注塑件设计要点

注塑件设计要点
注塑件设计要点

注塑件结构设计要点

吕文果

塑料是四大工程材料(钢铁、木材、水泥和塑料)之一,它是以高分子量的合成树脂为主要成份,在一定条件下可塑制成一定形状且在常温下保持形状不变的材料。塑料总体分为热固性和热塑性两种,区分两种塑料的规则一般是在一定温度加热一段时间或加入硬化剂后有无发生化学反应而硬化,发生化学反应而硬化的叫热固性塑料,反之则叫热塑性塑料。它广泛应用于工业、农业、国防等行业。但是塑料与其它材料相比又具有自己的一些特有的性能,这些性能决定它的一些特有的使用场合、加工方法、生产工艺等。一般来说塑料的成型方法有以下几种:注射成型、挤压成型、压铸成型、发泡、吹塑、真空吸塑、中空成型、机加工等。

由于塑料的种类及性能、使用场合、成型工艺等条件的影响,对塑料件的结构设计也就自然会产生一些特殊的要求及方法。由于热固性塑料与热塑性塑料最终的形态不同,结构设计过程中的好多要求也就不一样,涉及的范围相当之大。下面我们就针对注射成型的热塑性塑料件的结构设计从胶模斜度、塑件的壁厚、加强筋、支承柱、孔、公差等方面作一些初略的讨论。

一、 壁厚

合理确定塑件的壁厚是非常重要的,其它的形体和尺寸如加强筋和圆角等都是以壁厚为参照的。塑料产品的壁厚主要决定于塑料的使用要求,即产品需要承受的外力、是否作为其他零件的支撑、承接柱

位的数量、伸出部份的多少以、选用的塑胶材料、重量、电气性能、尺寸稳定性以及装配等各项要求而定。如果壁厚不均匀,会使塑料熔体的充模速度和冷却收缩不均匀,由此会引起凹陷、真空泡、翘曲、甚至开裂。壁厚均匀是塑料件设计的一大原则。

一般的热塑性塑料壁厚设计在1~6mm范围。最常用的为2~3mm。大型件也有超过6mm的。表1是一些热塑性塑料壁厚的推荐值。在取较小壁厚时,要考虑制品在使用和装配时的强度和刚度。从经济角度来看,过厚的产品不但增加物料成本,还延长生产周期。尽量使塑件各处的壁厚均匀,否则会引起收缩不均匀使塑件产生变形和气泡、凹陷的工艺问题。厚胶的地方比旁边薄胶的地方冷却得慢,因而产生缩痕。更甚者导致产生缩水印、热内应力、挠曲部份歪曲、颜色不同或不同透明度。若厚胶的地方渐变成薄胶的是无可避免的话,应尽量设计成渐次的改变,并且在不超过壁厚3:1的比例下,如下图1:

图1

其实大部份厚胶的设计可使用加强筋来改变总壁厚。除了可节省物料来节省生产成本外,还可以节省冷却时间,冷却时间大概与壁成

正比。取缔后的设计更可保留和原来设计相近的刚性、强度及功用,关于加强筋我们会在后面的章节中专门讨论。

此外壁厚的设计还要考虑流程,即熔料从浇口起流向型腔各处的距离。一般工艺参数下流程与壁厚有一定的比例关系,壁厚越大流程越长,如果流程与壁厚的比值太大,离浇口远的地方就会出现缺料也就是常说的打不饱。因此必要的情况下还需增加壁厚。

表1 热塑性塑料制品的最小壁厚及常用壁厚的推荐值

塑料材料 最小壁厚 小型件推荐

壁厚 中型件推荐

壁厚

大型件推荐

壁厚

尼龙 0.45 0.76 1.5 2.4~3.2

聚乙烯 0.6 1.25 1.6 2.4~3.2

聚苯乙烯 0.75 1.25 1.6 3.2~5.4 PMMA 0.8 1.5 2.2 4~6.5 PVC 1.2 1.6 1.8 3.2~5.8 PP 0.85 1.54 1.75 2.4~3.2 PC 0.95 1.8 2.3 3~4.5 POM 0.8 1.4 1.6 3.2~5.4 ABS 0.8 1 2.3 3.2~6 尖锐的角位通常会导致部件有缺陷及应力集中,尖角的位置亦常在电镀过程后引起不希望的物料聚积。集中应力的地方会在受负载或撞击的时候破裂。较大的圆角提供了这种缺点的解决方

法,不但减低应力集中的因素,且令流动的塑料流得更畅顺和成品脱模时更容易。下图可供叁考之用。如果内角是圆角,外角是尖角,转角的地方仍比其它地方厚,仍会出现收缩的现象;我们可以使内外都成圆角,来使壁厚均匀,这种情况下外圆角是内圆角加上基本壁厚之和。

转角位的设计准则亦适用于悬梁式扣位。因这种扣紧方式是需要将悬梁臂弯曲嵌入,转角位置的设计图说明如果转角弧位R 太小时会引致其应力集中系数过大,因此,产品弯曲时容易折断,弧位R太大的话则容易出现收缩纹和空洞。因此,圆弧位和壁厚是有一定的比例。一般介乎0.2至0.6之间,理想数值是在0.5左右。

二、脱模方向及拔模斜度

每个注塑产品在开始设计时首先要确定其开模方向和分型线,以保证尽可能减少抽芯机构和消除分型线对外观的影响。如汽车保险杠的脱模方向一般是沿车的长度方向。开模方向确定后,产品的加强筋、卡扣、凸起等结构尽可能设计成与开模方向一致,以避免抽芯、减少

拼缝线,延长模具寿命。开模方向确定后,可选择适当的分型线,以改善外观及性能。

注塑件从成型模具中脱模运动时,要克服脱模力和开模力。开模是指塑件外形从型腔中脱出。模内塑件在冷却过程中产生收缩,孔壁部分对型芯产生包紧力。开模时塑件与型芯产生摩擦力、孔底密封件开模时产生真空吸附,诸多原因说明脱模力比开模力大得多。过大的脱模力会使塑件变形、发白、起皱和表面擦伤。脱模斜度是决定脱模力大小的一大因素。因注塑件冷却收缩后多附在凸模上,为了使产品壁厚均匀及防止产品在开模后附在较热的凹模上,出模角对应於凹模及凸模是应该相等的。不过,在特殊情况下若然要求产品于开模后附在凹模的话,可将相接凹模部份的出模角适当减少,或刻意在凹模加上适量的倒扣位。

拔模角的大小没有一个定数,通常是根据经验值确定。一般来说,高度抛光的外壁可使用1/8度或1/4度的出模角,深入或附有织纹的产品要求出模角作相应的增加,习惯上每0.025mm深的织纹,便需要额外1度的出模角。出模角度与单边间隙和边位深度之关系表,列出出模角度与单边间隙的关系,可作为叁考之用。

此外在考虑脱模斜度时,原则上越大越有利于脱模,但必须注意保证塑件的尺寸精度,脱模斜造成的尺寸误差必须控制在尺寸精度范围内。对于收缩较大,形状复杂的塑件应考虑较大的脱模角。

三、 加强筋

塑料件的强度并不完全依其壁厚增加而增大。相反,因为壁厚的增加引起收缩而产生内应力,反而降低其强度。塑料件的强度以刚度为主,多采用薄壁风格组合结构,在相应部位设置加强筋,以提升截面惯性矩。

但是加了加强筋后,加强筋与主壁的连接处就一定会变厚,这个厚度通常取决于内切的最大圆,也就是取决于筋厚和根部的圆角半径。如图3中,基料厚均为4mm,左图筋要部厚度为4mm,筋根圆角为R2.4,其最大内切圆直径为φ6.2;右图仅将筋厚变为2mm,筋根圆角半径改成R1.6,则最大内切圆直径变为φ4.9。如图4由于局部壁厚增加,在其背面就容易产生收缩变形,影响塑件的外观,对于表面要求非常高的零件,如汽车外饰件,此类影响外观的缺陷是非常不

允许的。正确的设计可以减少组件形成表面凹痕的可能,以提高零件的质量。

从图3的分析中可以看出筋要的厚度应尽量减小,但这也是有限制的。如筋的厚度太小就必须增加筋的高度以增加刚度。筋太薄受压时筋容易变形、成型时料不易填满、粘模等问题。当然筋底圆角半径也不能太小,否则就起不到减小应力集中的作用。

一般来说,筋根圆角半径应不小于筋厚的40%,筋厚应是基料壁厚的50%~75%之间,高的比值仅限小收缩率的材料。筋的高度应该小于基料厚的五倍。筋上必须有脱模角且必须置于顺脱模的方向上或者采用活动模具组件。筋与筋之间的间距必须大于基料厚的两倍。

