第二十三章:旋转重点题型_Microsoft_Word_文档[1]

合集下载

(必考题)初中九年级数学上册第二十三章《旋转》知识点总结(答案解析)

(必考题)初中九年级数学上册第二十三章《旋转》知识点总结(答案解析)

一、选择题1.如图,在ABC 中,75CAB ∠=︒,在同一平面内,将ABC 绕点A 旋转到AB C ''△的位置,使得CC //AB ',则BAB '∠=( )A .30B .35︒C .40︒D .50︒ 2.下列图形中,不是中心对称图形的是( )A .B .C .D . 3.如图,在ABC 中,,90AB AC BAC =∠=︒,直角EPF ∠的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,当EPF ∠在ABC 内绕点P 旋转时,下列结论错误的是( )A .AE CF =B .EPF 为等腰直角三角形C .EP AP =D .2ABC AEPF S S =四边形4.如图,在等边△ABC 中,AC=8,点O 在AC 上,且AO=3,点P 是边AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( ).A .4B .5C .6D .85.如图,已知平行四边形ABCD 中,AE BC ⊥于点,E 以点B 为中心,取旋转角等于,ABC ∠把BAE △顺时针旋转,得到BA E '',连接DA '.若60,50ADC ADA '∠=︒∠=︒,则DA E ''∠的大小为( )A .130︒B .150︒C .160︒D .170︒ 6.如图所示,把ABC 绕C 点旋转35︒,得到A B C ''',A B ''交AC 于点D ,若90A DC '∠=︒,则A ∠等于( )A .35︒B .65︒C .55︒D .45︒7.如图,正方形ABCD 的边长为1,将其绕顶点C 旋转,得到正方形CEFG ,在旋转过程中,则线段AE 的最小值为( )A .32-B .2-1C .0.5D .512- 8.如图,四边形ABCD 中,∠DAB =30°,连接AC ,将ABC 绕点B 逆时针旋转60°,点C 与对应点D 重合,得到EBD ,若AB =5,AD =4,则AC 的长度为( )A .5B .6C 26D 419.下列图形:线段、等边三角形、平行四边形、矩形、菱形、正方形、直角梯形,既是轴对称图形又是中心对称图形的个数是( )A .6B .5C .4D .310.如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45°后得到正方形111OA B C ,依此方式,绕点O 连续旋转2020次得到正方形202020202020OA B C ,如果点A 的坐标为(1,0),那么点2020B 的坐标为( )A .(﹣1,1)B .(20)-,C .(﹣1,﹣1)D .(02)-, 11.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB 绕点B 逆时针旋转45°得到△D′E′B ,则点A 在△D′E′B 的( )A .内部B .外部C .边上D .以上都有可能 12.如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有( )A .4种B .5种C .6种D .7种13.下列图标中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 14.如图,△ABC 的顶点在网格中,现将△ABC 绕格点O 顺时针旋转α角(0°<α<360°),使旋转后所得三角形的顶点也在格点上,则当旋转前后的图形形成轴对称图形时,符合条件的α角的度有( )A .1个B .3个C .6个D .8个15.如图,以点A 为中心,把△ABC 逆时针旋转120°,得到△AB'C′(点B 、C 的对应点分别为点B′、C′),连接BB',若AC'∥BB',则∠CAB'的度数为( )A .45°B .60°C .70°D .90°二、填空题16.如图,将ABC 绕点A 逆时针旋转得到AB C ''△.若B '落到BC 边上,50B ∠=︒,则CB C ''∠的度数为______.17.如图,在ABC 中,AB AC =,30B ∠=︒,将ABC 绕点A 沿顺时针方向旋转一周,当BC 边的对应边与AC 平行时,旋转角为______度.18.如图,P 是等边三角形ABC 内一点,且PA =4,PB =23,PC =2,以下五个结论:①∠BPC =120°;②∠APC =120°;③S △ABC =143;④AB =28;⑤点P 到△ABC 三边的距离分别为PE ,PF ,PG ,则有PE +PF +PG =32AB ,其中正确的有_________.19.如图,在平面直角坐标系中,若△ABC ≌△DEF 关于点H 成中心对称,则对称中心H 点的坐标是_________.20.如图,在Rt ABC 中,90CAB ∠=︒,点P 是ABC 内一点,将ABP △绕点A 逆时针旋转后能与ACP '△重合,如果5AP =,则PP '的长为______.21.将边长为1的正方形ABCD 绕点C 按顺时针方向旋转到FECG 的位置(如图),使得点D 落在对角线CF 上,EF 与AD 相交于点H ,则HD =_________.(结果保留根号)22.如图,如果正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,连接DG ,那么∠DGE =________.23.如图,在平面直角坐标系中,点P (1,1),N (2,0),△MNP 和△M 1N 1P 1的顶点都在格点上,△MNP 与△M 1N 1P 1是关于某一点中心对称,则对称中心的坐标为_____.24.在平面直角坐标系中,△OAB 的位置如图所示,将△OAB 绕点O 顺时针旋转90°得△OA 1B 1;再将△OA 1B 1绕点O 顺时针旋转90°得△OA 2B 2;再将△OA 2B 2绕点O 顺时针旋转90°得△OA 3B 3;……依此类推,第2020次旋转得到△OA 2020B 2020,则项点A 的对应点A 2020的坐标是_______.25.如图,O 是正△ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ',下列结论正确有______.(请填序号)①点O 与O '的距离为4;②150AOB ∠=︒;③633AOBO S '=+四边形;④9634AOC AOB S S +=+△△.26.如图,在△ABC 中,∠C =90°,BC =3,AC =5,点D 为线段AC 上一动点,将线段BD 绕点D 逆时针旋转90°,点B 的对应点为E ,连接AE ,则AE 长的最小值为_____.三、解答题27.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (1,0),B (4,0),C (5,2).将△ABC 绕着点A 按逆时针方向旋转90︒后得到△AB 1C 1. (1)请画出△AB 1C 1;(2)写出点B 1,C 1的坐标;(3)求出线段1BB 的长.28.在学习利用旋转解决图形问题时,老师提出如下问题:(1)如图1,点Р是正方形ABCD 内一点,1,2,3PA PB PC ===,你能求出APB ∠的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将PBC ∆绕点B 逆时针旋转90,得到'P BA ∆,连接'PP ,可求出APB ∠的度数;思路二:将PAB ∆绕点B 顺时针旋转90,得到'P CB ∆,连接'PP ,可求出APB ∠的度数.请参照小明的思路,任选一种写出完整的解答过程.(2)如图2,若点P 是正方形ABCD 外一点,要使45APB ∠=,线段PA ,PB ,PC 应满足怎样的等量关系?请参考小明上述解决问题的方法进行探究,直接写出线段PA ,PB ,PC 满足的等量关系.29.如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A (1,1),B (4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2.30.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC绕点O逆时针旋转90°得到的△A1B1C1;(2)请画出△ABC以点O为对称中心的中心对称图形△A2B2C2;(3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出点P的坐标.。

九年级数学上册第二十三章旋转总结(重点)超详细(带答案)

九年级数学上册第二十三章旋转总结(重点)超详细(带答案)

九年级数学上册第二十三章旋转总结(重点)超详细单选题1、在平面直角坐标系中,点A(a,1)与点B(−2,b)关于原点成中心对称,则a+b的值为()A.−3B.−1C.1D.3答案:C分析:根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,求得a,b的值即可求解.解:∵点A(a,1)与点B(−2,b)关于原点成中心对称,∴a=2,b=−1,∴a+b=2−1=1,故选C.小提示:本题考查了关于原点对称的两个点,横坐标、纵坐标分别互为相反数,代数式求值,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.2、将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是()A.B.C.D.答案:D分析:根据中心对称的定义,结合所给图形即可作出判断.A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项符合题意.故选:D.小提示:此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分能够完全重合.3、下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.答案:B分析:根据中心对称图形和轴对称图形的定义判断即可.解:∵A中的图形旋转180°后不能与原图形重合,∴A中的图象不是中心对称图形,∴选项A不正确;∵B中的图形旋转180°后能与原图形重合,∴B中的图形是中心对称图形,但不是轴对称图形,∴选项B正确;∵C中的图形旋转180°后能与原图形重合,∴C中的图形是中心对称图形,也是轴对称图形,∴选项C不正确;∵D中的图形旋转180°后不能与原图形重合,∴D中的图形不是中心对称图形,∴选项D不正确;故选:B.小提示:本题考查了轴对称图形和中心对称图形的定义,熟练掌握轴对称图形和中心对称图形的定义是解题的关键.4、有一个正n边形旋转90∘后与自身重合,则n为()A.6B.9C.12D.15答案:C分析:根据选项求出每个选项对应的正多边形的中心角度数,与90∘一致或有倍数关系的则符合题意.如图所示,计算出每个正多边形的中心角,90∘是30∘的3倍,则可以旋转得到.A.B.C.D.观察四个正多边形的中心角,可以发现正12边形旋转90°后能与自身重合故选C.小提示:本题考查正多边形中心角与旋转的知识,解决本题的关键是求出中心角的度数并与旋转度数建立关系.5、在平面直角坐标系中,点P(−3,−5)关于原点对称的点的坐标是()A.(3,−5)B.(−3,5)C.(3,5)D.(−3,−5)答案:C分析:根据关于原点对称的点的坐标特点解答.解:点P(-3,-5)关于原点对称的点的坐标是(3,5),故选:C.小提示:本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.6、以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限答案:B分析:根据旋转的性质,以原点为中心,将点P(4,5)按逆时针方向旋转90°,即可得到点Q所在的象限.解:如图,∵点P(4,5)按逆时针方向旋转90°,得点Q所在的象限为第二象限.故选:B.小提示:本题考查了坐标与图形变化-旋转,解决本题的关键是掌握旋转的性质.7、将△AOB绕点O旋转180∘得到△DOE,则下列作图正确的是()A.B.C.D.答案:D分析:把一个图形绕某一点O转动一个角度的图形变换叫做旋转.解:观察选项中的图形,只有D选项为△ABO绕O点旋转了180°.小提示:本题考察了旋转的定义.8、如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是()A.B.C.D.答案:B分析:根据绕点B按顺时针方向旋转90°逐项分析即可.A、Rt△A′O′B是由Rt△AOB关于过B点与OB垂直的直线对称得到,故A选项不符合题意;B、Rt△A′O′B是由Rt△AOB绕点B按顺时针方向旋转90°后得到,故B选项符合题意;C、Rt△A′O′B与Rt△AOB对应点发生了变化,故C选项不符合题意;D、Rt△AOB是由Rt△AOB绕点B按逆时针方向旋转90°后得到,故D选项不符合题意.故选:B.小提示:本题考查旋转变换.解题的关键是弄清旋转的方向和旋转的度数.9、如图,先将该图沿着它自己的右边缘翻折,再绕着右下角的一个端点按顺时针方向旋转180°,之后所得到的图形是()A.B.C.D.答案:A分析:将图沿着它自己的右边缘翻折,则圆在正方形图形的右上角,然后绕着右下角的一个端点按顺时针方向旋转180°,则圆在正方形的左下角,利用此特征可对四个选项进行判断.先将图沿着它自己的右边缘翻折,得到,再绕着右下角的一个端点按顺时针方向旋转180°,之后所得到的图形为.故选:A小提示:本题考查了利用旋转设计图案:由一个基本图案可以通过平移、旋转和轴对称以及中心对称等方法变换一些复合图案.10、如图,将△AOB绕着点O顺时针旋转,得到△COD(点C落在△AOB外),若∠AOB=30°,∠BOC=10°,则最小旋转角度是()A.20°B.30°C.40°D.50°答案:C分析:直接利用已知得出∠AOC的度数,再利用旋转的性质得出对应边之间夹角,得出答案即可.∵∠AOB= 30°,∠BOC = 10°,∴∠AOC=∠AOB+∠COB = 30°+ 10°= 40°∵将△AOB绕着点O顺时针旋转,得到△COD,∴最小旋转角为∠AOC = 40°.故选: C.小提示:此题主要考查了旋转的性质,正确得出∠AOC的度数是解题关键.填空题11、如图,在△ABC中,∠C=90°,点D、E分别在AC、BC上,∠CDE=45°,△ECD绕点D顺时针旋转x度(45<x<180)到△E1C1D,则∠BEE1等于______度.(用含x的代数式表示)答案:(45+x)2分析:根据旋转的性质可得DE=DE1,∠EDE1=x,利用等腰三角形的性质和三角形内角和定理求出∠E1ED 和∠CED即可解决问题.解:如图,由旋转的性质可得:DE=DE1,∠EDE1=x,∴∠E1ED=180°−x2=90°−x2,∵∠C=90°,∠CDE=45°,∴∠CED=45°,∴∠BEE1=180°−∠E1ED−∠CED=180°−(90°−x2)−45°=(45+x2)°,所以答案是:(45+x2).小提示:本题考查了旋转的性质,等腰三角形的性质以及三角形内角和定理,灵活运用各性质进行推理计算是解题的关键.12、如图,△ABC绕点A按逆时针方向旋转50°后的图形为△AB1C1,则∠ABB1=_______.答案:65°分析:根据旋转的性质知AB=AB1,∠BAB1=50°,然后利用三角形内角和定理进行求解.解:∵△ABC绕点A按逆时针方向旋转50°后的图形为△AB1C1,,∴AB=AB1,∠BAB1=50°,∴∠ABB1=12(180°−50°)=65°.所以答案是:65°.小提示:本题考查了旋转的性质,三角形内角和定理,熟知旋转角的定义与旋转后对应边相等是解题的关键.13、在平面直角坐标系内,点P(−3,2)关于原点的对称点Q的坐标为______.答案:(3,−2)分析:根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),即可直接作答.根据中心对称性质可知:点P(−3,2)关于原点的对称点Q的坐标为(3,−2),故答案为(3,−2).小提示:本题考查了关于原点对称点的坐标,属于基础问题,熟记知识点是解题关键.14、已知点A(1,m)与A′(n,−3)关于原点对称,则mn=___________.答案:-3分析:直接利用关于原点对称点的性质得出m,n的值,即可求解.解:∵点A(1,m)与点A′(n,−3)关于坐标原点对称,∴n=−1,m=3,∴mn=−3所以答案是:-3.小提示:此题主要考查了关于原点对称点的特征,关于原点对称的点横纵坐标都变为原来的相反数.15、如图,矩形ABCD中,AB=2,BC=1,将矩形ABCD绕顶点C顺时针旋转90°,得到矩形EFCG,连接AE,取AE的中点H,连接DH,则DH=_______.答案:√22分析:根据题意构造并证明ΔDAH≅ΔKEH(ASA),通过全等得到KE=AD,DH=HK,再结合矩形的性质、旋转的性质,及可求解;如图,延长DH交EF于点k,∵H是AE的中点∴AH=HE又∵AD//FE∴∠DAH=∠KEH∴ΔDAH≅ΔKEH(ASA)∴KE=AD,DH=HK∵EF=AB=CD=2,AD=FC=1∴DF=FK=KE=AD=1则DK=√DF2+FK2=√2∴DH=12DK=√22所以答案是:√22小提示:本题主要考查了矩形的性质、三角形的全等证明,掌握相关知识并结合旋转的性质正确构造全等三角形是解题的关键.解答题16、如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.答案:(1)见解析(2)78°分析:(1)只需要证明△ABC≌△AEF即可得到答案;(2)先求出∠FAG=∠BAE=50°,然后根据全等三角形的性质得到∠F=∠C=28°,再利用三角形外角的性质求解即可.(1)解:∵∠CAF=∠BAE,∴∠BAC=∠EAF.∵将线段AC绕A点旋转到AF的位置,∴AC=AF.在△ABC与△AEF中,{AB=AE∠BAC=∠EAF AC=AF∴△ABC≌△AEF(SAS),∴EF=BC;(2)∵AB=AE,∠ABC=65°,∴∠ABC=∠AEB=65°∴∠BAE=180°−65°×2=50°,∴∠FAG=∠BAE=50°.∵△ABC≌△AEF,∴∠F=∠C=28°,∴∠FGC=∠FAG+∠F=50°+28°=78°.小提示:本题主要考查了旋转的性质,全等三角形的性质与判定,三角形内角和定理,等腰三角形的性质,三角形外角的性质,解题的关键在于能够熟练掌握相关知识进行求解.17、如图1,二次函数y=a(x+3)(x﹣4)的图象交坐标轴于点A,B(0,﹣2),点P为x轴上一动点.(1)求该二次函数的解析式;(2)过点P作PQ⊥x轴,分别交线段AB、抛物线于点Q,C,连接AC.若OP=1,求△ACQ的面积;(3)如图2,连接PB,将线段PB绕点P逆时针旋转90°得到线段PD.当点D在抛物线上时,求点D的坐标.答案:(1)y=16x2−16x−2;(2)SΔACQ=34;(3)D(3,−1)或D(−8,10)分析:(1)将B(0,−2)代入y=a(x+3)(x−4),即可求解;(2)先求直线AB的解析式为y=12x−2,则Q(1,−32),C(1,−2),可求SΔACQ=SΔACP−SΔAPQ=34;(3)设P(t,0),过点D作x轴垂线交于点N,可证明ΔPND≅ΔBOP(AAS),则D(t+2,−t),将D点代入抛物线解析式得−t=16(t+2+3)(t+2−4),求得D(3,−1)或D(−8,10).解:(1)将B(0,−2)代入y=a(x+3)(x−4),∴a=16,∴y=16(x+3)(x−4)=16x2−16x−2;(2)令y=0,则16(x+3)(x−4)=0,∴x=−3或x=4,∴A(4,0),设直线AB的解析式为y=kx+b,∴{b=−24k+b=0,∴{k=1 2b=−2,∴y=12x−2,∵OP=1,∴P(1,0),∵PQ⊥x轴,∴Q(1,−32),C(1,−2),∴AP=3,∴SΔACQ=SΔACP−SΔAPQ=12×3×2−12×3×32=34;(3)设P(t,0),如图2,过点D作x轴垂线交于点N,∵∠BPD=90°,∴∠OPB+∠NPD=90°,∠OPB+∠OBP=90°,∴∠NPD=∠OBP,∵BP=PD,∴ΔPND≅ΔBOP(AAS),∴OP=ND,BO=PN,∴D(t+2,−t),∴−t=16(t+2+3)(t+2−4),解得t=1或t=−10,∴D(3,−1)或D(−8,10).小提示:本题是二次函数综合题,考查了二次函数图象和性质,待定系数法求抛物线解析式,三角形面积,全等三角形判定和性质,旋转的性质等,解题的关键是熟练掌握二次函数的图象及性质,分类讨论,数形结合.18、如图1,正方形ABCD的边长为4,点P在边AD上(P不与A,D重合),连接PB,PC.将线段PB绕点P顺时针旋转90°得到PE,将线段PC绕点P逆时针旋转90°得到PF.连接EF,EA,FD.(1)求证:PD2;①ΔPDF的面积S=12②EA=FD;(2)如图2,EA.FD的延长线交于点M,取EF的中点N,连接MN,求MN的取值范围.答案:(1)①见详解;②见详解;(2)4≤MN<2√5分析:(1)①过点F作FG⊥AD交AD的延长线于点G,证明△PFG≌△CPD,即可得到结论;②过点E作EH⊥DA交DA的延长线于点H,证明△PEH≌△BPA,结合△PFG≌△CPD,可得GD=EH,同理:FG=AH,从而得△AHE≌△FGD,进而即可得到结论;(2)过点F作FG⊥AD交AD的延长线于点G,过点E作EH⊥DA交DA的延长线于点H,可得∠AMD=90°,EF,HG= 2AD=8,EH+FG=AD=4,然后求出当点P与点D重合时,EF最大值=4√5,当点P与AD的中点重合MN=12时,EF最小值= HG=8,进而即可得到答案.(1)①证明:过点F作FG⊥AD交AD的延长线于点G,∵∠FPG+∠PFG=90°,∠FPG+∠CPD=90°,∴∠FPG=∠CPD,又∵∠PGF=∠CDP=90°,PC=PF,∴△PFG≌△CPD(AAS),∴FG=PD,∴ΔPDF的面积S=12PD⋅FG=12PD2;②过点E作EH⊥DA交DA的延长线于点H,∵∠EPH+∠PEH=90°,∠EPH +∠BPA=90°,∴∠PEH =∠BPA,又∵∠PHE=∠BAP=90°,PB=PE,∴△PEH≌△BPA(AAS),∴EH=PA,由①得:FG=PD,∴EH+FG=PA+PD=AD=CD,由①得:△PFG≌△CPD,∴PG=CD,∴PD+GD= CD= EH+FG,∴FG+GD= EH+FG,∴GD=EH,同理:FG=AH,又∵∠AHE=∠FGD,∴△AHE≌△FGD,∴EA=FD;(2)过点F作FG⊥AD交AD的延长线于点G,过点E作EH⊥DA交DA的延长线于点H,由(1)得:△AHE≌△FGD,∴∠HAE=∠GFD,∵∠GFD+∠GDF=90°,∴∠HAE+∠GDF=90°,∵∠HAE=∠MAD,∠GDF=∠MDA,∴∠MAD+∠MDA=90°,∴∠AMD=90°,∵点N是EF的中点,∴MN=1EF,2∵EH=DG=AP,AH=FG=PD,∴HG=AH+DG+AD=PD+AP+AD=2AD=8,EH+FG=AP+PD=AD=4,当点P与点D重合时,FG=0,EH=4,HG=8,此时EF最大值=√42+82=4√5,当点P与AD的中点重合时,FG=2,EH=2,HG=8,此时EF最小值= HG=8,∴MN的取值范围是:4≤MN<2√5.小提示:本题主要考查全等三角形的判定和性质,正方形的性质,勾股定理,旋转的性质,添加辅助线,构造直角全等的直角三角形,是解题的关键.。

