排列组合二项式定理学习教育PPT课件
合集下载
排列、组合、二项式定理精选教学PPT课件

当我们爱自己的孩子的时候,可曾想过,我们把爱孩子的十分之一去爱母亲,她就足矣,往往这一点也做不到,说句心里话,我们欠母亲的无法补偿,更无法用语言表达。 我有这两位母亲,虽然我的人生很不幸,但我有她们给我的无私的爱,我永远是幸福的,她们对我的爱我永存心里。在美国西雅图的一所著名教堂里,有一位德高望重的牧师――戴尔·泰勒。有一天,他向教会学校一个班的学生们先讲了下面这个故事。 那年冬天,猎人带着猎狗去打猎。猎人一枪击中了一只兔子的后腿,受伤的兔子拼命地逃生,猎狗在其后穷追不舍。可是追了一阵子,兔子跑得越来越远了。猎狗知道实在是追不上了,只好悻悻地回到猎人身边。猎人气急败坏地说:“你真没用,连一只受伤的兔子都追不
数有多少?
5×5=25
练习2
1.某段铁路上有12个车站,共需准备多少种普通客票?
P122
2.某段铁路上有12个车站,问有多少种不同的票价?
C122
3.用3,5,7,9四个数字,一共可组成多少个没有重 复数字的正整数
P41 P42 P43 P44
练习3
1.在(1+x)10的展开式中,二项式系数最大为 C150 ;
名称
排列
组合
一个~ ~~数
从n个不同元素中取出m个元 素,按一定的顺序排成一列
所有排列的个数
从n个不同元素中取出m个元 素,把它并成一组
所有组合的个数
符号
种数 公式 关系
性质
Pnm
C
m n
Pnm
Pnm
n(n 1) (n m
n! (n m)! Pnn n!
1)
0!
1
排列、组合、二项式定理
知识结构网络图:
排列与组合
二项式定理
数有多少?
5×5=25
练习2
1.某段铁路上有12个车站,共需准备多少种普通客票?
P122
2.某段铁路上有12个车站,问有多少种不同的票价?
C122
3.用3,5,7,9四个数字,一共可组成多少个没有重 复数字的正整数
P41 P42 P43 P44
练习3
1.在(1+x)10的展开式中,二项式系数最大为 C150 ;
名称
排列
组合
一个~ ~~数
从n个不同元素中取出m个元 素,按一定的顺序排成一列
所有排列的个数
从n个不同元素中取出m个元 素,把它并成一组
所有组合的个数
符号
种数 公式 关系
性质
Pnm
C
m n
Pnm
Pnm
n(n 1) (n m
n! (n m)! Pnn n!
1)
0!
1
排列、组合、二项式定理
知识结构网络图:
排列与组合
二项式定理
人教B版高中数学选择性必修第二册精品课件 第3章 排列、组合与二项式定理 第1课时 组合及组合数公式