图3

图4

此外我们通常都希望一个零件在各个方向上都具有同样的刚性,获得这样结果的最简单的方法就是在零件的横向和纵向都加上筋,并使它们垂直相交。但同时也会出现问题,就是在相交的地方会增加壁厚,增大收缩的机会。一般这种情况可以在相交处加一圆孔以便形成均匀的壁厚。如下图:

图5

四、 孔

在塑胶件上开孔使其和其它部件相接合或增加产品功能上的组合是常用的方法,洞孔的大小及位置应尽量不会对产品的强度构成影响或增加生产的复杂性,以下是在设计洞孔时须要考虑的几个因素。相连洞孔的距离或洞孔与相邻产品直边之间的距离不可少于洞孔的直径,如下图6。图中尺寸关系原则上要求B≥A,C≥A。特别靠边的C值应尽可能大一些,否则穿孔位置容易产生断裂的情况。要是孔内附有螺纹,则螺孔与产品边沿的距离一般来说大于孔径的三倍。

图6

孔的类型一般有通孔,盲孔和分级孔等。从装配的角度来看,通孔的应用远较盲孔为多,而且较盲孔容易生产。从模具设计的角度来看,通孔的设计在结构上也会方便一些,可以通过固定在动模和定模上的两个型芯结合来形成,也可以只固定在动模或定模上的一根型芯而成型。前者在流体塑料的作用下形成两个悬臂梁,但力臂较短,变形不大。后者与动模和定模都有搭接,一般来说形成简支梁,变形也不大。应用两型芯成型时,两型芯的直径应稍有不同以避免因为两条边钉轴心稍有偏差而引致产品出现倒扣的情况,而且相接的两个端面必须磨平。而盲孔的型芯则完全是悬臂梁,受到流体塑料的冲击后容易弯曲,成形的孔会变成异形孔,一般来说,盲孔的深度只限於直径的两倍。要是盲孔的直径只有或小于1.5mm,盲孔的深度更不应大於直径的尺寸。且盲孔的底部壁厚应不小于孔径的六分之一,否则会出现收缩。

侧孔往往是通过侧抽芯的方法成型,这会增加模具的成本,且如果侧芯太长的话容易断,增加模具维护费用。如果情况允许的话可采用如下图7的方法加以改善。

图7

五、 支柱

支柱突出胶料壁厚是用以装配产品、隔开物件及支撑其他零件之用。空心的支柱可以用来嵌入件、收紧螺丝等。这些应用均要有足够强度支持压力而不致于破裂。支柱一般做成圆柱形,因为圆柱易于模具成型,此外具有较好的力学性能。

一般来说支柱尽量不要设计成独立的圆柱外伸,应尽量连接至外壁或与加强筋一同使用,目的是加强支柱的强度及使胶料流动更顺畅,与外壁的连接需做成薄壁连接避免缩水,支柱的底部与基料的连接处需做出0.4到0.6倍基料厚的圆角半径。支柱的壁厚应在0.5到0.75的基料厚之间,支柱的顶部内孔为方便安装螺钉导向应有倒角。支柱上需有拔模斜度。这几点都与加强筋的设计要求相类似,因此也可以说支柱是筋的变种。以上相应关系请参见如下图8与图9.

图8

图9

许多支柱凸台的作用是用来连接自攻螺钉,装配后支柱上的内螺纹是通过冷流加工形成的,冷流加工不产生料的切削,只是将塑料挤压变形来产生衔接的内螺纹。

螺纹支柱的尺寸要既能承受螺钉的旋入力又能承受附载,支柱上的孔径大小要能保证螺钉在特定扭矩及特定振动下不脱出,支柱的外径要能保证螺钉扭紧过程中承受所产生的周向力而不断裂、不破裂。此外为了保证在自攻螺钉旋入导向的方便,一般在支柱的顶部开一凹坑,凹坑的直径应略大于螺纹的公称直径。支柱的尺寸计算是非常繁杂的,在这推荐一种国外网站上的简单估算方法,这个方法的关键是螺钉的公称直径。首先必须写出所用的材料,然后再从右边查出相应的系数,用螺钉的公称直径乘以相应的系数就能得出相应的尺寸。如图10、图11.

图10

图11

六、 卡扣

卡扣装配是一种装配方便,节约成本,绿色环保的连接方式,因

为卡扣的组合部份在生产成品的时候同时成型,装配时无须配合其他

如螺丝等锁紧配件,只要需组合的两边扣位互相配合扣上即可。

卡扣的原理是推动一零件上的凸出部分通过另一零件上的障碍物,在推动过程中发生弹性形变,当通过障碍物后恢复原状两者合在一起,如图11.卡扣连接有永久性和可拆性两种。从结构形式上又可分为搭接扣,环形扣和球形扣三种,具体如图12.

图11

图12

对接卡钩上一般有两个关键的角度:脱开角与咬合角,一般脱开角较大,以便达到较难脱开的目的,如果当脱开角接近90度时,就成为永久性卡扣。具体关系如下图13.

图13

等截面卡扣的最大允许挠曲量可用如下公式计算:

Y=el2/(1.5t)

此公式是在只有卡钩变形的情况下使用的,在实际情况下卡扣所在的部位附近也会有少量变形,这可以当作安全系数。

推动卡扣产生Y变形所需的力用下式计算:

P=wt2Ee/(6l)

所需的装配力用下式估算:

W=P(μ+tga)/(1-tga)

对于可拆式卡扣的脱开力也可用以上公式计算,只需将a用b代替即可。

下表为计算过程中所需要的一些系数:

图14

圆环卡扣是利用圆环内凸台与轴的槽相扣来达到对接的目的,圆环卡扣根据释放角的大小也可分为可拆接和不可拆接之分。当接合件插入和拔出时,卡套膨胀变形,一般来说用作卡套的材料就是弹性比较好的材料。圆环扣的凸台最大尺寸可用下式计算:

y=Sd((K+v套)/E套+(1-v轴)/E轴)/K

式中S为设计应力,v为泊松比,E为弹性模量,K为几何系数,K 可用下式计算:K=(1+(d/D)2)/(1-(d/D)2)

作用在卡套上的膨胀力可用下式计算:

P=(tan a+μ)/Sydlπ/K

式中μ为摩擦系数。

下面表1中给出了一些未加填充料的材料的泊松比,摩擦系数见图13。

表1

材料泊松比(μ)

PS 0.38 PMMA 0.4 LDPE 0.49 HDPE 0.47 PP 0.43 PA 0.45 PC 0.42 PVC 0.42 PPO 0.41 PPS 0.42 Steel 0.28

图14

七、 过盈连接

孔与轴采用过盈配合连接直到传递转矩等作用,过盈连接是一种比较方便与简洁的。在设计的过程中最主要的考虑是过盈量,如果过盈量太小则连接不可靠,如果过盈过大则很难装配,而且也容易破裂。

在设计时还需考虑孔与轴的公差以及工作温度等,因为温度的高低会直接影响过盈量的大小。大多数情况下轴一般都为金属轴,为了保证连接的可靠性,在设计时一般在配合轴上加上滚花凹槽。一般的过盈量可用下式计算:

Y=Sd( (K+v套)/E套)/K

式中S为设计应力,v为泊松比,E为弹性模量,K为几何系数,K 可用下式计算:K=(1+(d/D)2)/(1-(d/D)2)

装配力可用下式计算:

W=Sdlπμ/K

μ为摩擦系数,l为配合长度。摩擦系数及泊松比见表1及图14。

此外塑料件间的连接方法还有热铆,熔焊,超声波焊接等,此处

就不再一一论述,如有需要查阅相关资料。

八、 公差影响

大部份的塑胶产品可以达到高精密配合的尺寸公差,而一些收缩率高及一些软性材料则比较难于控制。因此在产品设计过程时是要考虑到产品的使用环境,塑胶材料,产品形状等来设定公差的严紧度。因为顾客的要求愈来愈高,以往的可以配合起来的观念慢慢的要修正过来。配合、精密和美观是要同时的能在产品上发挥出来。

公差的精密度高,产品质素相对提高,但随之而来的是增加了成本和因达到要求而花更多的时间。注射成型一般分为3种质量等级,即一般用途的注射成型、中等精度成型和精密注射成型。

一般用途的注射成型要求低水平的质量控制,其特点是低的退货率和快的生产周期。中等精度注射成型会比较昂贵,因为它对模具和生产过程有更高的要求,要求频繁的质量检查。第三种,精密注射成型,要求精确的模具、最佳的生产条件和100%连续的生产监控。这将影响生产周期,增加单位生产成本和质量控制成本。从产品质量的角度来说,精度当然是越高越好,但从经济的生产成本来说却是越低越便宜。作为设计者此时就必须在这两者之间进行抉择。一般来说在满足性能、外观要求、配合要求的前提下适当放宽非关键尺寸的公差。