人教版九年级数学第二十三章第1节图形的旋转解答题 12含解析.docx

人教版九年级数学第二十三章第1节图形的旋转解答题 12含解析.docx

第二十三章第1节《图形的旋转》解答题(12)一、解答题1.⑴解方程:X2- 5 = 4x.⑵如图,四边形ABCD中,ZC = 60°, ZBED = 110°, BD = BC,点E在AD ±,将BE绕点2.已知ZXABC中,ZABC=90°, ZC=30°, AB=1.若把AABC绕点B顺时针旋转得到厶EBD,(1) 如图1,当点E落在AC边上时,求旋转角度大小.(2) 如图2,当点E落在直线CD上时,求点C和点D之间的距离.图13.如图1,在平面直角坐标系中,直线C在线段OA上,将线段CB绕着点C顺时针旋转90。

得到CD,此时点D恰好落在直线AB 上,过点D作DE±x轴于点E.(1)求证:△BOC竺Z\CED;(2) 如图2,将ABCD沿X轴正方向平移得△B'C'D',当B'C'经过点D时,求ABCD平移的距离及点D的坐标;(3) 若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P点的坐标;若不存在,请说明理由.4.如图(1),在AABC中,DE//BC.若将AADE绕点D顺时针旋转至卜理DE,使财续DE'与财线CB相交于点F (不与B、C重合).(1)如图(1),若ZEDE'= 125°,则ZBFD =—;(2)如图(2),连结EE',若4D丄47),试求出ZDE'E的度数;(3)请探究ZBFD与ZBZM'之间所满足的数量关系,并加以证明.5.基本图形:在RTAABC中,AB=AC, D为BC边上一点、(不与点B, C重合),将线段AD绕点A 逆时针旋转90。

得到AE.探索:(1)连接EC,如图①,试探索线段BC, CD, CE之间满足的等量关系,并证明结论;(2)连接DE,如图②,试探索线段DE, BD, CD之间满足的等量关系,并证明结论;联想:(3)如图③,在四边形ABCD中,ZABC= ZACB= ZADC=45°,若BD=7, CD=2,则AD的长为 .图①6.如图1,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段M,N在网格线上,(1)画出线段AB关于线段所在直线对称的线段A5,(点4目分别为A B的对应点);将线段目4,绕点顺时针旋转90。

(必考题)初中九年级数学上册第二十三章《旋转》知识点总结(答案解析)

(必考题)初中九年级数学上册第二十三章《旋转》知识点总结(答案解析)

