mn m m n n mn ij a a a a a a a a a a A 2122221 11211)(,????????????==mn m m n n mn ij b b b b b b b b b b B 2 12222111211)(, 可得=+B A ????????????+++++++++mn mn m m m m n n n n b a b a b a b a b a b a b a b a b a 221 12222 2221211112 121111, =A α????????????mn m m n n a a a a a a a a a ααααααααα 212222111211,B α????????????=mn m m n n b b b b b b b b b ααααααααα 21 2222111211, B A αα+???? ??????? ?+++++++++=)()()()()()()()()(221122222221211112121111mn mn m m m m n n n n b a b a b a b a b a b a b a b a b a ααααααααα , 所以)(B A +α=B A αα+.

矩阵的定义及其运算规则

矩阵得定义及其运算规则 1、矩阵得定义 一般而言,所谓矩阵就就是由一组数得全体,在括号内排列成m行n 列(横得称行,纵得称列)得一个数表,并称它为m×n阵。 矩阵通常就是用大写字母A 、B …来表示。例如一个m 行n 列得矩阵可以简记为:,或 。即: (23) 我们称(23)式中得为矩阵A得元素,a得第一个注脚字母,表示矩阵得行数,第二个注脚字母j(j=1,2,…,n)表示矩阵得列数。 当m=n时,则称为n阶方阵,并用表示。当矩阵(a ij)得元素仅有一行或一列时,则称它为行矩阵或列矩阵。设两个矩阵,有相同得行数与相同得列数,而且它们得对应元素一一相等,即,则称该两矩阵相等,记为A=B。 2、三角形矩阵 由i=j得元素组成得对角线为主对角线,构成这个主对角线得元素称为主对角线元素。 如果在方阵中主对角线一侧得元素全为零,而另外一侧得元素不为零或不全为零,则该矩阵叫做三角形矩阵。例如,以下矩阵都就是三角形矩阵: , ,, 。 3、单位矩阵与零矩阵 在方阵中,如果只有得元素不等于零,而其她元素全为零,如: 则称为对角矩阵,可记为。如果在对角矩阵中所有得彼此都相等且均为1,如: ,则称为单位矩阵。单位矩阵常用E来表示,即: 当矩阵中所有得元素都等于零时,叫做零矩阵,并用符号“0”来表示。 4、矩阵得加法 矩阵A=(a ij)m×n与B=(b ij)m×n相加时,必须要有相同得行数与列数。如以C=(c ij)m ×n表示矩阵A及B得与,则有: 式中:。即矩阵C得元素等于矩阵A与B得对应元素之与。 由上述定义可知,矩阵得加法具有下列性质(设A、B、C都就是m×n矩阵): (1)交换律:A+B=B+A (2)结合律:(A+B)+C=A+(B+C) 5、数与矩阵得乘法 我们定义用k右乘矩阵A或左乘矩阵A,其积均等于矩阵中得所有元素都乘上k之后所得得矩阵。如: 由上述定义可知,数与矩阵相乘具有下列性质:设A、B都就是m×n矩阵,k、h为任意常数,则: (1) k(A+B)=kA+kB (2)(k+h)A=kA+hA

矩阵的运算及其运算规则1

矩阵的运算及其运算规则 一、矩阵的加法与减法 1、运算规则 ,,设矩阵则 简言之,两个矩阵相加减,即它们相同位置的元素相加减!加减法运算才有意义,列数分别相等的矩阵(即同型矩阵),注意:只有对于两个行数、即加减运算是可行的. 2、运算性质(假设运算都是可行的) 满足交换律和结合律 ;交换律 .结合律二、矩阵与数的乘法 运算规则、1 .中的每一个元素,记为或数乘矩阵A,就是将数乘矩阵A

的负矩阵.特别地,称称为 2、运算性质 满足结合律和分配律μA.)A =A)(μ; (λ+μλA+)A=结合律: (λμλ.λ分配律:λ (A+B)=λA+B 典型例题例6.5.1 已知两个矩阵 满足矩阵方程,求未知矩阵.由已知条件知解 三、矩阵与矩阵的乘法 运算规则、1 是这样一个矩阵:A与B的乘积设,,则 相同,即BA相同,列数与(右矩阵). (1) 行数与(左矩阵)

的第行元素与B列的元素由的第列元素对应相乘,再取 (2) C行第A的第乘积之和.典型例题 设矩阵例6.5.2 计算 解的矩阵.设它为是

,行矩阵,和:想一想设列矩阵的行数和列数分别 是多少呢 只有一个元素.的矩阵,即1 ×1是的矩阵,3×3是课堂练习

,求.1 、设,B左乘A道练习题中,两个矩阵相乘的顺序是A在左边,B在右边,称为2 、在第1,运算还能进行吗?请BA在右边,即A右乘B或B右乘A.如果交换顺序,让在左边,算算试试看.并由此思考:两个矩阵应当满足什么条件,才能够做乘法运 算. ,比较两个计算结果, 3、设列矩阵,求和,行矩阵能得出什么结论吗? ,设三阶方阵 4、,三阶单位阵为,和试求 A并将计算结果与比较,看有什么样的结论.解:题 1 第 .题2第 对于

相关文档
最新文档