九、 材料的选择

一般来说,并没有不好的材料,只有在特定的领域使用了错误的材料。因此,设计者必须要彻底了解各种可供选择的材料的性能,并仔细测试这些材料,研究其与各种因素对成型加工制品性能的影响。

在注射成型中最常用的是热塑性塑料。它又可分为无定型塑料和半结晶性塑料。这两类材料在分子结构和受结晶化影响的性能上有明显不同。一般来说,半结晶性热塑性塑料主要用于机械强度高的部件,而无定型热塑性塑料由于不易弯曲,则常被应用于外壳。

热塑性塑料备有未增强、玻璃纤维增强、矿物及玻璃体填充等种类产品。玻璃纤维主要用于增加强度、坚固度和提高应用温度;矿物和玻纤则具较低的增强效果,主要用于减少翘曲。增加增强剂后塑料性能的具体改变量需询问材料供应商或者实验验证。

一些热塑性材料,特别是PA6和PA66,吸湿性很强。这可能会对它们 的机械性能和尺寸稳定性产生较大的影响。

一些要求与加工注意事项和装配有关。研究将几种不同功能集中于一个部件也很重要,这可以节约昂贵的装配费用。这个准则对计算生产成本非常有益。在价格计算中可以看出,不但应考虑原材料的价格,还应注意,有高性能(刚性,韧性)的材料可以使壁厚更薄,从而缩短生产周期。因此,列出所有的标准,并对它们进行系统性评估是很重要的。

塑料模具设计实例

塑料模设计实例 塑料注射模具设计与制造实例是通过设计图1.1所示的防护罩的注射模,全面介绍了从塑料成形工艺分析到确定模具的主要结构,最后绘制出模具的塑料注射模具设计全过程。 设计任务: 产品名称:防护罩 产品材料:ABS(抗冲) 产品数量:较大批量生产 塑料尺寸:如图1.1所示 塑料质量:15克 塑料颜色:红色 塑料要求:塑料外侧表面光滑,下端外沿不允许有浇口痕迹。塑料允许最大脱模斜度0.5° 图1.1 塑件图 一.注射模塑工艺设计 1.材料性能分析 (1)塑料材料特性 ABS塑料(丙乙烯—丁二烯—苯乙烯共聚物)是在聚苯乙烯分子中导入了 丙烯腈、丁二烯等异种单体后成为的改性共聚物,也可称为改性聚苯乙烯,具有 比聚苯乙烯更好的使用和工艺性能。ABS是一种常用的具有良好的综合力学性 能的工程材料。ABS塑料为无定型料,一般不透明。ABS无毒、无味,成型塑 料的表面有较好的光泽。ABS具有良好的机械强度,特别是抗冲击强度高。ABS 还具有一定的耐磨性、耐寒性、耐水性、耐油性、化学稳定性和电性能。ABS 的缺点是耐热性不高,并且耐气候性较差,在紫外线作用下易变硬发脆。 (2)塑料材料成形性能

使用ABS 注射成形塑料制品时,由于其熔体黏度较高,所需的注射成形压力较高,因此塑料对型芯的包紧力较大,故塑料应采用较大的脱模斜度。另外熔体黏度较高,使ABS 制品易产生熔接痕,所以模具设计时应注意减少浇注系统对料流的阻力。ABS 易吸水,成形加工前应进行干燥处理。在正常的成形条件下,ABS 制品的尺寸稳定性较好。 (3)塑料的成形工艺参数确定 查有关手册得到ABS (抗冲)塑料的成形工艺参数: 密 度 1.01~1.04克/mm3 收 缩 率 0.3%~0.8% 预热温度 80°c~85°c ,预热时间2~3h 料筒温度 后段150°c~170°c ,中段165°C~180°c ,前段180°c~200°c 喷嘴温度 170°c~180°c 模具温度 50°c~80°c 注射压力 60~100MPa 注射时间 注射时间20~90s ,保压时间0~5s ,冷却时间20~150s. 2.塑件的结构工艺性分析 (1)塑件的尺寸精度分析 该塑件上未注精度要求的均按照SJ1372中8级精度公差值选取,则其主要尺寸公差标注如下(单位均为mm ): 外形尺寸:26.0040+φ、 1.2050+、12.0045+、94.0025+R 内形尺寸:26.008.36+φ 孔 尺 寸:52.0010+φ 孔心距尺寸:34.015± (2)塑件表面质量分析 该塑件要求外形美观,外表面表面光滑,没有斑点及熔接痕,粗糙度可取Ra0.4μm ,下端外沿不允许有浇口痕迹,允许最大脱模斜度0.5°,而塑件内部没有较高的表面粗糙度要求。 (4)塑件的结构工艺性分析

注塑件设计之要点简述

注塑件设计之要点简述 利用注塑工艺生产产品时,由于塑料在模腔中的不均匀冷却和不均匀收缩以及产品结构设计的不合理,容易引起产品的各种缺陷:如缩印、熔接痕、气孔、变形、拉毛、顶伤、飞边等。 为得到高质量的注塑产品,我们必须在设计产品时充分考虑其结构工艺性,下面结合注塑产品的主要结构特点分析避免注塑缺陷的方法。 1.开模方向和分型线 每个注塑产品在开始设计时首先要确定其开模方向和分型线,以保证尽可能减少抽芯机构和消除分型线对外观的影响。 1.1.开模方向确定后,产品的加强筋、卡扣、凸起等结构尽可能设计成与开模方向一致,以避免抽芯减少拼 缝线,延长模具寿命。 1.1.1.例如:保险杠的开模方向一般为车身坐标χ方向,如果开模方向设计成与χ轴不一致,则必须 在产品图中注明其夹角。 1.1. 2.开模方向确定后,可选择适当的分型线,以改善外观及性能。 1.2.脱模斜度 1.2.1.适当的脱模斜度可避免产品拉毛。光滑表面的脱模斜度应大于0.5度,细皮纹表面大于1度, 粗皮纹表面大于1.5度。 1.2.2.适当的脱模斜度可避免产品顶伤。 1.2.3.深腔结构产品设计时外表面斜度要求小于内表面斜度,以保证注塑时模具型芯不偏位,得到均 匀的产品壁厚,并保证产品开口部位的材料密度强度。 1.3.产品壁厚 1.3.1.各种塑料均有一定的壁厚范围,一般0.5~4mm,当壁厚超过4mm时,将引起冷却时间过长, 产生缩印等问题,应考虑改变产品结构。 1.3. 2.壁厚不均会引起表面缩印。 1.3.3.壁厚不均会引起气孔和熔接痕。 1.4.加强筋 1.4.1.加强筋的合理应用,可增加产品刚性,减少变形。 1.4. 2.加强筋的厚度必须小于产品壁厚的1/3,否则引起表面缩印。 1.4.3.加强筋的单面斜度应大于1.5°,以避免顶伤。 1.5.圆角 1.5.1.圆角太小可能引起产品应力集中,导致产品开裂。 1.5. 2.圆角太小可能引起模具型腔应力集中,导致型腔开裂。 1.5.3.设置合理的圆角,还可以改善模具的加工工艺,如型腔可直接用R刀铣加工,而避免低效率的 电加工。 1.5.4.不同的圆角可能会引起分型线的移动,应结合实际情况选择不同的圆角或清角。 1.6.孔 1.6.1.孔的形状应尽量简单,一般取圆形。 1.6. 2.孔的轴向和开模方向一致,可以避免抽芯。 1.6.3.当孔的长径比大于2时,应设置脱模斜度。此时孔的直径应按小径尺寸(最大实体尺寸)计算。 1.6.4.盲孔的长径比一般不超过4。 1.6.5.孔与产品边缘的距离一般大于孔径尺寸。 1.7.注塑模的抽芯机构及避免 1.7.1.当塑胶件按开模方向不能顺利脱模时,应设计抽芯机构。抽芯机构能成型复杂产品结构,但易 引起产品拼缝线,缩印等缺陷,并增加模具成本缩短模具寿命。 1.7. 2.设计注塑产品时,如无特殊要求,尽量避免抽芯结构。如孔轴向和筋的方向改为开模方向,利 用型腔型芯碰穿等方法。 1.8.一体铰链