一、选择题1.观察下列“风车”的平面图案,其中既是轴对称又是中心对称图形的有()A.B.C.D.A解析:A【分析】根据轴对称图形和中心对称图形的两个概念对各选项分析判断即可得解.【详解】解:A、既是轴对称又是中心对称图形,故此项正确;B、是轴对称,不是中心对称图形,故此项错误;C、不是轴对称,是中心对称图形,故此项错误;D、是轴对称,不是中心对称图形,故此项错误.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.如图,将△ABC绕点A旋转,得到△AEF,下列结论正确的个数是()①△ABC ≌△AEF;②AC=AE;③∠FAB=∠EAB;④∠EAB=∠FAC.A.1 B.2 C.3 D.4B解析:B【分析】由旋转的性质得到△ABC≌△AEF,再由全等三角形的性质逐项判断即可.【详解】∵△ABC绕点A旋转得到△AEF,∴△ABC≌△AEF,∴AC=AF ,不能确定AC=AE,故①正确,②错误;∵∠EAF=∠BAC,∴∠EAF-∠BAF=∠BAC-∠BAF,∴即∠EAB=∠FAC,但不能确定∠EAB 等于∠FAB ,故③错误,④正确;综上所述,结论正确的是①④,共2个.故选:B.【点睛】此题考查了旋转的性质.掌握旋转前后的图形全等是解答此题的关键.3.如图,在ABC 中,,90AB AC BAC =∠=︒,直角EPF ∠的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,当EPF ∠在ABC 内绕点P 旋转时,下列结论错误的是( )A .AE CF =B .EPF 为等腰直角三角形C .EP AP =D .2ABC AEPF S S =四边形C解析:C【分析】 利用旋转的思想观察全等三角形,寻找条件证明三角形全等.根据全等三角形的性质对题中的结论逐一判断.【详解】∵AB=AC ,∠BAC=90°,P 是BC 中点,∴AP=CP ,AP ⊥BC ,∠C=∠B=∠BAP=∠CAP=45°,∵∠APE 、∠CPF 都是∠APF 的余角,∴∠APE=∠CPF ,在△APE 和△CPF 中,45APE CPF AP CP EAP FCP ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△APE ≌△CPF (ASA ),∴AE=CF ,EP=PF ,S △AEP =S △CPF ,∴△EPF 是等腰直角三角形,S 四边形AEPF =12S △ABC ,即2S 四边形AEPF =S △ABC , A 、B 、D 均正确, ∵旋转过程中,EP 的长度的变化的,故EP≠AP ,C 错误;故选:C .【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的判定及性质的运用,解答时证明三角形全等是关键.4.下列图形中,是中心对称但不是轴对称的图形是( )A .平行四边形B .矩形C .菱形D .等边三角形A解析:A【分析】根据轴对称及中心对称的概念,结合选项进行判断.【详解】A 、平行四边形是中心对称图形,不是轴对称图形,故本选项正确;B 、矩形是中心对称图形,也是轴对称图形,故本选项错误;C 、菱形是中心对称图形,也是轴对称图形,故本选项错误;D 、等边三角形不是中心对称图形,但是轴对称图形,故本选项错误;故选:A .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.直线26y x =-+与x 轴交于A 点,与y 轴交于B 点,将AOB 绕点A 顺时针旋转90°得到AO B ''△,则点B '的坐标是( )A .()9,9B .()3,9-C .()9,3D .()3,9C解析:C【分析】 由题意可求点A (3,0),点B (0,6),根据旋转的性质可得OA=O'A=3,BO=B'O'=6,B'O'∥OA ,即可求点B'坐标.【详解】解:如图:∵直线y=-2x+6与x 轴交于A 点,与y 轴交于B 点,∴当x=0时,y=6;当y=0时,x=3.∴点A (3,0),点B (0,6)∴OA=3,OB=6∵将△AOB 绕点A 顺时针旋转90°得到△AO′B′,∴OA=O'A=3,BO=B'O'=6,∠OAO'=∠B'O'A=90°∴B'O'∥OA∴点B'(9,3)故选:C .【点睛】本题考查了一次函数图象上点的坐标特征,旋转的性质,熟练运用旋转的性质是本题的关键.6.下列四个图案中,是中心对称图形的是( )A .B .C .D .B解析:B【分析】根据中心对称图形的概念和各图特点即可解答.【详解】解:根据中心对称图形的概念,可知B 中的图形是中心对称图形,而A 、C 和D 中的图形不是中心对称图形.故选:B .【点睛】考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.如图,正方形ABCD 内一点P ,5AB =,2BP =,把ABP △绕点B 顺时针旋转90°得到CBP',则PP'的长为()A.2B.3C.3 D.32解析:A【分析】由△ABP绕点B顺时针旋转90°得到△CBP',根据旋转的性质得BP=BP′,∠PBP′=90,则△BPP′为等腰直角三角形,由此得到2BP,即可得到答案..【详解】解:解:∵△ABP绕点B顺时针旋转90°得到△CBP',而四边形ABCD为正方形,BA=BC,∴BP=BP′,∠PBP′=90,∴△BPP′为等腰直角三角形,而BP=2,∴22.故选:A.【点睛】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了正方形和等腰直角三角形的性质.8.若点P(-m,m-3)关于原点对称的点是第二象限内的点,则m满足( )A.m>3 B.0<m≤3C.m<0 D.m<0或m>3C 解析:C【分析】两个点关于原点对称时,它们的坐标符号相反,即点P(-m,m-3)关于原点O的对称点是P′(m,3-m),再由第二象限内的点横坐标为负数,纵坐标为正数,可得m的取值范围.【详解】解:点P(-m,m-3)关于原点O的对称点是P′(m,3-m),∵P′(m,3-m),在第二象限,∴30 mm<⎧⎨->⎩,∴m<0.故选:C.【点睛】本题考查了关于原点对称的点的坐标,注意掌握:两个点关于原点对称时,它们的坐标符号相反.9.如图,将△ABC 绕顶点C 旋转得到△A B C '', 且点B 刚好落在A B ''上,若∠A =35°,∠BCA '=40°,则∠A BA '等于( )A .45°B .40°C .35°D .30°D解析:D【分析】 由旋转的性质可得出35A A '∠=∠=︒,CB CB '=,B ABC '∠=∠,由已知条件结合三角形外角的性质求出B BC '∠的度数,即可得出ABC ∠的度数,即可得出A BA '∠的度数.【详解】由旋转的性质可得:35A A '∠=∠=︒,CB CB '=,B ABC '∠=∠,∴B BC B ''∠=∠,40BCA '∠=︒,∴75B A C BCA B '''∠=∠+∠=︒,∴75B '∠=︒,∴75ABC B '∠=∠=︒,∴180757530A BA '∠=︒-︒-︒=︒.故选:D .【点睛】本题主要考查三角形外角的性质以及旋转的性质,根据三角形外角的性质以及旋转的性质求出对应角的度数是解题关键.10.如图,将△ABC 绕点C (0,-1)旋转180°得到△A′B′C ,设点A 的坐标为(-3,-4)则点A′的坐标为A .(3,2)B .(3,3)C .(3,4)D .(3,1)A解析:A试题分析:根据A 与A′关于C 点对称,设A′的坐标为(a ,b ),可知302a -+=,412b -+=-,解得a=3,b=2,因此可知A′点的坐标为(3,2). 故选A考点:中心对称二、填空题11.如图,四边形ABCD 是菱形,点O 是两条对角线的交点,过点O 的三条直线将菱形分成阴影和空白部分,当菱形的两条对角线长分别为12和16时,则阴影部分面积为_________.48【分析】根据菱形的面积等于对角线乘积的一半求出菱形的面积再根据菱形是中心对称图形判断出阴影的面积是菱形面积的一半即可解答【详解】如图所示:∵菱形的两条对角线的长分别为12和16菱形的面积∵是菱形解析:48【分析】根据菱形的面积等于对角线乘积的一半求出菱形的面积,再根据菱形是中心对称图形判断出阴影的面积是菱形面积的一半即可解答.【详解】如图所示:∵菱形ABCD 的两条对角线的长分别为12和16,菱形ABCD 的面积11216962=⨯⨯=, ∵O 是菱形两条对角线的交点,菱形ABCD 是中心对称图形,∴OEG OFH ∆≅∆,四边形OMAH ≅四边形ONCG ,四边形OEDM ≅四边形OFBN ,∴阴影部分的面积11964822ABCD S ==⨯=菱形, 故答案为:48.本题考查了菱形的性质、中心对称图形的性质、菱形的面积公式,熟知菱形的面积公式,利用菱形的性质判断出阴影的面积是菱形面积的一半是解答的关键.12.如图,正方形AEFG与正方形ABCD的边长都为2,正方形AEFG绕正方形ABCD的顶点A旋转一周,在此旋转过程中,线段DF的长可取的整数值可以为______________.1或2或3或4【分析】如图连接AF由题意可知AF-AD≤DF≤AD+AF即2-2≤DF≤2+2由此即可解决问题【详解】解:如图连接AF易知AF=2∵AF-AD≤DF≤AD+AF∴2-2≤DF≤2+2解析:1或2或3或4【分析】如图连接AF,由题意可知AF-AD≤DF≤AD+AF,即22-2≤DF≤2+22,由此即可解决问题.【详解】解:如图连接AF.易知2∵AF-AD≤DF≤AD+AF,∴22,∵DF是整数,∴DF=1或2或3或4.故答案为:1或2或3或4【点睛】本题考查了旋转变换、正方形的性质、三角形的三边关系等知识,解题的关键是学会用转化的思想思考问题,把最短问题转化为三边关系解决.13.如图,点O是等边△ABC内一点,∠AOB=112°.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.当α为______________度时,△AOD是等腰三角形?112°或124°或136°【分析】由题意可得△COD 是等边三角形进而可得∠CDO =∠COD =60°然后分三种情况根据等腰三角形的性质和三角形的内角和定理建立方程求解即可【详解】解:∵将△BOC 绕点 解析:112°或124°或136°【分析】由题意可得△COD 是等边三角形,进而可得∠CDO =∠COD =60°,然后分三种情况,根据等腰三角形的性质和三角形的内角和定理建立方程求解即可.【详解】解:∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,∴CO =CD ,∠OCD =60°,∠ADC =α,∴△COD 是等边三角形.∴∠CDO =∠COD =60°,①若AO =AD ,则∠AOD =∠ADO ,∵∠AOD =360°﹣112°﹣60°﹣α=188°﹣α,∠ADO =α﹣60°,∴188°﹣α=α﹣60°,解得:α=124°;②若OA =OD ,则∠OAD =∠ADO .∵∠OAD =180°﹣(∠AOD +∠ADO )=180°﹣(188°﹣α+α﹣60°)=52°,∴α﹣60°=52°,∴α=112°;③若OD =AD ,则∠OAD =∠AOD .∵∠AOD =188°﹣α,∠OAD =()180602α︒--︒=120°﹣2α, ∴188°﹣α=120°﹣2α,解得:α=136°. 综上所述:当α为112°或124°或136°时,△AOD 是等腰三角形.故答案为:112°或124°或136°.【点睛】本题考查了等边三角形的判定和性质、旋转的性质、等腰三角形的性质以及三角形的内角和定理等知识,全面分类、熟练掌握上述知识是解题的关键.14.如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转得到△A′OB′,若∠A′=40°,则∠B′= °,∠AOB= .30°110°【分析】根据旋转的性质得到利用∠AOB=∠A′OB′以及三角形内角和定理计算即可【详解】∵△AOB 中∠B=30°将△AOB 绕点O 顺时针旋转得到△A′OB′∠A′=40°∴∠B=∠B′=解析:30°, 110°【分析】根据旋转的性质得到,利用∠AOB=∠A′OB′以及三角形内角和定理计算即可.【详解】∵△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转得到△A′OB′,∠A′=40°, ∴∠B=∠B′=30°,∠A′=∠A=40°,则∠B′=30°,∠AOB=180°-∠A-∠B=110°.故答案为30,110.考点:旋转的变换15.如图,在△ABC 中,∠C =90°,AC =2cm ,AB =3cm ,将△ABC 绕点B 顺时针旋转60°得到△FBE ,则点E 与点C 之间的距离是_________cm .【解析】试题 解析:5【解析】试题连接EC ,即线段EC 的长是点E 与点C 之间的距离,在Rt △ACB 中,由勾股定理得:2222325AB AC -=-=cm ), ∵将△ABC 绕点B 顺时针旋转60°得到△FBE ,∴BC=BE ,∠CBE=60°,∴△BEC 是等边三角形,∴5 16.如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45︒后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,如果点A 的坐标为(1,0),那么点2019B 的坐标为________.【分析】根据图形可知:点B 在以O 为圆心以OB 为半径的圆上运动由旋转可知:将正方形OABC 绕点O 逆时针旋转45∘后得到正方形OA1B1C1相当于将线段OB 绕点O 逆时针旋转45∘可得对应点B 的坐标根据规 解析:(2,0)【分析】根据图形可知:点B 在以O 为圆心,以OB 为半径的圆上运动,由旋转可知:将正方形OABC 绕点O 逆时针旋转45∘后得到正方形OA 1B 1C 1,相当于将线段OB 绕点O 逆时针旋转45∘,可得对应点B 的坐标,根据规律发现是8次一循环,可得结论.【详解】∵四边形OABC 是正方形,且OA=1,∴B(1,1),连接OB , 由勾股定理得:2,由旋转得:OB=OB 1=OB 2=OB 32,∵将正方形OABC 绕点O 逆时针旋转45∘后得到正方形OA 1B 1C 1,相当于将线段OB 绕点O 逆时针旋转45∘,依次得到∠AOB=∠BOB 1=∠B 1OB 2=…=45∘, ∴B 12),B 2(−1,1),B 32,…,发现是8次一循环,所以2019÷8=252…3,∴点B 2019的坐标为2【点睛】本题考查了旋转的性质,对应点到旋转中心的距离相等;对应点与旋转中心所连接线段的夹角等于旋转角,也考查了坐标与图形的变化、规律型、点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法.17.矩形是中心对称图形,对矩形ABCD 而言,点A 的对称点是点____.C 【分析】根据把一个图形绕某一点旋转180°如果旋转后的图形能够与原来的图形重合那么这个图形就叫做中心对称图形这个点叫做对称中心可得答案【详解】解:矩形是中心对称图形对称中心是对角线的交点点A的对称解析:C【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】解:矩形是中心对称图形,对称中心是对角线的交点,点A的对称点是点C,故答案为C.