塑料件结构设计要点说明

产品开发的结构设计原则: a、结构设计要合理:装配间隙合理,所有插入式的结构均应预留间隙;保证有足够的强度和刚度(安规测试),并适当设计合理的安全系数。 b、塑件的结构设计应综合考虑模具的可制造性,尽量简化模具的制造。 c、塑件的结构要考虑其可塑性,即零件注塑生产效率要高,尽量降低注塑的报废率。 d、考虑便于装配生产(尤其和装配不能冲突)。 e、塑件的结构尽可能采用标准、成熟的结构,所谓模块化设计。 f、能通用/公用的,尽量使用已有的零件,不新开模具。 g、兼顾成本 大略的汇总下结构中常见的问题注意点,期抛砖引玉,共同提高。 1、关于塑料零件的脱模斜度: 一般来说,对模塑产品的任何一个侧面,都需有一定量的脱模斜度,以便产品从模具中顺利脱出。脱模斜度的大小一般以0.5度至1度间居多。具体选择脱模斜度注意以下几点: a、塑件表面是光面的,尺寸精度要求高的,收缩率小的,应选用较小的脱模斜度,如0.5°。 b、较高、较大的尺寸,根据实际计算取较小的脱模斜度,比如双筒洗衣机大桶的筋板,计算后取0.15°~0.2°。 c、塑件的收缩率大的,应选用较大的斜度值。 d、塑件壁厚较厚时,会使成型收缩增大,脱模斜度应采用较大的数值。 e、透明件脱模斜度应加大,以免引起划伤。一般情况下,PS料脱模斜度应不少于2.5°~3°,ABS及PC料脱模斜度应不小于1.5°~2°。 f、带皮纹、喷砂等外观处理的塑件侧壁应根据具体情况取2°~5°的脱模斜度,视具体的皮纹深度而定。皮纹深度越深,脱模斜度应越大。 g、结构设计成对插时,插穿面斜度一般为1°~3°(见后面的图示意)。 2、关于塑件的壁厚确定以及壁厚处理: 合理的确定塑件的壁厚是很重要的。塑件的壁厚首先决定于塑件的使用要求:包括零件的强度、质量成本、电气性能、尺寸稳定性以及装配等各项要求,一般壁厚都有经验值,参考类似即可确定(如熨斗一般壁厚2mm,吸尘器大体为2.5mm),其中注意点如下:

注塑零件设计要求

注塑件设计要点 1、开模方向和分型线 2、脱模斜度 3、零件壁厚 4、加强筋 5、圆角和孔 6、抽芯机构及避免 7、塑件的变形 8、一体铰链 9、嵌件 10、气辅注塑 11、综合考虑工艺性和零件性能

注塑件设计要点 1、利用注塑工艺生产产品时,由于塑料在模腔中的不均匀冷却和不均匀收缩以及产品结构设计的不合理,容易引起产品的各种缺陷: 缩印、熔接痕、气孔、变形、拉毛、顶伤、飞边。 2、为得到高质量的注塑产品,我们必须在设计产品时充分考虑其结构工艺性,下面结合注塑产品的主要结构特点分析避免注塑缺陷的方法。 2.1开模方向和分型线 每个注塑产品在开始设计时首先要确定其开模方向和分型线,以保证尽可能减少抽芯机构和消除分型线对外观的影响。 2.1.1开模方向确定后,产品的加强筋、卡扣、凸起等结构尽可能设计成与开模方向一 致,以避免抽芯减少拼缝线,延长模具寿命。 2.1.2例如:保险杠的开模方向一般为车身坐标χ方向,如果开模方向设计成与χ轴 不一致,则必须在产品图中注明其夹角。 2.1.3开模方向确定后,可选择适当的分型线,以改善外观及性能。 2.2脱模斜度 2.2.1适当的脱模斜度可避免产品拉毛。光滑表面的脱模斜度应大于0.5度,细皮纹表 面大于1度,粗皮纹表面大于1.5度。 2.2.2适当的脱模斜度可避免产品顶伤。 2.2.3深腔结构产品设计时外表面斜度要求小于内表面斜度,以保证注塑时模具型芯 不偏位,得到均匀的产品壁厚,并保证产品开口部位的材料密度强度。 2.3产品壁厚 2.3.1各种塑料均有一定的壁厚范围,一般0.5~4mm,当壁厚超过4mm时,将引起冷 却时间过长,产生缩印等问题,应考虑改变产品结构。 2.3.2壁厚不均会引起表面缩印。 2.3.3壁厚不均会引起气孔和熔接痕。 2.4加强筋 2.4.1加强筋的合理应用,可增加产品刚性,减少变形。 2.4.2加强筋的厚度必须小于产品壁厚的1/3,否则引起表面缩印。 2.4.3加强筋的单面斜度应大于1.5°,以避免顶伤。 2.5圆角

注塑件结构设计要点

注塑件结构设计要点 吕文果 塑料是四大工程材料(钢铁、木材、水泥和塑料)之一,它是以高分子量的合成树脂为主要成份,在一定条件下可塑制成一定形状且在常温下保持形状不变的材料。塑料总体分为热固性和热塑性两种,区分两种塑料的规则一般是在一定温度加热一段时间或加入硬化剂后有无发生化学反应而硬化,发生化学反应而硬化的叫热固性塑料,反之则叫热塑性塑料。它广泛应用于工业、农业、国防等行业。但是塑料与其它材料相比又具有自己的一些特有的性能,这些性能决定它的一些特有的使用场合、加工方法、生产工艺等。一般来说塑料的成型方法有以下几种:注射成型、挤压成型、压铸成型、发泡、吹塑、真空吸塑、中空成型、机加工等。 由于塑料的种类及性能、使用场合、成型工艺等条件的影响,对塑料件的结构设计也就自然会产生一些特殊的要求及方法。由于热固性塑料与热塑性塑料最终的形态不同,结构设计过程中的好多要求也就不一样,涉及的范围相当之大。下面我们就针对注射成型的热塑性塑料件的结构设计从胶模斜度、塑件的壁厚、加强筋、支承柱、孔、公差等方面作一些初略的讨论。 一、 壁厚 合理确定塑件的壁厚是非常重要的,其它的形体和尺寸如加强筋和圆角等都是以壁厚为参照的。塑料产品的壁厚主要决定于塑料的使用要求,即产品需要承受的外力、是否作为其他零件的支撑、承接柱

位的数量、伸出部份的多少以、选用的塑胶材料、重量、电气性能、尺寸稳定性以及装配等各项要求而定。如果壁厚不均匀,会使塑料熔体的充模速度和冷却收缩不均匀,由此会引起凹陷、真空泡、翘曲、甚至开裂。壁厚均匀是塑料件设计的一大原则。 一般的热塑性塑料壁厚设计在1~6mm范围。最常用的为2~3mm。大型件也有超过6mm的。表1是一些热塑性塑料壁厚的推荐值。在取较小壁厚时,要考虑制品在使用和装配时的强度和刚度。从经济角度来看,过厚的产品不但增加物料成本,还延长生产周期。尽量使塑件各处的壁厚均匀,否则会引起收缩不均匀使塑件产生变形和气泡、凹陷的工艺问题。厚胶的地方比旁边薄胶的地方冷却得慢,因而产生缩痕。更甚者导致产生缩水印、热内应力、挠曲部份歪曲、颜色不同或不同透明度。若厚胶的地方渐变成薄胶的是无可避免的话,应尽量设计成渐次的改变,并且在不超过壁厚3:1的比例下,如下图1: 图1 其实大部份厚胶的设计可使用加强筋来改变总壁厚。除了可节省物料来节省生产成本外,还可以节省冷却时间,冷却时间大概与壁成

注塑产品结构设计规范

注塑产品结构设计规范 1.目的 旨在规范注塑产品结构设计,使公司注塑产品设计有明确的、统一的要求,从而保证产品质量。 2.适用范围 适用于本公司所有注塑产品结构设计。 3.规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款,其最新版本适用于本规范。 产品3D建模设计规范 产品标记作业指导书 4.定义无 5.内容 5.1厚度设计 5.1.1 壁厚 Wall Thickness 5.1.1.1 最小壁厚 就传统注射成形而言,实用的最小壁厚在0.55到1.00mm之间。如果要采用更薄的壁厚,却又缺乏实际的经验,可以借助CAE作科学的决定。 5.1.1.2 壁厚变化 产品设计中壁厚不均带来的麻烦比任何其它问题设计带来者都要严重。这些麻烦包括了雾斑、喷流痕、气痕、焦痕、缩痕和缩孔、短射、熔接痕、迟滞痕、应力痕、翘曲变形以及周期时间长等。这些麻烦都可用CAE以直接或间接的方式预测。 设计高收缩率的结晶性注塑成型品时,设计者应将壁厚变化限制在10%以內。就低收缩率的非结晶性塑料而言,容许壁厚变化可到25%。厚度需在公称厚度的50%或67%或75%之间作一抉择。 下面是某一产品的壁厚变化引起的其它注塑参数变化的比较: 当壁厚改变时,阶梯式的断然变化应当避免,从厚到薄应以斜坡式的缓冲带过渡,该过渡区的长度以厚壁厚度的3倍为宜。看下图

5.1.1.3 掏空厚壁 Coring Out Thick Section 掏空厚壁以消除缩痕 差[Poor] 改善[Improved]

5.2 转角设计 5.2.1转角半径Corner Radius 尖锐的转角应力集中。塑料中,如尼龙和聚碳酸酯者,是对V字型刻痕敏感的,较之不敏感的塑料,如ABS和聚乙烯者,成型时会在内圆角上产生高的应力。 当一90°转角的内圆角半径小于公称厚度的25%时,角落就会有高的应力集中。内圆角的半径增加到公称厚度的75%时,二壁相交处就能进而强化。可接受的平均内圆角半径是公称厚度的50%。 内圆角半径图表Fillet Radius 5.2.2 转角设计实例 上图及中图中根部尖角,易开裂根部园角,开裂问题解决

注塑结构设计注意要点

注塑设计注意要点 1、利用注塑工艺生产产品时,由于塑料在模腔中的不均匀冷却和不均匀收缩以及产品结构设计的不 合理,容易引起产品的各种缺陷:缩印、熔接痕、气孔、变形、拉毛、顶伤、飞边。 2、为得到高质量的注塑产品,我们必须在设计产品时充分考虑其结构工艺性,下面结合注塑产品 的主要结构特点分析避免注塑缺陷的方法。 (1)开模方向和分型线每个注塑产品在开始设计时首先要确定其开模方向和分型线,以保证尽可能减少抽芯机构和消除分型线对外观的影响。 1)、开模方向确定后,产品的加强筋、卡扣、凸起等结构尽可能设计成与开模方向一致,以避免抽芯减少拼缝线,延长模具寿命。 2)、例如:保险杠的开模方向一般为车身坐标X方向,如果开模方向设计成与X轴不一致,则必须在产品图中注明其夹角。 3)、开模方向确定后,可选择适当的分型线,以改善外观及性能。 2)脱模斜度 1)、适当的脱模斜度可避免产品拉毛。光滑表面的脱模斜度应大于度,细皮纹表面大于 1 度,粗皮纹表面大于度。 2)、适当的脱模斜度可避免产品顶伤。 3)、深腔结构产品设计时外表面斜度要求小于内表面斜度,以保证注塑时模具型芯不偏位,得到均匀的产品壁厚,并保证产品开口部位的材料密度强度。 (3)产品壁厚 1)、各种塑料均有一定的壁厚范围,一般?4mm,当壁厚超过4mm时,将引起冷却时间过长,产生缩印等问题,应考虑改变产品结构。 2)、壁厚不均会引起表面缩印。 3)、壁厚不均会引起气孔和熔接痕。 (4)加强筋 1 )、加强筋的合理应用,可增加产品刚性,减少变形。 2)、加强筋的厚度必须小于产品壁厚的 1 /3 ,否则引起表面缩印。 3)、加强筋的单面斜度应大于°,以避免顶伤。 (5)圆角

InventorMold塑料模具设计实战word文档

Inventor Mold塑料模具设计实战 默认分类 2010-05-28 00:36:30 阅读16 评论0 字号:大中小订阅 本文旨在与读者分享Inventor Mold的设计思路。其特点是在一款三维设计软件中完成所有的设计,并且集成模流分享软件Mold Flow 功能,满足塑料模具设计的整体解决方案。 随着塑料模具行业的快速发展、塑料模具制造精度的提高以及模具行业的激烈竞争,使得消费者对塑料模具设计的要求越来越高,必须同时考虑设计精度和设计周期的影响。目前,大部分塑料模具设计都是在三维软件中进行分模设计,在二维中进行排位的设计。这种方式,由于三维软件和二维软件分别独立,缺乏关联,存在着一些弊病,很容易出现设计的错误。另外三维与二维的“拼凑式”设计, 也严重影响了塑料模具设计的精度。 下面以一个实例,来介绍Inventor Mold的设计流程。塑料产品如图1所示。该产品的特点是需要修补孔,要做抽芯机构。 1.新建模具设计 打开Inventor Mold后,新建一塑料模具设计,进入到Inventor Mold塑料模具设计的环境下,在未导入塑料产品之前,其中很多 的指令都处于不可用状态,如图2所示。

2.导入塑胶产品 执行“塑料零件”指令,选择塑件产品,将塑件产品导入到塑料模具设计环境中,如图3所示。此时可看到菜单都已经被激活,如 图4所示。

3.调整出模方向 此步骤是用来调整塑件产品的出模方向,当塑件导入模具设计环境后,会有一个默认的方向,但是默认的方向有可能不是正确的模具出模方向,所以必须进行调整。如图5所示,这里调整出模方向非常重要,因为Inventor Mold自动补孔(自动修补破孔)方式会根据 出模的方向来定。 4.选择材料 材料库是Inventor Mold的一大特色,Inventor Mold基本上含有模具行业常用的材料,共有七千多种塑料材料,且每种材料都有其属性,包括厂商以及牌号,当然还包括收缩率。之所以Inventor Mold含有如此丰富的材料库,那是因为Inventor Mold中含有Mold Flow 的功能,在进行模流分析时,必须先定义具体的材料,才可以进行工艺的设定和模流的分析。 需要特别注意的是,如果没有选定材料,后面的模流分析将不能进行,收缩率也将没有参考值,如图6所示。

注塑件模具设计应注意的几大要点

注塑件模具设计应注意的几大要点 模具工业是制造业中的一项基础产业,是技术成果转化的基础,同时本身又是高新技术产业的重要领域,在欧美等工业发达国家被称为“点铁成金”的“磁力工业”。美国工业界认为“模具工业是美国工业的基石”;德国则认为它是所有工业中的“关键工业”;日本模具协会也认为“模具是促进社会繁荣富裕的动力”,同时也是“整个工业发展的秘密”,是“进入富裕社会的原动力”。 一、开模方向和分型线 每个注塑产品在开始设计时首先要确定其开模方向和分型线,以保证尽可能减少抽芯滑块机构和消除分型线对外观的影响。 1、开模方向确定后,产品的加强筋、卡扣、凸起等结构尽可能设计成与开模方向一致,以避免抽芯减少拼缝线,延长模具寿命。 2、开模方向确定后,可选择适当的分型线,避免开模方向存在倒扣,以改善外观及性能。 二、脱模斜度 1、适当的脱模斜度可避免产品拉毛(拉花)。光滑表面的脱模斜度应≥0.5度,细皮纹(砂面)表面大于1度,粗皮纹表面大于1.5度。 2、适当的脱模斜度可避免产品顶伤,如顶白、顶变形、顶破。 3、深腔结构产品设计时外表面斜度尽量要求大于内表面斜度,以保证注塑时模具型芯不偏位,得到均匀的产品壁厚,并保证产品开口部位的材料强度。

三、产品壁厚 1、各种塑料均有一定的壁厚范围,一般0.5~4mm,当壁厚超过4mm时,将引起冷却时间过长,产生缩印等问题,应考虑改变产品结构。 2、壁厚不均会引起表面缩水。 3、壁厚不均会引起气孔和熔接痕。 四、加强筋 1、加强筋的合理应用,可增加产品刚性,减少变形。 2、加强筋的厚度必须≤(0.5~0.7)T产品壁厚,否则引起表面缩水。 3、加强筋的单面斜度应大于1.5°,以避免顶伤。 五、圆角 1、圆角太小可能引起产品应力集中,导致产品开裂。 2、圆角太小可能引起模具型腔应力集中,导致型腔开裂。 3、设置合理的圆角,还可以改善模具的加工工艺,如型腔可直接用R刀铣加工,而避免低效率的电加工。 4、不同的圆角可能会引起分型线的移动,应结合实际情况选择不同的圆角或清角。 六、孔 1、孔的形状应尽量简单,一般取圆形。