【点睛】本题考查了中心对称图形,关键是掌握中心对称图形的性质.18.在平面直角坐标系中,△OAB的位置如图所示,将△OAB绕点O顺时针旋转90°得△OA1B1;再将△OA1B1绕点O顺时针旋转90°得△OA2B2;再将△OA2B2绕点O顺时针旋转90°得△OA3B3;……依此类推,第2020次旋转得到△OA2020B2020,则项点A的对应点A2020的坐标是_______.(12)【分析】根据旋转的概率即可得出每旋转4次一个循环进而得到第2020次旋转得到△OA2020B2020则顶点A的对应点A2020的坐标与点A4的坐标相同【详解】解:将△OAB绕点O顺时针旋转9解析:(1,2)【分析】根据旋转的概率,即可得出每旋转4次一个循环,进而得到第2020次旋转得到△OA2020B2020,则顶点A的对应点A2020的坐标与点A4的坐标相同.【详解】解:将△OAB绕点O顺时针旋转90°得△OA1B1;此时,点A1的坐标为(2,-1);再将△OA1B1绕点O顺时针旋转90°得△OA2B2;此时,点A2的坐标为(-1,2);再将△OA2B2绕点O顺时针旋转90°得△OA3B3;此时,点A3的坐标为(-2,1);再将△OA3B3绕点O顺时针旋转90°得△OA4B4;此时,点A4的坐标为(1,2);∴每旋转4次一个循环,…依此类推,第2020次旋转得到△OA2020B2020,则顶点A的对应点A2020的坐标与点A4的坐标相同,为(1,2);故答案为:(1,2).【点睛】本题考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.19.如图,△ABC 中,∠A =60°,∠ABC =80°,将△ABC 绕点B 逆时针旋转,得到△DBE ,若DE ∥BC ,则旋转的最小度数为_____.40【分析】根据三角形的内角和和旋转的性质以及平行线的性质即可得到结论【详解】∵在△ABC 中∠A =60°∠ABC =80°∴∠C =180°﹣60°﹣80°=40°∵将△ABC 绕点B 逆时针旋转得到△DB解析:40【分析】根据三角形的内角和和旋转的性质以及平行线的性质即可得到结论.【详解】∵在△ABC 中,∠A =60°,∠ABC =80°,∴∠C =180°﹣60°﹣80°=40°,∵将△ABC 绕点B 逆时针旋转,得到△DBE ,∴∠E =∠C =40°,∵DE ∥BC ,∴∠CBE =∠E =40°,∴旋转的最小度数为40°,故答案为:40°.【点睛】本题主要考查了旋转的性质以及平行线的性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.20.若点()3,5B n +与点()4,A m 关于原点O 中心对称,则m n +=______________.-12【分析】两个点关于原点对称时它们的横坐标互为相反数纵坐标也互为相反数直接利用关于原点对称点的性质得出mn 的值进而得出答案【详解】∵点B (5)与点A (4)关于原点成中心对称∴∴∴故答案为:【点睛解析:-12【分析】两个点关于原点对称时,它们的横坐标互为相反数,纵坐标也互为相反数,直接利用关于原点对称点的性质得出m ,n 的值,进而得出答案.【详解】∵点B (3n +,5)与点A (4,m )关于原点成中心对称,∴34n +=-,5m =-,∴5m =-,7n =-,∴()5712m n +=-+-=-.故答案为:12-.【点睛】本题主要考查了关于原点对称点的坐标性质,正确记忆关于原点对称点的坐标性质是解题关键.三、解答题21.(1)问题发现:如图1,ACB △和DCE 均为等边三角形,当DCE 旋转至点A ,D ,E 在同一直线上,连接BE .①填空:AEB ∠的度数为______.②线段AD 、BE 之间的数量关系是_______.(2)拓展研究:如图2,ACB △和DCE 均为等腰三角形,且90ACB DCE ∠∠==,点A 、D 、E 在同一直线上,若15AE =,7DE =,求AB 的长度.(3)探究发现:图1中的ACB △和DCE ,在DCE 旋转过程中当点A ,D ,E 不在同一直线上时,设直线AD 与BE 相交于点O ,试在备用图中探索AOE ∠的度数,直接写出结果,并说明理由.解析:(1)①60°;②AD BE =;(2)AB 的长度为17;(3)60°或120°,证明见解析.【分析】(1)由条件易证△ACD ≌△BCE ,从而得到:AD=BE ,∠ADC=∠BEC .由点A ,D ,E 在同一直线上可求出∠ADC ,从而可以求出∠AEB 的度数.(2)仿照(1)中的解法可求出∠AEB 的度数,证出AD=BE ;由△DCE 为等腰直角三角形及CM 为△DCE 中DE 边上的高可得CM=DM=ME ,从而证到AE=2CH+BE .(3)由(1)知△ACD ≌△BCE ,得∠CAD=∠CBE ,由∠CAB=∠ABC=60°,可知∠EAB+∠ABE=120°,根据三角形的内角和定理可知∠AOE=60°.【详解】(1)①如图1,∵ACB △和DCE 均为等边三角形,∴CA CB =,CD CE =,60ACB BCE ∠=∠=,∴ACD BCE ∠=∠,在ACD △和BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴()?ACD BCE SAS ≌, ∴ADC BEC ∠∠=, ∵DCE 为等边三角形,∴60CDE CED ∠=∠=,∵点A ,D ,E 在同一直线上,∴120ADC ∠=,∴120BEC ∠=,∴60AEB BEC CED ∠=∠-∠=.故答案为:60°.②∵≌ACD BCE ,∴AD BE =,故答案为:AD BE =.(2)∵ACB △和DCE 均为等腰直角三角形, ∴CA CB =,CD CE =,90ACB DCE ∠∠==,∴ACD BCE ∠=∠,在ACD △和BCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴()ACD BCE SAS △≌△,∴8AD BE AE DE ==-=,ADC BEC ∠∠=,∵DCE 为等腰直角三角形,∴45CDE CED ∠=∠=,∵点A ,D ,E 在同一直线上,∴135ADC ∠=,∴135BEC ∠=,∴90AEB BEC CED ∠=∠-∠=, ∴2217AB AE BE =+=.(3)如图3,由(1)知≌ACD BCE ,∴CAD CBE ∠=∠,∵60CAB CBA ∠=∠=,∴120OAB OBA ∠+∠=,∴18012060AOE ∠=-=,如图4,同理求得60AOB ∠=,∴120AOE ∠=,∵AOE ∠的度数是60°或120°.【点睛】此题是几何变换综合题,主要考查了等边三角形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、三角形全等的判定与性质等知识,得出△ACD ≌△BCE (SAS )是解本题的关键.22.如图,在10×10的正方形方格之中,ABC 的顶点都在格点上(1)在图1中画出ABC 关于格点O 成中心对称的A B C '''.(2)在图2中画出格点ABEF ,使得ABE A C F B S S =.解析:(1)画图见解析;(2)画图见解析.【分析】(1)先结合网格特点,根据中心对称的定义画出点,,A B C ''',再顺次连接即可得; (2)先找出AC 的中点E ,连接BE ,再结合网格特点,根据点B 到点A 的平移方式与点E 到点F 的平移方式相同找出点F ,然后连接AF 、EF 即可得.【详解】(1)先结合网格特点,根据中心对称的定义画出点,,A B C ''',再顺次连接即可得到A B C ''',如图所示:(2)先找出AC 的中点E ,连接BE ,再结合网格特点,根据点B 到点A 的平移方式与点E 到点F 的平移方式相同找出点F ,然后连接AF 、EF 即可得到ABEF ,且ABE A C F B S S =,如图所示:【点睛】本题考查了画中心对称图形、画平行四边形等知识点,熟练掌握中心对称的定义是解题关键.23.如图,△ABC 在平面直角坐标系中,每个小正方形网格的边长都是1个单位长度. (1)画出ABC 关于x 轴的对称图形111A B C △,并写出点1A 的坐标;(2)将△ABC 绕点O 顺时针旋转90°,请画出旋转后的222A B C △,并写出A 2的坐标. (3)直接写出12B B 的长度.解析:(1)图见详解,A 1(-3,-5);(2)图见详解;A 2(5,3);(3)B 1B 22.【分析】(1)找到A、B、C关于x轴的对称点A1、B1、C1连接各点即可得到结果,同时得到点A1的坐标;(2)找到A、B、C绕着O点旋转90°后的对应点A2、B2、C2连接各点即可得到结果,同时得到点A2的坐标;(3)利用勾股定理求出B1B2的长.【详解】解:(1)如图所示,△A1B1C1即为所求,A1(-3,-5);(2)如图所示,△A2B2C2即为所求,A2(5,3);(3)B1B2222.33【点睛】本题考查利用轴对称变换和旋转变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.24.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(1,1)、B(5,1)、C(4,4).(1)按下列要求作图:①将△ABC向左平移5个单位得到△A1B1C1,并写出点A1的坐标;②将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,并写出点B2的坐标;(2)△A1B1C1与△A2B2C2重合部分的面积为(直接写出答案).解析:(1)①点A1(﹣4,1);②B2(﹣1,5);(2)9 4【分析】(1)①直接利用平移的性质得出对应点位置进而得出答案;②直接利用旋转的性质得出对应点位置进而得出答案;(2)利用旋转的性质得出重合部分边长关系进而得出答案.【详解】解:(1)①如图所示:△A1B1C1,即为所求,点A1(﹣4,1);②如图所示:△A2B2C2,点B2(﹣1,5);(2)∵A2C2⊥A1C1且交点到A1,C1的距离相等,∴设△A1B1C1与△A2B2C2重合部分的边长为x,则x2+x2=9,解得:x=322,故△A1B1C1与△A2B2C2重合部分的面积为:12×322×322=94.故答案为:94.【点睛】本题考查了旋转变换以及勾股定理,正确得出对应点位置是解题的关键.25.阅读理解并解决问题:一般地,如果把一个图形绕着一个定点旋转一定角度α(α小于360°)后,能够与原来的图形重合,那么这个图形叫做旋转对称图形,这个定点叫做旋转对称中心,α叫做这个旋转对称图形的一个旋转角.请依据上述定义解答下列问题:(1)请写出一个旋转对称图形,这个图形有一个旋转角是90°,这个图形可以是______;(2)为了美化环境,某中学需要在一块正六边形空地上分别种植六种不同的花草,现将这块空地按下列要求分成六块:①分割后的整个图形必须既是轴对称图形又是旋转对称图形;②六块图形的面积相同;请你按上述两个要求,分别在图中的两个正六边形中画出两种不同的分割方法(只要求画图正确,不写作法).解析:(1)正方形(答案不唯一,例如正八边形、圆等);(2)见解析【分析】(1)根据旋转对称图形的定义解答即可;(2)先作出正六边形的旋转中心,再根据图形既是轴对称图形又是旋转对称图形进行作图即可.【详解】解:(1) 正方形(答案不唯一,例如正八边形、圆等);故答案为:正方形(答案不唯一,例如正八边形、圆等);(2)如图所示:【点睛】本题考查了轴对称图形和旋转对称图形的定义及作图,正确理解题意、熟练掌握基本知识是解题的关键.26.已知在平面直角坐标系中,A(﹣2,0)、B(3,﹣1)、C(2,2),格中每一格表示一个单位长度,请解答以下问题:(1)求作出△ABC;(2)将△ABC平移,使得平移后点C的对应点为原点,A、B的对应点分别为A1,B1,请作出平移后的△A1B1O,并直接写出平移的距离为;(3)将△ABC绕点A逆时针旋转90°,得到△AB2C2,B、C的对应点分别为B2、C2,请作出△AB2C2,并求出B2、C2点的坐标.解析:(1)作图见解析;(2)22;(3)作图见解析;B2(﹣4,4),C2(﹣1,5)【分析】(1)根据点的坐标作出三角形即可;(2)分别作出A,B的对应点A1,B1即可;(3)分别作出B,C的对应点B2、C2即可.【详解】解:(1)如图,△ABC即为所求;(2)如图△A1B1O即为所求,平移的距离为22;故答案为22.(3)如图△A B2C2即为所求B2、C2点的坐标分别为(﹣4,4),(﹣1,5)【点睛】本题考查了作图-旋转变换,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.27.如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点,平行四边形ABCD的顶点在格点上.仅用无刻度的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示,按步骤完成下列问题:(1)将线段AD绕点A逆时针旋转90°,画出对应线段AE;(2)过点E画一条直线把平行四边形ABCD分成面积相等的两部分;(3)过点D画格点线段DP,使得DP⊥BC于点M,垂足为M;(4)过点M画线段MN,使得MN//AB,MN=AB.解析:(1)见详解;(2)见详解;(3)见详解;(4)见详解【分析】(1)根据旋转的性质直接作图即可;(2)连接AC、BD,交于一点O,然后连接EO即可得出图形;(3)把线段AD绕点D顺时针旋转90°,即可得到线段DP⊥BC,与BC交于一点M,即可得出答案;(4)根据平行四边形是中心对称图形,点O是对称中心,设EO与D点所在网格线交于点Q,连接MQ并延长交于AD于点N,MN即为所求.【详解】解:(1)(2)(3)如图所示:(4)根据平行四边形是中心对称图形,点O是对称中心,设EO与D点所在网格线交于点Q,连接MQ并延长交于AD于点N,MN即为所求,如图所示:【点睛】本题主要考查旋转的性质、平行四边形的性质及中心对称图形,熟练掌握旋转的性质、平行四边形的性质及中心对称图形是解题的关键.28.如图,在7×7的正方形网格中,选取14个格点,以其中3个格点为顶点画出△ABC.(1)请你以选取的格点为顶点再画出一个三角形,要求所画的三角形与△ABC组成的图形是中心对称图形;(2)若网格中每个小正方形的边长为1,请猜想新得到的中心对称图形是什么特殊图形(不用证明),并求出它的面积.解析:(1)如图所示见解析;(2)是平行四边形,面积是6.【分析】(1)确定出对称中心,然后根据中心对称图形的性质作出即可;(2)观察图形,根据中心对称图形的性质知新得到的图形是平行四边形,再根据格点的特点,利用三角形的面积公式即可得平行四边形的面积.【详解】(1)如图所示:所画的三角形与△ABC组成的图形是中心对称图形;(2)观察图形,根据中心对称图形的性质知新得到的图形是平行四边形,面积是:123262⨯⨯⨯=.【点睛】本题考查了利用中心对称的性质作图,平行四边形的判定,熟练掌握中心对称的性质是作图的关键,要注意对称中心的确定.。