关于电饭煲注塑件的结构设计的分析

关于电饭煲注塑件的结构设计的分析 摘要:塑料与钢铁、水泥、木材并称为四大工程材料。随着科学技术的进步, 塑料的运用变得越来越广泛。与金属相比,塑料具有耐腐蚀、电绝缘、重量轻和 成本低等优点;且塑料材质丰富、形状多变,使其具有很理想设计特性,既避免 金属件必要的价格不低的二次加工和表面处理,又减少了成型对设计的限制,扩 大了设计自由(注塑件可以将几个零件功能集合到某一个零件中)。电饭煲产品中,为了成型方便、降低成本,除了发热盘、内锅、外锅、加强板等需要耐高温 或刚性强的零件使用金属材料,大部分的机体零件使用各种塑料材料进行设计。 由于塑料的机械性能随温度等因素影响很大,如高温使塑料的刚度和强度会降低,低温使塑料变脆;不同温度下,塑料的收缩量也不同;同时因为模具结构也有限制,不合理的设计会致一些试模及装配阶段才会发现的隐形问题,加大研发成本 及耽误项目进度。基于此,本文从选材、常规设计、模具的工艺性、变形等不同 方面介绍电饭煲的注塑件的结构设计。 关键词:结构设计;电饭煲;注塑件 1、电饭煲的概述 电饭煲又称作电锅、电饭锅。是利用电能转变为内能的炊具,使用方便,清洁卫生,还 具有对食品进行蒸、煮、炖、煨等多种操作功能。常见的电饭锅分为保温自动式、定时保温 式以及新型的微电脑控制式三类。如下图所示。 2、电饭煲注塑件的结构设计的要点 2.1材料选择 作为一个产品设计师,尤其设计结构部分,选择合理的材料是一项非常关键的工作,是 成功设计一款产品、每个零件的前提条件。通常来说,不是材料不好,而是各种材料有不同 的特定性能,需要设计师根据零件的使用环境、性能要求选择合适的材料。塑料的种类繁多,性能各异,而且还添加有各种增强剂、色母等填料;同时各种材料的性能数据都是在特定条 件下的测试数据,与实际工作情况下有一定差别,这些都影响着材料种类的选择。虽然材料 选择具有复杂性,但是在选材时也是有简单规律可参考。对于注塑件,通常首先考虑零件的 工作条件,比如载荷、耐温等条件,以缩小选材范围,同时配合零件的成型工艺、外观方面 要求、装配方式等要求,比如透明性、运动部件的耐磨性等确定材料选定。电饭煲为加热产品,有运动部件,同时也有食品安全要求,作为小家电,对外观配合也要求美观精良。有经 验的结构设计师通常参考成熟产品、根据以往经验或者考虑供应商的推荐来选择合适的材料。电饭煲产品常用的几种塑料为PP、ABS、POM。例如,面盖、底座、内盖、支撑环等零件因 为要求耐温,一般都选择食品级的PP料;装饰板、电镀件通常都选择ABS;开盖按钮推块等 运动部件则都选择POM;一些需要特别耐高温的部件则选择尼龙或者PET材料;一些特殊要 求的部件比如电路板支架需要选择具有阻燃性能的塑料。 2.2壁厚合理设计 合理设计壁厚对一个注塑件来说是非常关键的,注塑件的壁厚数值一般为2~3mm。一 般壁厚过薄则强度和刚度弱,同时成型困难;壁厚过厚则容易缩水、成型时间长、浪费成本,对于壁厚偏厚的地方要掏胶等做防缩水工艺性设计。同时制品壁厚的设计应该均匀、圆滑过渡,若不均匀容易出现翘曲变形或者缩水等不良外观问题。电饭煲产品中,通过经验总结, 底座、支撑环、内盖等对刚度和强度要求高的部件一般设计壁厚为2.5或者2.8mm厚,面盖 等部件一般设计2.2mm厚,个别透明件或者无载荷的零件设计壁厚低于2mm。 2.3加强筋设计 在注塑件设计中,为了增加零件的刚度和强度,通常设计加强筋来满足要求,这样既减 少塑料用量又减轻重量,在结构上也能防止注塑件翘曲变形,成型时辅助塑料流动。加强筋 的设计通常要注意三个要点:第一是厚度,厚度过薄起不到加强作用也难以填充,厚度过厚

塑料件设计技巧

注塑件设计要点 利用注塑工艺生产产品时,由于塑料在模腔中的不均匀冷却和不均匀收缩以及产品结构设计的不合理,容易引起产品的各种缺陷: 缩印、熔接痕、气孔、变形、拉毛、顶伤、飞边。 为得到高质量的注塑产品,我们必须在设计产品时充分考虑其结构工艺性,下面结合注塑产品的主要结构特点分析避免注塑缺陷的方法。 2.1 开模方向和分型线 每个注塑产品在开始设计时首先要确定其开模方向和分型线,以保证尽可能减少抽芯机构和消除分型线对外观的影响。 2.1.1 开模方向确定后,产品的加强筋、卡扣、凸起等结构尽可能设计成与开模方向一致,以避免抽芯减少拼缝线,延长模具寿命。 2.1.2 例如:保险杠的开模方向一般为车身坐标χ方向,如果开模方向设计成与χ轴不一致,则必须在产品图中注明其夹角。 2.1.3 开模方向确定后,可选择适当的分型线,以改善外观及性能。 2.2 脱模斜度 2.2.1 适当的脱模斜度可避免产品拉毛。光滑表面的脱模斜度应大于0.5度,细皮纹表面大于1度,粗皮纹表面大于1.5度。 2.2.2 适当的脱模斜度可避免产品顶伤。 2.2.3 深腔结构产品设计时外表面斜度要求小于内表面斜度,以保证注塑时模具型芯不偏位,得到均匀的产品壁厚,并保证产品开口部位的材料密度强度。 2.3 产品壁厚 2.3.1 各种塑料均有一定的壁厚范围,一般0.5~4mm,当壁厚超过4mm时,将引起冷却时间过长,产生缩印等问题,应考虑改变产品结构。 2.3.2 壁厚不均会引起表面缩印。 2.3.3 壁厚不均会引起气孔和熔接痕。 2.4 加强筋 2.4.1 加强筋的合理应用,可增加产品刚性,减少变形。 2.4.2 加强筋的厚度必须小于产品壁厚的1/3,否则引起表面缩印。 2.4.3 加强筋的单面斜度应大于1.5°,以避免顶伤。 2.5圆角 2.5.1 圆角太小可能引起产品应力集中,导致产品开裂。 2.5.2 圆角太小可能引起模具型腔应力集中,导致型腔开裂。 2.5.3 设置合理的圆角,还可以改善模具的加工工艺,如型腔可直接用R刀铣加工,而避免低效率的电加工。 2.5.4 不同的圆角可能会引起分型线的移动,应结合实际情况选择不同的圆角或清角。

注塑成型的基本原理及设计注意事项(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 ------------ --------- 方便更改 赠人玫瑰,手留余香。 注塑成型的基本原理 注塑机利用塑胶加热到一定温度后,能熔融成液体的性质,把熔融液体用高压注射到密闭的模腔內,经过冷却定型,开模后顶出得到所需的塑体产品。二﹑注塑成型的四大要素: 1.塑胶模具 2.注塑机 3.塑胶原料 4.成型条件三﹑塑胶模具基本结构:1.公模(下模)公模固定板﹑公模辅助板﹑顶针板﹑公模板。2.

母模(上模) 母模板﹑母模固定板﹑进胶圈﹑定位圈。 四﹑注塑机主要由塑化.注射装置,合模装置和传动机构组成;电气带动电机,电机带动油泵,油泵产生油压,油压带动活塞,活塞带动机械,机械产生动作; 常见的注塑机可分为﹕ a.臥式注塑机 b.立式注塑机 c.多色注塑机 五﹑塑胶材料塑胶材料可分为热固性和热塑性两种﹕ 1.热固性塑胶(电木等)﹕指不能重复使用之塑胶 ,其分子最终成体型结构。 2.热塑性塑胶﹕指可重复再造使用之塑胶,分为结晶体(PBT,PA)和非定形性(PC,PPO).结晶性塑胶指塑胶液体在变为固体时可以成为規則形的塑胶,其分子大部分是依线形或支链型结构排列。 3.工程塑胶工程塑胶指使用在机械构件,可长期使用在100摄氏度以上﹐抗拉伸強度在一平方厘米500kg以上;抗弯曲強度在一平方厘米2400kg以上的塑胶,目前大部分使用的塑料有:PP ABS PBT PC PA PPS POM 等。 一般成型条件﹕1:ABS料﹕(丙烯清.丁二烯.苯乙烯三元树脂). 目前大部分使用的厂牌有:中国石化台湾奇美台湾化纤巴斯夫韩国LG(宁

塑料模具设计说明书实例

塑料模具设计说明书实 例 标准化管理部编码-[99968T-6889628-J68568-1689N]

塑 料 模 具 设 计 说 明 书 姓名吴高安 班级模具1301

塑料模具设计说明书 目录

1. 塑件的工艺分析 塑件的成型工艺性分析 塑件如图1所示。 图1 塑件图 产品名称:套管 产品材料:ABS 产品数量:较大批量生产 塑件尺寸:如图1所示 塑件重量:25克 塑件颜色:红色 塑件要求:塑件外侧表面光滑,下端外沿不允许有浇口痕迹。塑件允许最大脱模斜度° 塑件材料ABS的使用性能 可参考《简明塑料模具设计手册》P30表1-13综合性能较好,冲击韧度、力学强度较高,尺寸稳定,耐化学性、电气性能良好;易于成形和机械加工,与有机玻璃的熔接性良好,可作双色成形塑件,且表面可镀铬。 适于制作一般机械零件、减摩耐磨零件、传动零件和电信结构零件。 塑件材料ABS的加工特性 可参考《简明塑料模具设计手册》P32表1-14无定型塑料,其品种很多,各品种的机电性能及成形特性也各有差异,应按品种确定成形方法及成形条件。 吸湿性强,含水量应小于%,必须充分干燥,要求表面光泽的塑件应要求长时间预热干燥。 流动性中等,溢边料 mm左右(流动性比聚苯乙烯,AS差,但比聚碳酸酯、聚氯乙烯好)。

比聚苯乙烯加工困难,宜取高料温、模温(对耐热、高抗冲击和中抗冲击型树脂,料温更宜取高)。料温对物性影响较大、料温过高易分解(分解温度为250℃左右,比聚苯乙烯易分解),对要求精度较高塑件,模温宜取50~60℃,要求光泽及耐热型料宜取60~80℃。注射压力应比加工聚苯乙烯稍高,一般用柱塞式注塑机时料温为180~230℃,注射压力为100~140 MPa,螺杆式注塑机则取160~220℃,70~100 MPa为宜。 模具设计时要注意浇注系统,选择好进料口位置、形式。推出力过大或机械加工时塑件表面呈现“白色”痕迹(但在热水中加热可消失)。脱模斜度宜取2℃以上。 塑件的成型工艺参数确定 可参考《简明塑料模具设计手册》P54表1-18查手册得到ABS塑料的成型工艺参数: 适用注射机类型螺杆式 密度~ g/cm3; 收缩率~ % ; 预热温度 80C°~ 85C°,预热时间 2 ~ 3 h ; 料筒温度后段150C°~170C°,中段180C°~200C°,前段160C°~180C°; 喷嘴温度 170C°~ 180C°; 模具温度 50C°~ 80C°; 注射压力 60 ~ 100 MPa ; 成型时间注射时间20 ~ 90s ,保压时间0 ~ 5s ,冷却时间20 ~ 120s 。 2 模具的基本结构及模架选择 模具的基本结构 确定成型方法 塑件采用注射成型法生产。为保证塑件表面质量,使用直浇口成型,因此模具应为单分型面注射模。

注塑模具设计的基本要点有些

注塑模具设计的基本要点有些 为帮助大家更好地了解注塑模具设计,下面,为大家讲讲注塑模具设计的基本要点的相关知识,快来看看吧! 产品壁厚 1、各种塑料均有一定的壁厚范围,一般0.5~4mm,当壁厚超过4mm时,将引起冷却时间过长,产生缩印等问题,应考虑改变产品结构。 2、壁厚不均会引起表面缩水。 3、壁厚不均会引起气孔和熔接痕。 加强筋 1、加强筋的合理应用,可增加产品刚性,减少变形。 2、加强筋的厚度必须≤(0.5~0.7)T产品壁厚,否则引起表面缩水。 3、加强筋的(上海模具设计培训学校)单面斜度应大于1.5°,以避免顶伤。 圆角 1、圆角太小可能引起产品应力集中,导致产品开裂。 2、圆角太小可能引起模具型腔应力集中,导致型腔开裂。 3、设置合理的圆角,还可以改善模具的加工工艺,如型腔可直接用R刀铣加工,而避免低效率的电加工。 4、不同的圆角可能会引起分型线的移动,应结合实际情况选择不同的圆角或清角。

开模方向和分型线 每个注塑产品在开始设计时首先(上海模具设计培训学校)要确定其开模方向和分型线,以保证尽可能减少抽芯滑块机构和消除分型线对外观的影响。 1、开模方向确定后,产品的加强筋、卡扣、凸起等结构尽可能设计成与开模方向一致,以避免抽芯减少拼缝线,延长模具寿命。 2、开模方向确定后,可选择适当的分型线,避免开模方向存在倒扣,以改善外观及性能。上海模具设计培训 脱模斜度 1、适当的脱模斜度可避免产品拉毛(拉花)。光滑表面的脱模斜度应≥0.5度,细皮纹(砂面)表面大于1度,粗皮纹表面大于1.5度。 2、适当的脱模斜度可避免产品顶伤,如顶白、顶变形、顶破。 3、深腔结构产品设计时外表面斜度尽量要求大于内表面斜度,以保证注塑时模具型芯不偏位,得到均匀的产品壁厚,并保证产品开口部位的材料强度。 孔 1、孔的形状应尽量简单,一般取圆形。 2、孔的轴向和开模方向一致,可以避免抽芯。 3、当孔的长径比大于2时,应设置脱模斜度。此时孔的直径应按小径尺寸(最大实体尺寸)计算。 4、盲孔的长径比一般不超过4。防孔针冲弯 5、孔与产品边缘的距离一般大于孔径尺寸。

模具设计实例教程

目录 一、课程报告 摘要:介绍铸造模、锻模、级进模、汽车覆盖件模和塑料注射模CAD/CAE/CAM技术的发展概况并论述了模具CAD/CAE/CAM技术的最新开发成果和发展趋势。 模具CAD/CAE/CAM是改造传统模具生产方式的关键技术,是一项高科技、高效益的系统工程。它以计算机软件的形式,为企业提供一种有效的辅助工具,使工程技术人员借助于计算机对产品性能、模具结构、成形工艺、数控加工及生产管理进行设计和优化。模具CAD/CAE/CAM技术能显著缩短模具设计与制造周期,降低生产成本和提高产品质量已成为模具界的共识。 与任何新生事物一样,模具CAD/CAE/CAM在近二十年中经历了从简单到复杂,从试点到普及的过程。进入本世纪以来,模具CAD/CAE/CAM技术发展速度更快、应用范围更广,为了使广大模具工作者能进一步加深对该技术的认识,更好发挥模具CAD /CAE/CAM的作用,本文针对模具中应用最广泛、最具有代表性的铸造模、锻模、级进模、汽车覆盖件模和塑料注射模CAD/CAE/CAM的发展状况和趋势作概括性的介绍和分析。1.铸造模CAD/CAE/CAM的发展概况铸造成形过程模拟的探索性工作始于求解铸件的温度场分布。1962年丹麦的Fursund用有限差分法首次对二维形状的铸件进行了凝固过程的传热计算,1965年美

国通用汽车公司Henzel等对汽轮机铸件成功进行了温度场模拟,从此铸件在模具型腔内的传热过程数值分析技术在全世界范围内迅速开展。从上世纪70年代到80年代,美国、英国、法国、日本、丹麦等相继在铸件凝固模拟研究和应用上取得了显著成果,并陆续推出一批商品化模拟软件。进入90年代后,我国的高等院校,如清华大学和华中科技大学在该领域也取得了令人瞩目的成就。单纯的传热过程模拟并不能准确计算出铸件的温度变化和预测铸造中可能产生的缺陷,充模过程对铸件初始温度场分布的影响以及凝固过程中液态金属的流动对铸件缺陷形成的影响都是不可忽视的因素。铸件充模过程的模拟技术始于上世纪8 0年代,它以计算流体力学的理论和方法为基础,经历十余载,从二维简单形状开始,逐步深化和扩展,现已成功实现了三维复杂形状铸件的充模过程模拟,并能将流动和传热过程相耦合。目前国外已有一批商品化的三维铸造过程模拟软件,如日本的SOL IDIA、英国的SOLSTAR、法国的SIMULOR、瑞典的NOVACAST、德国的MAGMA和美国的AFSOLID、PROCAST等。国内也有清华大学的铸造之星、华中科技大学的华铸CAE等。这些铸造模CAE软件已覆盖铸钢、铸铁、铸铝和铸铜等各类铸件,大到数百吨,小至几千克,无论是在消除缩孔和缩松,还是在优化浇冒口设计,改进浮渣夹渣等方面都发挥了显著的作用。伴随着CAE技术在铸造领域的成功应用,铸造工艺及模具结构CAD的研究和应用也在不断深入,国外已陆续推出了一些应用软件,如美国铸造协会的