九年级数学上册第二十三章旋转笔记重点大全(带答案)

九年级数学上册第二十三章旋转笔记重点大全(带答案)

九年级数学上册第二十三章旋转笔记重点大全单选题1、平面直角坐标系中,O为坐标原点,点A的坐标为(−5,1),将OA绕原点按逆时针方向旋转90°得OB,则点B 的坐标为()A.(−5,1)B.(−1,−5)C.(−5,−1)D.(−1,5)答案:B分析:根据题意证得△AOC≌△OBD,可得结论.解:如图,根据题意得∶∠AOB=90°,∠ACO=∠BDO=90°,OA=OB,∴∠AOC+∠BOD=90°,∠AOC+∠OAC=90°,∴∠BOD=∠OAC,∴△AOC≌△OBD,∴BD=OC,OD=AC,∵点A的坐标为(−5,1),∴BD=OC=1,OD=AC=5,∴B(−1,−5).故选:B.小提示:本题考查坐标与图形变化−旋转,解题的关键是熟练掌握旋转的性质,属于中考常考题型.2、如图,正方形OABC的边长为√2,将正方形OABC绕原点O顺时针旋转45°,则点B的对应点B1的坐标为()A.(−√2,0)B.(−√2,0)C.(0,√2)D.(0,2)答案:D分析:连接OB,由正方形ABCD绕原点O顺时针旋转45°,推出∠A1OB1=45°,得到△A1OB1为等腰直角三角形,点B1在y轴上,利用勾股定理求出O B1即可.解:连接OB,∵正方形ABCD绕原点O顺时针旋转45°,∴∠AOA1=45°,∠AOB=45°,∴∠A1OB1=45°,∴△A1OB1为等腰直角三角形,点B1在y轴上,∵∠B1A1O=90°,A1B1=OA1=√2,∴OB1=√A1B12+OA12=√2+2=2,∴B1(0,2),故选:D.小提示:本题考查了正方形的性质,旋转的性质,特殊三角形的性质.关键是根据旋转角证明点B1在y轴上.3、在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(−3,2)C.(−3,−2)D.(−2,−3)答案:C分析:根据坐标系中对称点与原点的关系判断即可.关于原点对称的一组坐标横纵坐标互为相反数,所以(3,2)关于原点对称的点是(-3,-2),故选C.小提示:本题考查原点对称的性质,关键在于牢记基础知识.4、以图(1)(以O为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换,不能得到图(2)的是()A.绕着OB的中点旋转180°即可B.先绕着点O旋转180°,再向右平移1个单位C.先以直线AB为对称轴进行翻折,再向右平移1个单位D.只要向右平移1个单位答案:D分析:根据旋转、平移和轴对称的定义进行分析即可.由旋转、平移和轴对称的性质可知:经过A、B、C的变化,图(1)均可得到图(2),经过D的变化不能得到图(2);故选:D小提示:本题主要考查了旋转、平移和轴对称的性质,熟练地掌握各个性质是解题的关键.5、如图,在平面直角坐标系中,OA1=OB1,∠A1OB1=120°,将ΔA1OB1绕点O顺时针旋转并且按一定规律放大,每次变化后得到的图形仍是顶角为120°的等腰三角形.第一次变化后得到等腰三角形A2OB2,点A1(1,0)的对应点为A2(−1,−√3);第二次变化后得到等腰三角形A3OB3,点A2的对应点为A3(−32,3√32);第三次变化后得到等腰三角形A4OB4,点A3的对应点为A4(4,0)⋯⋯依此规律,则第2022个等腰三角形中,点B2022的坐标是()A.(2022,0)B.(−2022,−2022√3)C.(−1011,1011√3)D.(−1011,−1011√3)答案:D分析:利用循环的规律,找到第2022个等腰三角形与第一个循环的图形的第几个位置相同,再根据第一个循环中的点坐标进行求值即可.解:由题意可知,旋转规律为4次一个循环,即第2022次为:505个循环余2,∴点B2022位置与B3相同,在第三象限,∵B3坐标为(−32,−3√32),∴点B2022坐标为(−20222,−2022√32),即为(−1011,−1011√3).故选:D.小提示:本题主要考查的是坐标系与几何图形的规律问题,准确找到循环规律是解题的关键.6、如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是()A.AB=AN B.AB∥NC C.∠AMN=∠ACN D.MN⊥AC答案:C分析:根据旋转的性质,对每个选项逐一判断即可.解:∵将△ABM绕点A逆时针旋转得到△ACN,∴△ABM≌△ACN,∴AB=AC,AM=AN,∴AB不一定等于AN,故选项A不符合题意;∵△ABM≌△ACN,∴∠ACN=∠B,而∠CAB不一定等于∠B,∴∠ACN不一定等于∠CAB,∴AB与CN不一定平行,故选项B不符合题意;∵△ABM≌△ACN,∴∠BAM=∠CAN,∠ACN=∠B,∴∠BAC=∠MAN,∵AM=AN,AB=AC,∴△ABC和△AMN都是等腰三角形,且顶角相等,∴∠B=∠AMN,∴∠AMN=∠ACN,故选项C符合题意;∵AM=AN,而AC不一定平分∠MAN,∴AC与MN不一定垂直,故选项D不符合题意;故选:C.小提示:本题考查了旋转的性质,等腰三角形的判定与性质.旋转变换是全等变换,利用旋转不变性是解题的关键.7、在平面直角坐标系中,抛物线y=x2−4x+5与y轴交于点C,则该抛物线关于点C成中心对称的抛物线的表达式为()A.y=−x2−4x+5B.y=x2+4x+5C.y=−x2+4x−5D.y=−x2−4x−5答案:A分析:先求出C点坐标,再设新抛物线上的点的坐标为(x,y),求出它关于点C对称的点的坐标,代入到原抛物线解析式中去,即可得到新抛物线的解析式.解:当x=0时,y=5,∴C(0,5);设新抛物线上的点的坐标为(x,y),∵原抛物线与新抛物线关于点C成中心对称,由2×0−x=−x,2×5−y=10−y;∴对应的原抛物线上点的坐标为(−x,10−y);代入原抛物线解析式可得:10−y=(−x)2−4⋅(−x)+5,∴新抛物线的解析式为:y=−x2−4x+5;故选:A.小提示:本题综合考查了求抛物线上点的坐标、中心对称在平面直角坐标系中的运用以及求抛物线的解析式等内容,解决本题的关键是设出新抛物线上的点的坐标,求出其在原抛物线上的对应点坐标,再代入原抛物线解析式中求新抛物线解析式,本题属于中等难度题目,蕴含了数形结合的思想方法等.8、将△OBA按如图方式放在平面直角坐标系中,其中∠OBA=90°,∠A=30°,顶点A的坐标为(1,√3),将△OBA绕原点逆时针旋转,每次旋转60°,则第2023次旋转结束时,点A对应点的坐标为()A.(−1,√3)B.(−√3,1)C.(−√33,1)D.(−1,√33)答案:A分析:根据旋转性质,可知6次旋转为1个循环,故先需要求出前6次循环对应的A点坐标即可,利用全等三角形性质求出第一次旋转对应的A点坐标,之后第2次旋转,根据图形位置以及OA长,即可求出,第3、4、5次分别利用关于原点中心对称,即可求出,最后一次和A点重合,再判断第2023次属于循环中的第1次,最后即可得出答案.解:由题意可知:6次旋转为1个循环,故只需要求出前6次循环对应的A点坐标即可第一次旋转时:过点A′作x轴的垂线,垂足为C,如下图所示:由A的坐标为(1,√3)可知:OB=1,AB=√3,在RtΔAOB中,∠AOB=90°−∠A=60°,OA=2由旋转性质可知:ΔAOB≌ΔA′OB′,∴∠A′OB′=∠AOB=60°,OA′=OA,∴∠A′OC=180°−∠A′OB′−∠AOB=60°,在ΔA′OC与ΔAOB中:{∠A′OC′=∠AOB=60°∠A′CO=∠ABO=90°OA′=OA∴ΔA′OC′≌ΔAOC(AAS),∴OC =OB =1,A ′C =AB =√3,∴此时点A 对应坐标为(−1,√3),当第二次旋转时,如下图所示:此时A 点对应点的坐标为(−2,0).当第3次旋转时,第3次的点A 对应点与A 点中心对称,故坐标为(−1,−√3).当第4次旋转时,第4次的点A 对应点与第1次旋转的A 点对应点中心对称,故坐标为(1,−√3). 当第5次旋转时,第5次的点A 对应点与第2次旋转的A 点对应点中心对称,故坐标为(2,0). 第6次旋转时,与A 点重合.故前6次旋转,点A 对应点的坐标分别为:(−1,√3)、(−2,0)、(−1,−√3)、(1,−√3)、(2,0)、(1,√3).由于2023÷6=337⋅⋅⋅⋅⋅⋅1,故第2023次旋转时,A 点的对应点为(−1,√3).故选:A .小提示:本题主要是考查了旋转性质、中心对称求点坐标、三角形全等以及点的坐标特征,熟练利用条件证明全等三角形,;通过旋转和中心对称求解对应点坐标,是求解该题的关键.9、如图,点O 是等边三角形ABC 内一点,OA =2,OB =1,OC =√3,则ΔAOB 与ΔBOC 的面积之和为( )A .√34B .√32C .3√34D .√3答案:C分析:将ΔAOB绕点B顺时针旋转60°得ΔBCD,连接OD,得到△BOD是等边三角形,再利用勾股定理的逆定理可得∠COD=90°,从而求解.解:将ΔAOB绕点B顺时针旋转60°得ΔBCD,连接OD,∴OB=OD,∠BOD=60°,CD=OA=2,∴ΔBOD是等边三角形,∴OD=OB=1,∵OD2+OC2=12+(√3)2=4,CD2=22=4,∴OD2+OC2=CD2,∴∠DOC=90°,∴ΔAOB与ΔBOC的面积之和为S△BOC+S△BCD=S△BOD+S△COD=√34×12+12×1×√3=3√34.故选:C.小提示:本题主要考查了等边三角形的判定与性质,勾股定理的逆定理,旋转的性质等知识,利用旋转将ΔAOB与ΔBOC的面积之和转化为S△BOC+S△BCD,是解题的关键.10、已知点P(m−3,m−1)关于原点的对称点P′在第四象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.答案:D分析:先确定点P 所在的象限,然后根据点所在象限的坐标特点列不等式组求解即可.解:∵点P(m −3,m −1)关于原点的对称点P′在第四象限,∴点P 在第二象限,∴ {m −3<0m −1>0, 解得:1<m <3,故选:D .小提示:本题主要考查了点的坐标特征,掌握第二象限的点的横坐标小于零、纵坐标大于零是解答本题的关键.填空题11、△ABC 中,AB =8,AC =6,AD 是BC 边上的中线,则AD 长度的范围是__________.答案:1<AD <7分析:延长AD 至E ,使DE =AD ,连接CE .根据SAS 证明△ABD ≌△ECD ,得CE =AB ,再根据三角形的三边关系即可求解.解:延长AD 至E ,使DE =AD ,连接CE .在△ABD 和△ECD 中,{DE =AD∠ADB =∠CDE DB =DC,∴△ABD ≌△ECD (SAS ),∴CE =AB .在△ACE 中,CE -AC <AE <CE +AC ,即2<2AD <14,故1<AD<7.故答数为:1<AD<7.小提示:本题主要考查了全等三角形的判定和性质、三角形的三边关系.注意:倍长中线是常见的辅助线之一.12、如图,正方形OABC的边长为2,将正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,连接BC′,当点A′恰好落在线段BC′上时,线段BC′的长度是 ___.答案:√6+√2分析:连接OB,过点O作OE⊥C'B于E,则∠OEC'=∠OEB=90°,由正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,所以∠OC'E=45°,OA=OC'=AB=2,∠A=90°,根据勾股定理得到BE的长,从而得到BC'.解:如图,连接OB,过点O作OE⊥C'B于E,则∠OEC'=∠OEB=90°,∵将正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,点A′恰好落在线段BC′上,∴∠OC'E=45°,OA=OC'=AB=2,∠A=90°,∴OB=2√2,OE=EC'=√2,在Rt△OBE中,由勾股定理得:BE=√OB2−OE2=√(2√2)2−(√2)2=√6,∴BC'=BE+EC'=√6+√2.所以答案是:√6+√2小提示:本题考查了旋转的性质、正方形的性质以及勾股定理,解题的关键是作辅助线构造特殊三角形.13、已知坐标系中点A(−2,a)和点B(b,3)关于原点中心对称,则a+b=__________.答案:-1分析:直接利用关于原点对称点的性质,得出a,b的值,即可得出答案.解:∵坐标系中点A(-2,a)和点B(b,3)关于原点中心对称,∴b=2,a=-3,则a+b=2-3=-1.所以答案是:-1.小提示:此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键.14、如图,在直角坐标系中,△ABC的顶点坐标分别为A(1,2),B(-2,2),C(-1,0).将△ABC绕某点顺时针旋转90°得到△DEF,则旋转中心的坐标是_____________.答案:(1,-1)分析:由旋转的性质可得A的对应点为D,B的对应点为E,C的对应点为F,同时旋转中心在AD和BE的垂直平分线上,进而求出旋转中心坐标.解:由旋转的性质,得A的对应点为D,B的对应点为E,C的对应点为F作BE和AD的垂直平分线,交点为P∴点P的坐标为(1,-1)所以答案是:(1,-1)小提示:本题考查坐标与图形变化—旋转,图形的旋转需结合旋转角求旋转后的坐标,常见的旋转角有30°,45°,60°,90°,180°.15、若点P(a-1,5)与点Q(5,1-b)关于原点成中心对称,则a+b=___.答案:2分析:根据关于原点对称的性质得到a-1+5=0,5+1-b=0,求出a、b,问题得解.解:∵点P(a-1,5)与点Q(5,1-b)关于原点成中心对称,∴a-1+5=0,5+1-b=0,∴a=-4,b=6,∴a+b=2.所以答案是:2小提示:本题考查了关于原点对称的点的坐标特点,熟知“两个点关于原点对称,则这两个点的横纵坐标都互为相反数”是解题关键.解答题16、如图,已知等边△ABC中,点D、E、F分别为边AB、AC、BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你连结EN,并判断EN与MF有怎样的数量关系?点F是否在直线NE 上?请写出结论,并说明理由;(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)如图3,若点M在点C右侧时,请你判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论:若不成立,请说明理由.答案:(1)相等,在,理由见解析;(2)成立,证明见解析;(3)成立.分析:(1)连接DE、DF、EF,NF,根据等边三角形的性质和三角形中位线的性质,先证得△DBF是等边三角形,可得△DMB≌△DNF,可得∠DBM=∠DFN,从而得到∠NFD+∠DFE=180°,再由△DMN是等边三角形,从而证得△DMF≌△DNE,得到EN=MF,即可求证;(2)连接DF,NF,EF,等边三角形的性质,可证得△DMB≌△DNF,得到BM=FN,∠DFN=∠FDB=60°,从而NF∥BD,再由EF是△ABC的中位线,可得EF∥BD,从而F在直线NE上,即可求证;(3)连接DF、DE,EF,根据等边三角形的性质和三角形中位线的性质,可得△DBF是等边三角形,从而证得△DNE≌△DMF,即可求证.解:(1)EN=MF,点F在直线NE上,理由如下:如图1,连接DE、DF、EF,NF,∴AB=AC=BC,∠ABC=60°,又∵点D、E、F分别为边AB、AC、BC的中点,∴DE、DF、EF为等边△ABC的中位线,DE=12BC,EF=12AB,DF=12AC,∴DE=DF=EF,∴∠FDE=∠DFE=60°∵D、F分别是AB、BC的中点,∴BD=BF,∴△DBF是等边三角形,∴∠BDF=60°,∵△DMN是等边三角形,∴∠MDN=60°,DM=DN,∴∠MDN=∠BDF=60°,DB=DF,∴∠MDN-∠BDN=∠BDF-∠BDN,即∠MDB=∠NDF,在△DMB和△DNF中,∵DM=DN,∠MDB=∠NDF,DB=DF,∴△DMB≌△DNF,∴∠DBM=∠DFN,∵∠ABC=60°,∴∠DBM=120°,∴∠NFD=120°,∴∠NFD+∠DFE=120°+60°=180°,∴N、F、E三点共线,∴F在直线NE上;∴∠MDN=60°,DM=DN,∴∠FDE+∠NDF=∠MDN+∠NDF,∴∠MDF=∠NDE,在△DMF和△DNE中,∵DF=DE,∠MDF=∠NDE,DM=DN,∴△DMF≌△DNE,∴MF=NE,(2)成立,理由如下:如图2,连接DF,NF,EF,∵△ABC是等边三角形且D、F分别是AB、BC的中点,∴∠ABC=60°,BD=BF,∴△DBF是等边三角形,∴∠BDF=∠DBF=60°,∵△DMN是等边三角形,∴∠MDN=60°,DM=DN,∴∠MDN=∠BDF=60°,DB=DF,∴∠MDN-∠FDM=∠BDF-∠FDM,即∠MDB=∠NDF,在△DMB和△DNF中,∵DM=DN,∠MDB=∠NDF,DB=DF,∴△DMB≌△DNF,∴∠DBM=∠DFN=60°,BM=FN,∴∠DFN=∠FDB=60°,∴NF∥BD,∵E,F分别为边AC,BC的中点,∴EF是△ABC的中位线,BF=12BC=12AB,∴EF∥BD,EF=12AB,∴F在直线NE上,BF=EF,∴MF=EN;(3)MF与EN相等的结论仍然成立,理由如下:如图3,连接DF、DE,EF,∵△ABC是等边三角形,∴AB=AC=BC,又∵点D、E、F分别为边AB、AC、BC的中点,∴DE、DF、EF为等边△ABC的中位线,DE=12BC,EF=12AB,DF=12AC,∴DE=DF=EF,∴△DEF是等边三角形,∴∠FDE=60°,∵△DMN是等边三角形,∴∠MDN=∠FDE=60°,DM=DN,∴∠EDM+∠NDE=∠EDM+∠FDM,∴∠NDE=∠FDM,在△DNE和△DMF中,∵DE=DF,∠NDE=∠FDM,DN=DM,△DNE≌△DMF,∴MF=NE.小提示:本题主要考查了等边三角形的性质和判定,全等三角形的性质和判定,熟练掌握等边三角形的性质和判定,全等三角形的性质和判定是解题的关键.17、已知△ABC是等边三角形,点B,D关于直线AC对称,连接AD,CD.(1)求证:四边形ABCD是菱形;(2)在线段AC上任取一点Р(端点除外),连接PD.将线段PD绕点Р逆时针旋转,使点D落在BA延长线上的点Q处.请探究:当点Р在线段AC上的位置发生变化时,∠DPQ的大小是否发生变化?说明理由.(3)在满足(2)的条件下,探究线段AQ与CP之间的数量关系,并加以证明.答案:(1)见解析(2)∠DPQ大小不变,理由见解析(3)CP=AQ,证明见解析分析:(1)连接BD,由等边三角形的性质可得AC垂直平分BD,继而得出AB=BC=CD=AD,便可证明;(2)连接PB,过点P作PE∥CB交AB于点E,PF⊥AB于点F,可证明△APE是等边三角形,由等腰三角形三线合一证明∠APF=∠EPF,∠QPF=∠BPF,即可求解;(3)由等腰三角形三线合一的性质可得AF = FE,QF = BF,即可证明.(1)连接BD,∵△ABC是等边三角形,∴AB=BC=AC,∵点B,D关于直线AC对称,∴AC垂直平分BD,∴DC=BC,AD=AB,∴AB=BC=CD=AD,∴四边形ABCD是菱形;(2)当点Р在线段AC上的位置发生变化时,∠DPQ的大小不发生变化,始终等于60°,理由如下:∵将线段PD绕点Р逆时针旋转,使点D落在BA延长线上的点Q处,∴PQ=PD,∵△ABC是等边三角形,∴AB=BC=AC,∠BAC=∠ABC=∠ACB=60°,连接PB,过点P作PE∥CB交AB于点E,PF⊥AB于点F,则∠APE=∠ACB=60°,∠AEP=∠ABC=60°,∴∠APE=∠BAC=60°=∠AEP,∴△APE是等边三角形,∴AP=EP=AE,∵PF⊥AB,∴∠APF=∠EPF,∵点B,D关于直线AC对称,点P在线段AC上,∴PB = PD,∠DPA =∠BPA,∴PQ = PD,∵PF⊥AB,∴∠QPF=∠BPF,∴∠QPF -∠APF=∠BPF -∠EPF,即∠QPA = ∠BPE,∴∠DPQ =∠DPA - ∠QPA=∠BPA-∠BPE = ∠APE= 60°;(3)AQ= CP,证明如下:∵AC = AB,AP= AE,∴AC - AP = AB–AE,即CP= BE,∵AP = EP,PF⊥AB,∴AF = FE,∵PQ= PD,PF⊥AB,∴QF = BF,∴QF - AF = BF–EF,即AQ= BE,∴AQ= CP.小提示:本题考查了图形的旋转,等边三角形的判定和性质,等腰三角形的性质,菱形的判定等,熟练掌握知识点是解题的关键.18、如图所示的两个图形成中心对称,请找出它的对称中点.答案:见解析.分析:根据关于中心对称的两个图形,对应点的连线都经过对称中心作图.连接CC′,BB′,两条线段相交于当O,则点O即为对称中点.小提示:本题考查的是中心对称的性质,掌握关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分是解题的关键.。

九年级数学上册第二十三章旋转知识点归纳总结(精华版)(带答案)

九年级数学上册第二十三章旋转知识点归纳总结(精华版)(带答案)

九年级数学上册第二十三章旋转知识点归纳总结(精华版)单选题1、如图,将△ABC绕点B顺时针旋转50°得△DBE,点C的对应点恰好落在AB的延长线上,连接AD,下列结论不一定成立的是()A.AB=DB B.∠CBD=80°C.∠ABD=∠E D.△ABC≌△DBE答案:C分析:利用旋转的性质得△ABC≌△DBE,BA=BD,BC=BE,∠ABD=∠CBE=50°,∠C=∠E,再由A、B、E三点共线,由平角定义求出∠CBD=80°,由三角形外角性质判断出∠ABD>∠E.解:∵△ABC绕点B顺时针旋转50°得△DBE,∴AB=DB,BC=BE,∠ABD=∠CBE=50°,△ABC≌△DBE,故选项A、D一定成立;∵点C的对应点E恰好落在AB的延长线上,∴∠ABD+∠CBE+∠CBD =180°,.∴∠CBD=180°-50°-50°=80°,故选项B一定成立;又∵∠ABD=∠E+∠BDE,∴∠ABD>∠E,故选项C错误,故选C.小提示:本题主要考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.2、将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.当GC=GB时,下列针对α值的说法正确的是()A.60°或300°B.60°或330°C.30°D.60°答案:A分析:当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=1AD,2∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG =60°,∴旋转角α=60°;②当点G 在AD 左侧时,同理可得△ADG 是等边三角形,∴∠DAG =60°,∴旋转角α=360°-60°=300°,故选:A .小提示:本题主要考查了旋转的性质,全等三角形的判定与性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.3、已知⊙O 的直径CD =100cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB =96cm ,则AC 的长为( )A .36cm 或64cmB .60cm 或80cmC .80cmD .60cm答案:B分析:分两种情况讨论,根据题意画出图形,根据垂径定理求出AM 的长,连接OA ,由勾股定理求出OM 的长,进而可得出结论.解:连接AC ,AO ,∵⊙O 的直径CD =100cm ,AB ⊥CD ,AB =96cm ,∴AM =12AB =12×96=48(cm ),OD =OC =50(cm ),如图1,∵OA =50cm ,AM =48cm ,CD ⊥AB ,∴OM =√OA 2−AM 2=√502−482=14(cm ),∴CM =OC +OM =50+14=64(cm ),∴AC=√AM2+CM2=√642+482=80(cm);如图2,同理可得,OM=14cm,∵OC=50cm,∴MC=50−14=36(cm),在Rt△AMC中,AC=√AM2+CM2=60(cm);综上所述,AC的长为80cm或60cm,故选:B.小提示:本题考查的是垂径定理、勾股定理的应用,根据题意画出图形、利用垂径定理和勾股定理求解是解答此题的关键.4、已知点A(−2,3)与点B关于原点对称,则点B的坐标()A.(−3,2)B.(2,−3)C.(3,2)D.(−2,−3)答案:B分析:根据关于原点对称点的坐标变化特征直接判断即可.解:点A(−2,3)与点B关于原点对称,则点B的坐标为(2,−3),故选:B.小提示:本题考查了关于原点对称点的坐标,解题关键是明确关于原点对称的两个点横纵坐标都互为相反数.5、已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若PA=4,PB=6,则OP=()A.√14B.4C.√23D.5答案:DAB=5,然后在分析:连接OA,过点O作OC⊥AB于点C,如图所示,先利用垂径定理求得AC=BC=12RtΔAOC中求得OC=2√6,再在RtΔPOC中,利用勾股定理即可求解.解:连接OA,过点O作OC⊥AB于点C,如图所示,则AC=BC=1AB,OA=7,2∵PA=4,PB=6,∴AB=PA+PB=4+6=10,∴AC=BC=1AB=5,2∴PC=AC−PA=5−4=1,在RtΔAOC中,OC=√OA2−AC2=√72−52=2√6,在RtΔPOC中,OP=√OC2+PC2=√(2√6)2+12=5,故选:D小提示:本题考查了垂径定理及勾股定理的运用,构造直角三角形是解题的关键.6、如图,在△ABC中,∠ACB=90∘,点D是AB的中点,将△ACD沿CD对折得△A′CD.连接BA′,连接AA′交CD于点E,若AB=14cm,BA′=4cm,则CE的长为()A.4cmB.5cmC.6cmD.7cm答案:B分析:由折叠性质得AA′⊥CD,AD=A′D,根据直角三角形斜边上的中线性质可证得CD=AD=BD=A′D,可证得A、C、A′、B共圆且AB为直径,利用垂径定理的推论和三角形的中位线性质证得DE=1A′B,进而可求解CE的长.2解:由折叠性质得AA′⊥CD,AD=A′D,∵∠ACB=90∘,点D是AB的中点,∴CD=AD=BD=A′D=1AB,2∴A、C、A′、B共圆且AB为直径,又A A′⊥CD,∴AE=A′E,又AD=BD,∴DE是△AB A′的中位线,∴DE=1A′B,2∵AB=14cm,BA′=4cm,∴CD=7cm,DE=2cm,∴CE=CD-DE=7-2=5cm,故选B.小提示:本题考查直角三角形斜边上的中线性质、三角形的中位线性质、折叠性质、垂径定理的推论,熟练掌握相关知识的联系与运用是解答的关键.7、围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史.2017年5月,世界围棋冠军柯洁与人工智能机器人AlphaGoi进行围棋人机大战截取首局对战棋谱中的四个部分,由黑白棋子摆成的图案是中心对称的是()A.B.C.D.答案:A分析:根据中心对称图形的定义:一个平面图形,绕一点旋转180°,与自身重合,这样的图形叫做中心对称图形.逐一进行判断即可.解:A、是中心对称图形,符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意;故选A.小提示:本题考查中心对称.熟练掌握中心对称的定义是解题的关键.8、如图,将正方形图案绕中心O旋转180°后,得到的图案是()A.B.C.D.答案:C分析:根据旋转的定义进行分析即可解答解:根据旋转的性质,旋转前后,各点的相对位置不变,得到的图形全等,分析选项,可得正方形图案绕中心O旋转180°后,得到的图案是C.故选:C.小提示:本题考查了图纸旋转的性质,熟练掌握是解题的关键.9、将△AOB绕点O旋转180∘得到△DOE,则下列作图正确的是()A.B.C.D.答案:D分析:把一个图形绕某一点O转动一个角度的图形变换叫做旋转.解:观察选项中的图形,只有D选项为△ABO绕O点旋转了180°.小提示:本题考察了旋转的定义.10、下列几何图形中,是轴对称图形但不是中心对称图形的是()A.梯形B.等边三角形C.平行四边形D.矩形答案:B分析:根据轴对称图形和中心对称图形的定义以及性质对各项进行分析即可.A、梯形不是轴对称图形,也不是中心对称图形,故本选项说法错误;B、等边三角形是轴对称图形,但不是中心对称图形,故本选项说法正确;C、平行四边形不是轴对称图形,是中心对称图形,故本选项说法错误;D、矩形是轴对称图形,也是中心对称图形,故本选项说法错误.故选:B.小提示:本题考查了轴对称图形和中心对称图形的判断,掌握轴对称图形和中心对称图形的定义以及性质是解题的关键.填空题11、如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A= °答案:55分析:根据旋转的性质可得∠ACA ′=35°,∠A =∠A ′,再由直角三角形两锐角互余,即可求解. 解:∵把△ABC 绕点C 按顺时针方向旋转35°,得到△A ′B ′C∴∠ACA ′=35°,∠A =∠A ′,∵∠A ′DC =90°,∴∠A ′=55°∴∠A =55°.所以答案是:55小提示:本题主要考查了图形的旋转,直角三角形两锐角的关系,熟练掌握旋转的性质,直角三角形两锐角互余是解题的关键.12、在平面直角坐标系xOy 中,直线y =−√33x +2分别交x 轴、y 轴于C 、A 两点.将射线AM 绕着点A 顺时针旋转45°,得到射线AN .点D 为AM 上的动点,点B 为AN 上的动点,点C 在∠MAN 的内部.(1)△BCD 周长的最小值是____________________;(2)当△BCD 的周长取得最小值,且BD =53√2时,△BCD 的面积为__________.答案: 4√2 43分析:(1)可作点C 关于射线AM 的对称点C 1,点C 关于射线AN 的对称点C 2.连接C 1C 2.利用两点之间线段最短,可得到当B 、D 两点与C 1、C 2在同一条直线上时,△BCD 的周长最小,最小值为线段C 1C 2的长.(2)根据(1)的作图可知四边形AC 1CC 2的对角互补,结合轴对称可得∠BCD =90°.利用勾股定理得到CB 2+CD 2=BD 2=(5√23)2,因为CB +CD =4√2﹣5√23,可推出CB •CD 的值,进而求出三角形的面积.(1)∵直线y =−√33x +2与x 轴、y 轴分别交于C 、A 两点,把y =0代入,解得x =2√3,把x =0代入,解得y =2,∴点C 的坐标为(2√3,0),点A 的坐标为(0,2).∴AC =√22+(2√3)2=4.作点C 关于射线AM 的对称点C 1,点C 关于射线AN 的对称点C 2.由轴对称的性质,可知CD =C 1D ,CB =C 2B . ∴CB +BD +CD =C 2B +BD +C 1D =C 1C 2连接AC 1、AC 2,可得∠C 1AD =∠CAD ,∠C 2AB =∠CAB ,AC 1=AC 2=AC =4.∵∠DAB =45°,∴∠C 1AC 2=90°.连接C 1C 2.C 1C 2=√42+42=4√2,∵两点之间线段最短,∴当B 、D 两点与C 1、C 2在同一条直线上时,△BCD 的周长最小,最小值为线段C 1C 2的长. ∴△BCD 的周长的最小值为4√2.所以答案是:4√2.(2)根据(1)的作图可知四边形AECF 的对角互补,其中∠DAB =45°,因此,∠C 2CC 1=135°. 即∠BCC 2+∠DCC 1+∠BCD =135°,∴2∠BCC 2+2∠DCC 1+2∠BCD =270°①,∵∠BC 2C =∠BCC 2,∠DCC 1=∠DC 1C ,∠BC 2C +∠DC 1C +∠BCC 2+∠DCC 1+∠BCD =180°, ∴2∠BCC 2+2∠DCC 1+∠BCD =180°②,①-②得,∠BCD =90°.∴CB 2+CD 2=BD 2=(5√23)2=509,∵CB +CD =4√2﹣5√23=7√23,(CB +CD )2=CB 2+CD 2+2CB •CD ,∴2CB •CD =(CB +CD )2-(CB 2+CD 2)= (7√23)2−509=163∴S=12⋅CB⋅CD=43.所以答案是:43小提示:本题考查了最短路径和勾股定理及一次函数的性质,解题关键利用轴对称确定最短路径,结合勾股定理来解决问题.13、若点P(a-1,5)与点Q(5,1-b)关于原点成中心对称,则a+b=___.答案:2分析:根据关于原点对称的性质得到a-1+5=0,5+1-b=0,求出a、b,问题得解.解:∵点P(a-1,5)与点Q(5,1-b)关于原点成中心对称,∴a-1+5=0,5+1-b=0,∴a=-4,b=6,∴a+b=2.所以答案是:2小提示:本题考查了关于原点对称的点的坐标特点,熟知“两个点关于原点对称,则这两个点的横纵坐标都互为相反数”是解题关键.14、如图,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以BC为一边作正方形BDEC设正方形的对称中心为O,连接AO,则AO=_____.答案:7√2;分析:连接AO、BO、CO,过O作FO⊥AO,交AB的延长线于F,判定△AOC≌△FOB(ASA),即可得出AO=FO,FB=AC=6,进而得到AF=8+6=14,∠FAO=45°,根据AO=AF×cos45°进行计算即可.解:连接AO、BO、CO,过O作FO⊥AO,交AB的延长线于F,∵O是正方形DBCE的对称中心,∴BO=CO,∠BOC=90°,∵FO⊥AO,∴∠AOF=90°,∴∠BOC=∠AOF,即∠AOC+∠BOA=∠FBO+∠BOA,∴∠AOC=∠FBO,∵∠BAC=90°,∴在四边形ABOC中,∠ACO+∠ABO=180°,∵∠FBO+∠ABO=180°,∴∠ACO=∠FBO,在△AOC和△FOB中,{∠AOC=∠FOBAO=FO∠ACO=∠FBO,∴△AOC≌△FOB(ASA),∴AO=FO,FB=FC=6,∴AF=8+6=14,∠FAO=∠OFA=45°,∴AO=AF×cos45°=14×√22=7√2.故答案为7√2.小提示:本题考查了正方形的性质和全等三角形的判定与性质.本题的关键是通过作辅助线来构建全等三角形,然后将已知和所求线段转化到直角三角形中进行计算.15、如图,在正方形网格中,格点ΔABC绕某点顺时针旋转角α(0<α<180°)得到格点ΔA1B1C1,点A与点A1,点B与点B1,点C与点C1是对应点,则α=_____度.答案:90°分析:先连接CC1,AA1,作CC1,AA1的垂直平分线交于点E,连接AE,A1E,再由题意得到旋转中心,由旋转的性质即可得到答案.如图,连接CC1,AA1,作CC1,AA1的垂直平分线交于点E,连接AE,A1E,∵CC1,AA1的垂直平分线交于点E,∴点E是旋转中心,∵∠AEA1=90°,∴旋转角α=90°.故答案为90°.小提示:本题考查旋转,解题的关键是掌握旋转的性质.解答题16、如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.(1)画出将△OAB绕原点顺时针旋转90°后所得的△OA1B1,并写出点A1、B1的坐标;(2)画出△OAB关于原点O的中心对称图形△OA2B2,并写出点A2、B2的坐标.答案:(1)图见解析,A1(0,﹣4),B1(2,﹣4)(2)图见解析,A2(﹣4,0),B2(﹣4,﹣2)分析:(1)根据旋转先找到找到A1,B1点,再进行连线即可;(2)根据关于原点对称的点特征,找到A2,B2点,再进行连线即可;(1)如图所示,△OA1B1即为所求,由图知,A1(0,﹣4),B1(2,﹣4);(2)如图所示,△OA2B2即为所求,A2(﹣4,0),B2(﹣4,﹣2).小提示:本题考查坐标系下图形的旋转,对称作图,根据找点,描点,连线的方法进行作图即可.17、已知:BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.(1)如图1,求证:四边形ADEF是平行四边形;(2)如图2,若△ABC为等边三角形,在不添加辅助线的情况下,请你直接写出所有是轴对称但不是中心对称的图形.答案:(1)证明见解析(2)等边△ABC,等边△BEF,等边△CDE,等腰△BDE,等腰梯形ABED,等腰梯形ACEF分析:(1)由角平分线可知∠ABD=∠CBD,由平行可知∠BDE=∠ABD,可得∠CBD=∠BDE,DE=BE= AF,进而结论得证;(2)由题意可得四边形ADEF是菱形,D,E,F是等边三角形的中点,然后根据在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形;对图中的三角形与四边形的对称性进行判断即可.(1)证明:∵BD是△ABC的角平分线∴∠ABD=∠CBD∵DE∥AB∴∠BDE=∠ABD∴∠CBD=∠BDE∴DE=BE=AF∵DE∥AF,DE=AF∴四边形ADEF是平行四边形.(2)解:由(1)知四边形ADEF是平行四边形∴EF∥AC∵△ABC是等边三角形∴∠EFB=∠C=∠B=60°∴BE=EF=DE∴四边形ADEF是菱形∴AF=BF,BE=CE,CD=AD∴D,E,F是等边三角形的中点∴BG⊥EF,BD⊥EF∴由轴对称图形与中心对称图形的定义可知,是轴对称图形但不是中心对称图形的有:等边△ABC,等边△BEF,等边△CDE,等腰△BDE,等腰梯形ABED,等腰梯形ACEF.小提示:本题考查了角平分线,等腰三角形的判定与性质,等边三角形的判定性质,平行四边形的判定与性质,菱形的判定与性质,轴对称图形,中心对称图形等知识.解题的关键在于对知识的熟练掌握与灵活运用.18、如图①,在矩形ABCD中,AB=6,BC=8,四边形EFGH是正方形,EH与BD重合,将图①中的正方形EFGH绕着点D逆时针旋转.(1)旋转至如图②位置,使点G落在BC的延长线上,DE交BC于点L.已知旋转开始时,即图①位置∠CDG=37°,求正方形EFGH从图①位置旋转至图②位置时,旋转角的度数.(2)旋转至如图③位置,DE交BC于点L.延长BC交FG于点M,延长DC交EF于点N.试判断DL、EN、GM之间满足的数量关系,并给予证明.答案:(1)16°(2)DL=EN+GM,见解析分析:(1)根据题意易求出∠BDC=53°.在图②中连接BD.根据旋转结合正方形性质即得出BD=DE= DG,∠DCB=90°.根据等腰三角形三线合一的性质即可得出∠BDC=∠CDG=53°,从而可求出∠CDE的大小,进而即可求出∠BDE的大小,即旋转角.(2)在图③中,过点G作GK//BM,交DE于K,由正方形的性质可得出∠DEF=∠GDE,DE=DG.又易证GK⊥DN,即得出∠NDG+∠EDN=90°,∠NDG+∠DGK=90°,从而得出∠EDN=∠DGK,由此可证明△DKG≌△END(ASA),得出EN=DK.由GK//ML,KL//GM,可判定四边形KLMG是平行四边形,得出结论GM=KL,从而即可证明DL=EN+GM.(1)由图①知,∠BDC=90°−∠CDG=90°−37°=53°,如图②,连接BD,根据旋转和正方形性质可知BD=DE=DG,∠DCB=90°.∴∠BDC=∠CDG=53°,∴∠CDE=90°−∠CDG=90°−53°=37°,∴∠BDE=∠BDC−∠CDE=53°−37°=16°,∴旋转角为16°;(2)DL=EN+GM,理由如下:如图③,过点G作GK//BM,交DE于K,∵四边形EFGD是正方形,∴∠DEF=∠GDE,DE=DG.∵GK//BM,DN⊥BM,∴GK⊥DN,∴∠NDG+∠EDN=90°,∠NDG+∠DGK=90°,∴∠EDN=∠DGK,∴△DKG≌△END(ASA),∴EN=DK,∵GK//ML,KL//GM,∴四边形KLMG是平行四边形,∴GM=KL,∴DL=DK+KL=EN+GM.小提示:本题考查正方形的性质,旋转的性质,平行线的判定和性质,三角形全等的判定和性质以及平行四边形的判定和性质,综合性较强.正确的做出辅助线以及利用数形结合的思想是解题关键.。