注塑模具设计的十七个注意事项

注塑模具设计的十七个注意事项 注塑模设计的注意事项有很多,那么都有哪些呢?下面,为大家分享注塑模具设计的十七个注意事项,快来看看吧! 开模方向和分型线 每个注塑产品在开始设计时首先要确定其开模方向和分型线,以保证尽可能减少抽芯滑块机构和消除分型线对外观的影响。 1.开模方向确定后,产品的加强筋.卡扣.凸起等结构尽可能设计成与开模方向一致,以避免抽芯减少拼缝线,延长模具寿命。 2.开模方向确定后,可选择适当的分型线,避免开模方向存在倒扣,以改善外观及性能。 脱模斜度 1.适当的脱模斜度可避免产品拉毛(拉花)。光滑表面的脱模斜度应≥0.5度,细皮纹(砂面)表面大于1度,粗皮纹表面大于1.5度。 2.适当的脱模斜度可避免产品顶伤,如顶白.顶变形.顶破。 3.深腔结构产品设计时外表面斜度尽量要求大于内表面斜度,以保证注塑时模具型芯不偏位,得到均匀的产品壁厚,并保证产品开口部位的材料强度。 产品壁厚 1.各种塑料均有一定的壁厚范围,一般0.5~4mm,当壁厚超过4mm时,将引起冷却时间过长,产生缩印等问题,应考虑改变产品结构。 2.壁厚不均会引起表面缩水。

3.壁厚不均会引起气孔和熔接痕。 加强筋 1.加强筋的合理应用,可增加产品刚性,减少变形。 2.加强筋的厚度必须≤(0.5~0.7)T产品壁厚,否则引起表面缩水。 3.加强筋的单面斜度应大于1.5°,以避免顶伤。 圆角 1.圆角太小可能引起产品应力集中,导致产品开裂。 2.圆角太小可能引起模具型腔应力集中,导致型腔开裂。 3.设置合理的圆角,还可以改善模具的加工工艺,如型腔可直接用R刀铣加工,而避免低效率的电加工。 4.不同的圆角可能会引起分型线的移动,应结合实际情况选择不同的圆角或清角。 孔 1.孔的形状应尽量简单,一般取圆形。 2.孔的轴向和开模方向一致,可以避免抽芯。 3.当孔的长径比大于2时,应设置脱模斜度。此时孔的直径应按小径尺寸(最大实体尺寸)计算。 4.盲孔的长径比一般不超过4。防孔针冲弯 5.孔与产品边缘的距离一般大于孔径尺寸。 注塑模的抽芯.滑块机构及避免

浅析注塑产品设计注意事项

浅析注塑产品设计注意事项 发表时间:2019-04-28T10:10:42.077Z 来源:《基层建设》2019年第6期作者:马雯钰[导读] 摘要:结合注塑产品的成型过程、成型原理、模具加工、批量生产等,浅析注塑产品在设计、成型过程中的一些设计手法和注意事项。 蚌埠依爱消防电子有限责任公司安徽蚌埠 233000摘要:结合注塑产品的成型过程、成型原理、模具加工、批量生产等,浅析注塑产品在设计、成型过程中的一些设计手法和注意事项。 关键词:外观设计;结构设计;成型原理;模具设计 一、引言 公司的产品按照材料特性可以分为两大类:注塑类和钣金类。产品在设计的过程中影响因素很多,需要遵守相应的基本要求和设计原则,才能满足产品的使用需求,产品结构设计的优劣直接影响产品的市场价值。随着科技的发展,人机交互体验的增加,对产品的精致美观,装配简单带来新的挑战,本文以注塑产品的外观和结构设计过程中的一些问题进行简单的总结,以供设计人员入门做参考。 二、外观设计 产品外观是指产品的形状、图案、色彩等一体化视觉效果,形状是指产品的造型,图案是产品设计的点缀,色彩是构成图案的因子,三者的有机结合才能形成美的统一。很多结构设计人员主要以机械工科为主,缺乏工业设计方面的专业知识和前卫的设计理念,导致前期产品的外观为外包设计,无形之中增加了产品的设计成本,但纯工业设计人员对公司产品的结构、硬件配合的使用要求不清楚,从而导致后期结构出现一系列问题,最典型的为烟感的设计,在后期生产、送检出现的结构问题,反复修改模具,生产中按键、卡扣、干涉等问题,也无形之中增加了产品的研发设计和生产成本,降低效率。 设计人员要不断学习一些工业设计理念,在进行外观设计时,就能配合硬件人员对结构要求作出及时调整,从而做到一次开模成功,提高效率,节约成本。 图1 小米烟感造型 图2 8014烟感造型在进行外观的设计过程中,最关键的一点就是多看多想,多看就是参考其他家产品的外观图案,通过网上搜索图片、实物观察等方式了解这一类产品的各种外观,然后进行总结、思考各种外观的优缺点,实现难易程度,以及后期结构设计的难易程度,统一规划,比如在设计新烟感外观的过程中,参考了小米烟感以及本公司烟感的外观特点,既满足外观需求也要满足功能性需求,其中功能性需求优先,如图1、2所示。 在外观设计的过程中,关键的几点:广泛参考、不断总结、多出方案、征求意见、评审确定。 三、结构设计 产品结构设计是满足基本使用功能的关键保证、也是影响产品生产流水效率的关键因素,在必须满足功能性要求的前提下:尽可能的结构简单、模具简单、装配简单。 在设计新烟感和8000声光结构的过程中,最关键的就是紧密地与硬件人员进行配合,了解这个产品的功能需求,再确定好电路板布局,并进行三维造型,将电路板、元器件绘制出三维模型,随时在模型中查看有没有元器件干涉,考虑好电路板的固定方式,如新烟感中电路板是通过螺钉固定,8000声光中电路板是通过卡扣固定,至于选择哪一种根据电路板元器件的多少、尺寸大小、保证牢固可靠来决定,如下图;

注塑成型的塑料连接件设计

文章编号:100523360(2004)0420010205 注塑成型的塑料连接件设计 李 树1,揣成智1,刘风芝2 (1.天津科技大学,天津300222;2.太原市物产集团,山西太原030002) 摘 要: 介绍常用注塑成型连接件的材料选择、连接原理、基本类型、尺寸和形状设计要点及实际使用情况等。 关键词: 塑料连接件;连接原理;连接类型 中图分类号:T Q320.662;T Q320.74 文献标识码:B 收稿日期:2004203216 1 前言 注射成型连接件的设计是塑料制品设计中不可缺 少的内容。它和大多数塑料注塑件一样,都是产品的组成部分,它们既可以互相组装成一个制品,也可以与其他材料的零部件组装成制品。如果不采用塑料连接件连接,而采用金属的螺钉、销钉等连接件会使塑料制品尺寸变大且结构不合理;用带螺纹的金属嵌件作为塑料件的连接件,会给制品的成型带来困难,也不能自动化的生产制品,特别是用注塑成型的方法生产制品,此缺点更为突出,它使注塑模具的结构更为复杂,产品的成本也相应提高[1]。而利用塑料的良好弹性,柔软性、优良的抗疲劳等特性可设计出各种实用可靠的连接件。它们具有结构简单,安装牢固、装配容易、加工方便、不附加紧固件、价格便宜等优点,可用于仪表、仪器、家用电器等行业。通常使用的注塑成型塑料连接件可分为两种结构形式[2]:一种为可拆卸连接;另一种为不可拆卸连接。现主要讨论这两种连接的连接原理、连接尺寸及制品的形状设计。 2 可拆卸连接 可拆卸连接是指拆开连接件时,构成连接的所有 零件都不发生破坏。同时要求可拆卸连接的结构在使用期的工作条件下,在多次拆卸2连接后零件的相应位 置和相关尺寸仍保持一定的精度。利用塑料材料本身具有的良好弹性、韧性等特点,可设计出多种实用的可拆卸连接的塑料件。 2.1 搭接连接 搭接连接是一种允许有较大弹性形变的紧密连接方式[3]。全部连接基本上都是在一个制品上模塑出凸台、凸耳或倒钩臂,将其插入到另一个模塑制件上相应的凹口、倒陷或孔中。它是塑料制品中最廉价、最方便的连接方式之一,用于可拆卸连接。下面介绍几种常用的搭接连接。2.1.1 夹环连接 图1为夹环连接,夹环提供了柔软的没有轴向装配的连接,它允许连接处多方向自由弯折。用于盖和底的夹环连接可在塑料件上设计凸起或沟槽来辅助准确定位。它可以用任何柔性塑料制造,如聚乙烯、聚丙烯、软聚氯乙烯等 。 图1 盖和底成一体的夹环连接   2.1.2 搭扣连接 图2为搭扣连接,图中有三种不同的搭扣和孔眼形状。主要用于塑料布和片材的搭接,所有用于注塑成型的塑料材料都可以采用这种连接方式。 2.2 卡夹连接 卡夹连接是利用塑料的弹性变形,实现两个零件 1 塑料科技 P LASTICS SCI.&TECH NO LOGY № 4(Sum.162) August 2004

相关文档
最新文档