人教版九年级数学上册二十三章:旋转复习

人教版九年级数学上册第二十三章:旋转复习题一、选择题。

(每小题3分)1.下列图形中,是轴对称图形但不是中心对称图形的是()A. B. C. D.2.下列是电视台的台标,属于中心对称图形的是()A. B. C. D.3.下列图案中,不能由一个图形通过旋转而构成的是()A. B. C. D.4.在平面直角坐标系xOy中,已知点A(2,3),若将OA绕原点O逆时针旋转180°得到OA′,则点A′在平面直角坐标系中的位置是在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.如图所示的图片是一个旋转对称图案,电风扇的叶片至少旋转能与自身重合( )A. 90°B. 120°C. 180°D. 360°6.在平面直角坐标系中,点(2,6)关于原点对称的点的坐标是( )A. (-2,-6)B. (-2,6)C. (-6,2)D. (6,2)7.如图,△ABD经过旋转后到达△ACE的位置,下列说法不正确的是( )A. 点A是旋转中心B. ∠DAC是一个旋转角C. AB=ACD. △ABD≌△ACE8.如图,将两块全等的直角三角板拼接在一起,这个图形可以看作是由一块直角三角板绕着直角顶点经过一次旋转后得到的,那么旋转的角度是( )A. 30°B. 60°C. 90°D. 180°9.如图,△AOC绕O点旋转到△BOD,则下列选项错误的是( )A. ∠C=∠DB. AC=BDC. AC∥BDD. ∠AOC=∠BOD10.如图,△OAB绕点O逆时针旋转一定度数得到△OCD,若∠A=110°,∠D=40°,∠α=50°,则旋转角的度数是( )A. 60°B. 70°C. 80°D. 90°11.如图,正方形OABC在平面直角坐标系中,点A的坐标为(2,0),将正方形OABC绕点O顺时针旋转45°,得到正方形OA′B′C′,则点C′的坐标为( )A.(2,2)B.(-2,2)C.(2,-2)D.(2 2,2 2)二、填空题。

人教初三数学第23章旋转旋转基础知识及专项(word版含解析)

提醒:处理方法需要牢记,另外运算的时候要格外细心,千万不要算错了!
三、点绕点旋转90问题
此种问题通过构造两个直角三角形全等,然后利用对应直角边线段长度相等,从而求出对应点坐标。
示例:将点A(3,4)绕点P(1,1)逆时针旋转90,求点A的对应点A1的坐标。分析:旋转不改变图形线段长度及图形线段
的夹角。因此有PAPA1。由于旋转角为90,即APA190,因此我们可以就斜边PAPA1,以平行于坐标轴的线段构造两个直角三角形。专门明显,这两个直角三角形时
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后图形全等。
4、把一个图形绕着某一点旋转180,假如它能够与另一个图形重合,那么就说这两个图形关于
那个点对称或中心对称,那个点叫做对称中心。这两个图形的对称点叫做关于中心的对称点。
5、(1)关于中心对称的两个图形,对称点所连线段都通过对称中心,而且被对称中心平分;
上三角形时,同学能够考虑以下利用旋转来解题。
以下通过一些实例来关心同学们明白得如何利用等腰三角形的腰转动带动等腰三角形腰所在的三角形转动,从而构造全等三角形进而利用旋转知识解决相关问题。
结论3:对应点与旋转中心所构成的三角形均相似。如图,BAB1∽CAC1。
结论4:旋转前、后图形全等。如图,ABCAB1C1。
示例1:已知A(3,2)、O(0,0),将线段OA绕点P旋转得到线段O1 A1,其中O1 (1,1)、A1 (3,4),
O1为点O的对应点,A1为点A的对应点,求点P的坐标。
分析:旋转中心为对应点所连线段垂直平分线的交点,因此只要求出线段AA1和线段OO1的解析式,然后联赶忙可求出点P的坐标。
分析:既然直线l为线段AB的垂直平分线,因此直线l通过线段AB的中点,也即线段AB的

人教版九年级上册二十三章旋转常考基础题专项训练(含解析)

人教版九上二十三章旋转常考基础题训练(含解析)一、选择题1. 以下是各种交通标志指示牌,其中不是轴对称图形的是( )A. B.C. D.2. 下列图形中,不是轴对称图形的是( )A. B.C. D.3. 下列图形中,既是轴对称图形又是中心对称图形的个数有( )A. 1个B. 2个C. 3个D. 4个4. 下列图形中,绕着它的中心点旋转60∘后,可以和原图形重合的是( )A. 正三角形B. 正方形C. 正五边形D. 正六边形5. 一个图形无论经过平移变换,还是经过旋转变换,下列说法正确的是( )①对应线段平行;②对应线段相等;③图形的形状和大小都没有发生变化;④对应角相等.A. ①②③B. ②③④C. ①②④D. ①③④6. 如图,四边形ABCD是中心对称图形,对称中心为点O,过点O的直线与AD,BC分别交于点E,F,则图中相等的线段有( )A. 3对B. 4对C. 5对D. 6对7. 如图,在正方形ABCD中,对角线BD的长为√2,若将BD绕点B旋转后,点D落在BC的延长线上的点Dʹ处,点D经过的路径为DDʹ⏜,则图中阴影部分的面积是( )A. π2−1 B. π2−12C. π4−12D. π−28. 如图,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心角为直角的扇形纸板的圆心放在O点处,并将纸板的圆心绕O旋转,则正方形ABCD被纸板覆盖部分的面积为( )A. 13a2 B. 14a2 C. 12a2 D. 14a9. 如图,△ABO中,AB⊥OB,OB=√3,AB=1,把△ABO绕点O旋转150∘后得到△A1B1O,则点A1的坐标为( )A. (−1,−√3)B. (−1,−√3)或(−2,0)C. (−√3,−1)或(0,−2)D. (−√3,−1)10. 如图,正方形OABC绕着点O逆时针旋转40∘得到正方形ODEF,连接AF,则∠OFA的度数是( )A. 15∘B. 20∘C. 25∘D. 30∘11. 如图,在Rt△ABC中,∠ACB=90∘,∠B=60∘,BC=2,∠AʹBʹCʹ可以由△ABC绕点C顺时针旋转得到,其中点Aʹ与点A是对应点,点Bʹ与点B是对应点,连接ABʹ,且A、Bʹ、Aʹ在同一条直线上,则AAʹ的长为( )A. 4√3B. 6C. 3√3D. 312. 如图,在Rt△ABC中,∠ACB=90∘,∠ABC=30∘,将△ABC绕点C顺时针旋转α角(0∘<α<180∘)至△AʹBʹC,使得点Aʹ恰好落在AB边上,则α等于( )A. 150∘B. 90∘C. 60∘D. 30∘13. 如图,从图形甲到图形乙的运动过程可以是( )A. 先翻折,再向右平移4格B. 先逆时针旋转90∘,再向右平移4格C. 先逆时针旋转90∘,再向右平移1格D. 先顺时针旋转90∘,再向右平移4格14. 如图,已知钝角三角形ABC,将△ABC绕点A按逆时针方向旋转110∘得到△ABʹCʹ,连接BBʹ,若ACʹ∥BBʹ,则∠CABʹ的度数为( )A. 55∘B. 65∘C. 75∘D. 85∘15. 如图,△ABC是⊙O的内接三角形,∠A=30∘,BC=√2,把△ABC绕点O按逆时针方向旋转90∘得到△BED,则对应点C,D之间的距离为( )A. 1B. √2C. √3D. 216. 如图,在△ABC中,∠CAB=75∘,在同一平面内,将△ABC绕点A旋转到△ABʹCʹ的位置,使得CCʹ∥AB,则∠BABʹ=( )A. 30∘B. 35∘C. 40∘D. 50∘17. 下列图形,既是中心对称图形,又是轴对称图形的是( )A. 等边三角形B. 平行四边形C. 正五边形D. 正六边形18. 下列英文字母既是轴对称图形又是中心对称图形的是( )A. B.C. D.19. 如图,在Rt△ABC中,∠ACB=90∘,∠B=60∘,BC=2.将△ABC绕点C顺时针旋转得到△AʹBʹC,连接ABʹ,若A,Bʹ,Aʹ在同一条直线上,则AAʹ的长为( )A. 6B. 4√3C. 3√3D. 320. 如图,在Rt△AOB中,∠AOB=90∘,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90∘后得Rt△FOE,将线段EF绕点E逆时针旋转90∘后得线段ED,分别以O,E为圆心,OA、ED长为半径画AF⏜和DF⏜,连接AD,则图中阴影部分面积是( )A. πB. 5πC. 3+πD. 8−π421. 如图,将△ABC绕点C顺时针旋转90∘得到△EDC.若点A,D,E在同一条直线上,∠ACB=20∘,则∠ADC的度数是( )A. 55∘B. 60∘C. 65∘D. 70∘22. 如图,△ABC绕点O逆时针旋转100∘后得到△AʹBʹCʹ,若∠AOB=35∘,则∠AʹOB=( )A. 35∘B. 65∘C. 100∘D. 135∘23. 有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中随机抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是( )A. 15B. 25C. 35D. 4524. 如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在Cʹ处,折痕为EF,若AB=1,BC=2,则△ABE和△BCʹF的周长之和为( )A. 3B. 4C. 6D. 825. 如图,将△AOB绕点O按逆时针方向旋转45∘后得到△AʹOBʹ,若∠AOB=15∘,则∠AOBʹ的度数是( )A. 25∘B. 30∘C. 35∘D. 40∘26. 如图,点A,B,C,D,O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为( )A. 30∘B. 45∘C. 90∘D. 135∘27. 正三角形、正方形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是( )A. 正三角形B. 正方形C. 等腰直角三角形D. 平行四边形28. 如图,将Rt△ABC绕直角顶点C顺时针旋转90∘,得到△AʹBʹC,连接AAʹ,若∠B=65∘,则∠1的度数是( )A. 45∘B. 25∘C. 20∘D. 15∘29. 下列运动属于旋转的是( )A. 扶梯的上升B. 一个图形沿某直线对折过程C. 气球升空的运动D. 钟表的钟摆的摆动30. 如图,已知∠A=70∘,O是AB上一点,直线OD与AB的夹角∠BOD=82∘,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转( )度.A. 12B. 18C. 22D. 22二、填空题31. 图形的旋转(1)旋转:在平面内,将一个图形绕一个按某个方向转动一个角度,这样的图形运动称为旋转.这个定点称为,转动的角称为.(2)旋转的性质①旋转不改变图形的形状和大小;②对应点到旋转中心的距离;③任意一组对应点与的连线所成的角都等于旋转角;④对应线段,对应角.32. 在下列图形:等边三角形、平行四边形、矩形、菱形、圆中选择一个图形;选择的图形既是轴对称图形,又是中心对称图形的概率是.33. 如图,在△ABC中,∠ACB=120∘,将它绕着点C旋转30∘后得到△DEC,则∠ACE=.34. 如图所示的图案由三个叶片组成,绕点O旋转120∘后可以和自身重合,若每个叶片的面积为4cm2,∠AOB为120∘,则图中阴影部分的面积之和为cm2.35. 如图,把△ABC绕点C按顺时针方向旋转35∘,得到△AʹBʹC,AʹBʹ交AC于点D.若∠AʹDC=90∘,则∠A的度数为.36. 如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90∘后,得到线段ABʹ,则点Bʹ的坐标为.37. 如图,△ODC是由△OAB绕点O顺时针旋转40∘后得到的图形,若点D恰好落在AB上,且∠AOC=105∘,则∠C=.38. 如图,在Rt△ABC中,∠BAC=90∘,将△ABC绕点A顺时针旋转90∘后得到的△ABʹCʹ(点B的对应点是点Bʹ,点C的对应点是点Cʹ),连接CCʹ.若∠CCʹBʹ=32∘,则∠B=.39. 如图,将矩形ABCD绕点A顺时针旋转到矩形ABʹCʹDʹ的位置,旋转角为α(0∘<α<90∘).若∠BADʹ=70∘,则α=.40. 如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为.41. 在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为.42. 如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为.43. 如图,△ABC和△AʹBʹC是两个完全重合的直角三角板,∠B=30∘,斜边长为10cm.三角板AʹBʹC绕直角顶点C顺时针旋转,当点Aʹ落在AB边上时,CAʹ旋转所构成的扇形的弧长为cm.44. 如图,在△ABC中,∠C=90∘,AC=3cm,AB=5cm,将△ABC绕点B顺时针旋转60∘得到△FBE,则点E与点C之间的距离是cm.45. 如图,将△ABC绕点A顺时针旋转80∘得到△ADE,若∠B=30∘,∠E=95∘,则∠BAE=∘.46. 如图,等腰直角△ABC绕C点按顺时针方向旋转到△A1B1C1的位置(A,C,B1在同一直线上),∠B=90∘,如果AB=1,那么AC运动到A1C1所经过的图形的面积是.47. 等边三角形绕它的中心至少旋转度,才能和原图形重合.48. 如图,正方形ABCD中,点E在DC边上,DE=4,EC=2,把线段AE绕点A旋转,使点E落在直线BC上的点F处,则FC的长为.49. 如图,已知正方形ABCD与正方形AEFG的边长分别为4cm,1cm,若将正方形AEFG绕点A旋转,则在旋转过程中,点C,F之间的最小距离为cm.50. 如图,在△ABC中,∠B=70∘,△ABʹCʹ由△ABC绕点A逆时针旋转得到,点Bʹ在BC上,则∠BABʹ=度.三、解答题51. 如图,已知点A,B的坐标分别为(0,0),(2,0),将△ABC绕C点按顺时针方向旋转90∘得到△A1B1C.(1)画出△A1B1C;(2)A的对应点为A1,写出点A1的坐标;(3)求出BB1的长.(直接作答)52. 如图是4×4正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.53. 如图,正方形ABCD中,E为CD上一点,△BCE绕点C顺时针旋转α得到△DCF,点F恰好落在BC延长线上.(1)α=∘;(2)若∠CEB=60∘,求∠EFD的度数.54. 如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,△ABC的三个顶点A,B,C都在格点上.(1)画出△ABC绕点A逆时针旋转90∘后得到的△AB1C1;(2)求旋转过程中动点B所经过的路径长(结果保留π).55. 如图,在△ABC中,∠BAC=50∘,将△ABC绕点A按逆时针方向旋转后得△AB1C1.当B1B∥AC时,求∠BAC1的度数.56. 在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上.(每个小方格的顶点叫格点)(1)画出△ABC向下平移3个单位后的△A1B1C1;(2)画出△ABC绕点O顺时针旋转90∘后的△A2B2C2,并求点A的旋转到A2所经过的路线长.57. 如图,在3×3的正方形网格中,每个网格都有三个小正方形被涂黑.(1)在图①中将一个空白部分的小正方形涂黑,使其余空白部分是轴对称图形但不是中心对称图形.(2)在图②中将两个空白部分的小正方形涂黑,使其余空白部分是中心对称图形但不是轴对称图形.58. 在网格图中,作出△ABC绕点B顺时针方向旋转90∘得到的△AʹBʹCʹ.59. 如图,(1)请画出△ABC关于直线MN的对称图形△A1B1C1;(2)如果点A2是点A关于某点成中心对称,请标出这个对称中心O,并画出△ABC关于点O 成中心对称的图形△A2B2C2.60. 按照要求画图:(1)如图甲,在平面直角坐标系中,点A,B,C的坐标分别为(−1,3),(−5,1),(−2,1),将△ABC绕原点O顺时针旋转90∘得到△A1B1C1,点A,B,C的对应点为点A1,B1,C1.画出旋转后的△A1B1C1;(2)如图乙,下列3×3网格都是由9个相同小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形(画出两种即可).答案第一部分1. C2. A3. C 【解析】菱形是轴对称图形,是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;圆是轴对称图形,是中心对称图形;矩形是轴对称图形,是中心对称图形.4. D5. B6. C7. C8. B9. B10. C11. B12. C13. B 【解析】把图形甲绕点O逆时针旋转90∘,再向右平移4个单位可得到图形乙.14. C15. D16. A17. D18. D19. A20. D21. C22. B 【解析】∵△ABC绕点O逆时针旋转100∘后得到△AʹBʹCʹ,∴∠AOAʹ=100∘,∴∠AʹOB=∠AOAʹ−∠AOB=100∘−35∘=65∘.23. B24. C 【解析】有题意可知:BE=DE,CʹF=CF,BCʹ=CD,∴△ABE和△BCʹF的周长之和=AB+AE+BE+BF+BCʹ+CʹF=AB+AE+DE+BF+CF+CD=AB+AD+CD+BC=1+2+1+2=6.25. B【解析】∵将△AOB绕点O按逆时针方向旋转45∘后得到△AʹOBʹ,∴∠AʹOA=45∘,∠AOB=∠AʹOBʹ=15∘,∴∠AOBʹ=∠AʹOA−∠AʹOBʹ=45∘−15∘=30∘.26. C 【解析】如图,设小方格的边长为1,得,OC=√22+22=2√2,AO=√22+22=2√2,AC=4,∵OC2+AO2=(2√2)2+(2√2)2=16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90∘.27. B28. C29. D30. A第二部分31. (1)定点,旋转中心,旋转角,(2)②相等,③旋转中心,④相等,相等32. 0.633. 150∘34. 4【解析】据题意可知阴影部分的面积恰好等于一个叶片的面积.35. 55∘36. (4,2)37. 45∘38. 77∘【解析】∵△ABC绕点A顺时针旋转90∘后得到的△ABʹCʹ,∴∠B=∠ABʹCʹ,AC=ACʹ,∠CACʹ=90∘,∴△ACCʹ为等腰直角三角形,∴∠ACCʹ=∠ACʹC=45∘,∴∠ABʹCʹ=∠BʹCCʹ+∠CCʹBʹ=45∘+32∘=77∘,∴∠B=77∘.39. 20∘40. 20cm41. √5【解析】如图所示,作A点关于直线y=x的对称点Aʹ,连接AʹB,交直线y=x于点P,此时PA+PB最小,由题意可得出OAʹ=1,BO=2,PAʹ=PA,∴PA+PB=AʹB=√12+22=√5.42. 343. 5π3【解析】∵∠A=60∘,CA=CAʹ,∴△CAAʹ是等边三角形,∴∠ACAʹ=60∘.∴CAʹ旋转所构成的扇形的弧长=60π5180=5π3.44. 445. 2546. 34π47. 12048. 2或1049. 3√250. 40第三部分51. (1)△A1B1C如图所示.(2)A1(0,6).(3)BB1=2√5.52. 由题意得:53. (1)90(2)由题意知△BCE绕点C顺时针旋转90∘得到△DCF,∴∠DFC=∠BEC=60∘,CE=CF,∠ECF=90∘,∴∠CFE=45∘,∴∠EFD=∠DFC−∠CFE=15∘.54. (1)如图即为所求.(2)由(1)知这段弧所对的圆心角是90∘,半径AB=√BC2+AC2=√32+42=5.∴点B所经过的路径长为90π×5180=5π2.55. ∵B1B∥AC,∴∠ABB1=∠BAC=50∘.∵由旋转的性质可知:∠B1AC1=∠BAC=50∘,AB=AB1.∴∠ABB1=∠AB1B=50∘.∴∠BAB1=80∘,∴∠BAC1=∠BAB1−∠C1AB1=80∘−50∘=30∘.56. (1)画出△A1B1C1如图所示.(2)画出△A2B2C2如图所示.连接OA,OA2,则OA=√22+32=√13,点A旋转到A2所经过的路线长为l=90π⋅√13180=√132π.57. (1)如图所示.(2)如图所示(答案不唯一).58. 如图,△AʹBʹCʹ即为所求.59. (1)如图1所示:△ABC关于直线MN的对称图形△A1B1C1即为所求.(2)如图2所示:对称中心O与△A2B2C2即为所求.60. (1)如图甲所示:旋转后的△A1B1C1即为所求.(2)如图乙所示:答案不唯一.。

人教版九年级数学第二十三章第1节图形的旋转解答题 59含解析.docx

第二十三章第1节《图形的旋转》解答题(59)一、解答题1.如图(1),已知四边形ABCD和一点0,求作四边形ABCD,使它与四边形ABCD关于点0对称;如果把。

点移至如图(2)所示位置,又该怎么作图呢?2.如图,AABC是等边三角形,AABP旋转后能与△C3P'重合.P'(1)旋转中心是哪一点?(2)旋转角度是多少度?(3)连结PP后,列/'是什么三角形?简单说明理由.3. 如图1,在菱形/WCD中,AC=2, BD = 2jL AC, BD相交于点0.(1)求边的长;⑵求ABAC的度数;⑶如图2,将一个足够大的直角三角板60。

角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60。

角的两边分别与边BC, CD相交于点E, F,连接EF.判断是哪一种特殊三角形,并说明理由.4. 已知抛物线y=ax2+bx-3a-5经过点A(2, 5)(1)求出a和b之间的数量关系.(2)巳知抛物线的顶点为D点,直线AD与y轴交于(0, -7)①求出此时抛物线的解析式;②点B为y轴上任意一点且在直线y=5和直线y=-13之间,连接BD绕点B逆时针旋转90。

,得到线段BC,连接AB、AC,将AB绕点B顺时针旋转90。

,得到线段BH.截取BC的中点F和DH的中点G.当点D、点H、点C三点共线时,分别求出点F和点G的坐标.5.如图1,在等腰RtZVIBC 中,ZBAC=90°, AB=AC=2,点、M 为BC中点.点P 为AB 边上一动点,点D为BC边上一动点,连接DP,以点P为旋转中心,将线段PD逆时针旋转90。

,得到线段PE,连接EC.A(P)(1) 当点P与点4重合时,如图2.①根据题意在图2中完成作图;②判断EC与BC的位置关系并证明.(2) 连接写出一个BP的值,使得对于任意的点。

总有EM=EC,并证明.6.如图,点D是等边△ABC内一点,将线段AD绕着点A逆时针旋转60。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十三章:旋转重点题型一:选择题1.下列图形中,不是旋转图形的是 ( )2.如图,将正方形图案绕中心O 旋转180°后,得到的图案是 ( )3.将左图所示的图案按顺时针方向旋转90°后可以得到的图案是( )4. 下列图形中,既是轴对称图形,又是中心对称图形的是( )5. 下列图形中,既是轴对称图形又是中心对称图形的是( )6.下列各图中,不是中心对称图形的是( )7.在下列图形中,既是轴对称图形,又是中心对称图形的是( )A BCDABCDA .B .C .D .(A ) (B ) (C ) (D )8.4张扑克牌如图(1)所示放在桌子上,小新把其中一张旋转180°后得到如图(2)所示,那么他所旋转的牌从左起是( )A .第一张、第二张B .第二张、第三张C .第三张、第四张D .第四张、第一张(1) (2)8.如图,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点,把△AO B 绕点A 顺时针旋转90°后得到△A O B '',则点B '的坐标是A. (3,4)B. (4,5)C. (7,4)D. (7,3)9.如图,边长为4的正方形ABCD 的对称中心是坐标原点O ,AB∥x 轴,BC∥y 轴,反比例函数2y x=与2y x=-的图像均与正方形ABCD 的边相交,则图中阴影部分的面 积之和是( )A .2B .4C .6D .8.10. 已知坐标平面上的机器人接受指令“[a ,A ]”(a ≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向面对方向沿直线行走a . 若机器人的位置在原点,面对方向为y 轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( )A. (-1,B. (-1-1)-1)11.在下图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是 ( ) (A )点A (B )点B (C )点C (D )点D12.如图,在等边A B C △中,9A C =,点O 在A C 上, 且3A O =,点P 是A B 上一动点,连结O P ,将线段O P 绕点O 逆时针旋转60 得到线段O D .要使点D 恰好落在B C 上,则A P 的长是( )(第8题)x(第12题图)11 第11题图A .4B .5C .6D .813.如图,如果正方形ABCD 旋转后能与正方形CDEF 重合,那么图形所在的平面内可作旋转中心的点共有( )A .1 个B .2 个C .3 个D .4个 14.如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B′位置,A 点落在A′位置, 若AC⊥A′B′,则∠BAC 的度数是( )A .50°B .60°C .70°D .80°15.如图,△OAB 绕点O 逆时针旋转80°到△OCD 的位置,已知∠AOB =45°,则∠AOD 等于( )A.55° B.45° C.40° D.35°(第13题) (第14题) (第15题)16.下列命题中的真命题是 ( ) (A)全等的两个图形是中心对称图形. (B)关于中心对称的两个图形全等. (C)中心对称图形都是轴对称图形. (D)轴对称图形都是中心对称图形.17.正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针方向旋转90°后,B 点到达的位置坐标为( )。

A 、(-2,2)B 、(4,1)C 、(3,1)D 、(4,0)18. 如图,A B C △三个顶点的坐标分别为(25)A -,,(51)B -,,(21)C -,,将A B C △绕点C 按顺时针方向旋转90 ,得到DE C △,则点D 的坐标为(A.(12), B.(21), C.(11),D.(22),19. 如图,菱形A B C D 的中心是坐标原点,且A 点的坐标为() A.(43)-, B.(34)-, C.(44)-,D.(33)-,20.在下图右侧的四个三角形中,不能由△ABC 经过旋转或平移得到的是( )二:填空题21.如图用等腰直角三角板画45AOB = ∠,并将三角板沿O B 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22 ,则三角板的斜边与射线O A 的夹角α为______. 21.如图用等腰直角三角板画45AOB = ∠,并将三角板沿 OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋 转22 ,则三角板的斜边与射线OA 的夹角a 为______ .22、在平面直角坐标系中,已知3个点的坐标分别为A1(1,1)、A2(0,2)、A3(-1,1).一只电子蛙位于坐标原点处,第1次电子蛙由原点跳到以A1为对称中心的对称点P1,第2次电子蛙由P1点跳到以A2为对称中心的对称点P2,第3次电子蛙由P2点跳到以A3为对称中心的对称点P3,…,按此规律,电子蛙分别以A1、A2、A3为对称中心继续跳下去.问当电子蛙跳了2009次后,电子蛙落点的坐标是2009P (_______ ,_______). 23.如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到的正方形EFCG ,EF 交AD 于点H ,那么DH 的长为______.24.如图,将矩形ABCD 绕点A 顺时针旋转90゜后,得到矩 形AB ′C ′D ′,如果CD=2DA=2,那么CC ′=_________.25.如图,在直角坐标系中,已知点A(-3,0)、B(0,4),对△OAB 连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑩的直角顶点的坐标为 __________.ABCA B C D(21题)B 'D 'C 'DCB Ax74C三:解答题26.如图,四边形ABCD 的∠BAD=∠C=90º,AB=AD,AE ⊥BC 于E,BEA ∆旋转后能与DFA ∆重合。

(1)旋转中心是哪一点? (2)旋转了多少度?(3)若AE=5㎝,求四边形AECF 的面积。

27、如图,在R t O A B ∆中,90O A B ∠=︒,6O A A B ==,将O A B ∆绕点O 沿逆时针方向旋转90︒得到11O A B ∆.(1)线段1O A 的长是 ,1A O B ∠的度数是 ;(2)连结1A A ,求证:四边形11O A A B 是平行四边形;(3)求四边形11O A A B 的面积.28.已知⊿ABC 在平面直角坐标系中的位置如图5所示.(1)分别写出图中点A 和点C 的坐标;(2)画出⊿ABC 绕点C 按顺时针方向旋转90A B C '''°后的△;(3)求点A 旋转到点A`所经过的路线长(结果保留π).29、四边形ABCD 是正方形,△ADF 旋转一定角度后得到△ABE ,如图所示,如果AF=4,AB=7,求(1)指出旋转中心和旋转角度(2)求DE 的长度(3)BE 与DF 的位置关系如何?图530、下面是三个圆。

请按要求在各图中分别添加4个点。

使之满足各自要求.(1)既是中心对称图形。

(2)只是中心对称图形。

(3)只是轴对称图形。

又是轴对称图形. 不是轴对称图形. 不是中心对称图形.31.如图,在直角坐标系中,点P 的坐标为(3,4),将OP 绕原点O 逆时针旋转90°得到线段OP ′,(1)在图中画出线段OP ′;(2)求P ′的坐标和PP ′的长度.32.在等腰直角△ABC 中,∠C=900,BC=2cm ,如果以AC 的中点O 为旋转中心,将这个三角形旋转1800,点B 落在点B ′处,求BB ′的长度.33.认真观察图(23.1)的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1:_________________________________________________;特征2:_________________________________________________.(2)请在图(23.2)中设计出你心中最美丽的图案,使它也具备你所写出的上述特征B图(23.1)34.如图是44 正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.35.如图,把△ABC 向右平移5个方格,再绕点B 顺时针方向旋转90°。

(1)画出平移和旋转后的图形,并标明对应字母;(2)能否把两次变换合成一种变换,如果能,说出变换过程(可适当在图形中标记);如果不能,说明理由。

19.(1)如图(2)能,将△ABC 绕CB 、C //B //延长线的交点顺时针旋转90度。

36.已知平面直角坐标系上的三个点O (0,0),A (-1,1),B (-1,0),将△ABO 绕点O按顺时针方向旋转135°,点A 、B 的对应点为A l ,B l ,求点A l ,B l 的坐标。

37.把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H (如图(23.2)C BAC"B"A''C'B'A'CBA图).(1)试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想. (2)若正方形的边长为2cm ,重叠部分(四边形ABHG )的面积为2cm 3,求旋转的角度.38.一位同学拿了两块45°三角尺△MNK ,△ACB 做了一个探究活动:将△MNK 的直角顶点M 放在△ACB 的斜边AB 的中点处,设AC=BC=4.(1)如图(1),两三角尺的重叠部分为△ACM ,则重叠部分的面积为 ,周长为 .(2)将图(1)中的△MNK 绕顶点M 逆时针旋转45°,得到图26(2),此时重叠部分的面积为 ,周长为 .(3)如果将△MNK 绕M 旋转到不同于图(1)和图(2)的图形,如图(3),请你猜想此时重叠部分的面积为 .(4)在图(3)情况下,若AD=1,求出重叠部分图形的周长.39、如图,在Rt△ABC 中,∠ACB =90°, ∠B =60°,BC =2.点0是AC 的中点,过点0的直线l 从与AC 重合的位置开始,绕点0作逆时针旋转,交AB 边于点D .过点C 作CE ∥AB 交直线l 于点E ,设直线l 的旋转角为α.(1) ①当α=________度时,四边形EDBC 是等腰梯形,此时AD 的长为_________;②当α=________度时,四边形EDBC 是直角梯形,此时AD 的长为_________;(2)当α=90°时,判断四边形EDBC 是否为菱形,并说明理由.DCABGHF E(第24题)B图(1)BN图(2)BN图(3)第38题图40、已知:将一副三角板(Rt △ABC 和Rt △DEF )如图①摆放,点E 、A 、D 、B 在一条直线上,且D 是AB 的中点。

相关文档
最新文档