B.从1,2,3,4这4个数字中选取3个不同的数字可以组成多少个不同的三位
数?
C.从全班同学中选出3名同学参加学校运动会开幕式,有多少种选法?
D.从全班同学中选出2名同学分别担任班长、副班长,有多少种选法?
解析 对于A选项,从4名志愿者中选出2人分别参加导游和翻译的工作,将2
人选出后,还要安排导游或翻译的工作,与顺序有关,这个问题为排列问题;
名师点睛
1.排列与组合的区别与联系
(1)共同点:两者都是从n个不同对象中取出m(m≤n)个对象.
(2)不同点:排列与对象的顺序有关,组合与对象的顺序无关.
(3)只要两个组合中的对象完全相同,不论对象的顺序如何,都是相同的组
合,只有当两个组合中对象不完全相同时,才是不同的组合.
2.组合与组Biblioteka 数的区别目录索引基础落实·必备知识一遍过
重难探究·能力素养速提升
学以致用·随堂检测促达标
1.理解组合的概念,会区分排列与组合问题.
正确认识组合与排列的区别与联系
课程标准
2.掌握组合数公式,会利用公式解决一些简单组合问题,理解排列
数与组合数之间的联系.
3.掌握组合数的两个性质,能够应用组合数的性质进行有关的化
多少种.
1
解 因为一共有2件次品,至多有1件正品即恰有1件正品,故抽法有 C98
=98种.
规律方法 解答简单的组合问题的方法
(1)弄清要做的这件事是什么事.
(2)看选出的元素是否与顺序有关,也就是看是不是组合问题.
(3)结合两计数原理,利用组合数公式求出结果.
变式训练3[2024甘肃白银高二期末]课外活动小组共13人,其中男生8人,女
选2人参加服务,则( AD)
数?
C.从全班同学中选出3名同学参加学校运动会开幕式,有多少种选法?
D.从全班同学中选出2名同学分别担任班长、副班长,有多少种选法?
解析 对于A选项,从4名志愿者中选出2人分别参加导游和翻译的工作,将2
人选出后,还要安排导游或翻译的工作,与顺序有关,这个问题为排列问题;
名师点睛
1.排列与组合的区别与联系
(1)共同点:两者都是从n个不同对象中取出m(m≤n)个对象.
(2)不同点:排列与对象的顺序有关,组合与对象的顺序无关.
(3)只要两个组合中的对象完全相同,不论对象的顺序如何,都是相同的组
合,只有当两个组合中对象不完全相同时,才是不同的组合.
2.组合与组Biblioteka 数的区别目录索引基础落实·必备知识一遍过
重难探究·能力素养速提升
学以致用·随堂检测促达标
1.理解组合的概念,会区分排列与组合问题.
正确认识组合与排列的区别与联系
课程标准
2.掌握组合数公式,会利用公式解决一些简单组合问题,理解排列
数与组合数之间的联系.
3.掌握组合数的两个性质,能够应用组合数的性质进行有关的化
多少种.
1
解 因为一共有2件次品,至多有1件正品即恰有1件正品,故抽法有 C98
=98种.
规律方法 解答简单的组合问题的方法
(1)弄清要做的这件事是什么事.
(2)看选出的元素是否与顺序有关,也就是看是不是组合问题.
(3)结合两计数原理,利用组合数公式求出结果.
变式训练3[2024甘肃白银高二期末]课外活动小组共13人,其中男生8人,女
选2人参加服务,则( AD)
中职数学21.1排列组合与二项式ppt课件

解: ( 3x 3 2)100 的展开式的通项公式为:
Tr1
Cr 100
•
100r
3x •
32
r
100r
r
3 2
•
23
•
Cr 100
•
x100r
100 2
r
,
r 3
r 0,1,2, ,100
均为整数时,T为有理数. 有理项即
r为6的倍数,且0 r 100.
整数次幂项
即r为0, 6,12,,96,展开式中共有17项有理项.
五、二项式定理:
将(a+b)n展开 (a+b)n=(a b)( ab)(ab)
n个
计算(a+b)n展开式的二项式系数并填入下表
n
(a+b)n展开式的二项式系数
1 11
2 121
3 1331
4 14641
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
对称性
(a+b)1 (a+b)2 (a+b)3 (a+b)4 (a+b)5 (a+b)6
解:(1+ 1 )4 x
1
C41
(
1 x
)
C42
(
1 x
)2
C43
(
1 x
)3
C44
(
1 x
)4
1
4 x
6 x2
4 x3
1 x4
.
注:1)注意对二项式定理的灵活应用
2)注意区别二项式系数与项的系数的概念
二项式系数为 Cnr ;
项的系数为:二项式系数与数字系数的积
排列与组合、 二项式定理的应用PPT优秀课件

所以符合题意的不同取法种数为 C104(4C64+6+3)=141.
方法二, 在四面体中取定一个面,
记为, 那么取不同不共面的4个点, 可
分为四类:
第一类, 恰有3个点在 上, 这时该
3点必然不在同一条棱上, 因此, 4个点 的不同取法数为4(C633)=68.
第二类,恰有2个点在α上,可分两 种情况:①该2点在同一条棱上,这时4 个点的不同取法数为4C32(C42-3)=27; ② 该2点不在同一条棱上,这时4个点的不 同取法数为(C62-3C32)(C42-1)=30.
(4) 安排甲、乙和丙3人以外的其他4 人,有A44种排法;由于甲、乙要相邻, 故再把甲、乙排好, 有A22种排法, 最后把 甲、乙排好的这个整体与丙分别插入原 先排好的4人的空档中有A52种排法, 这样, 总共有A44 A22 A52=960种不同排法.
(5) 从7个位置中选出4个位置把男 生排好, 则有A74种排法; 然后再在余下 的3个空位置中排女生, 由于女生要按 身体高矮排列, 故仅有一种排法, 这样 总共有A74 840种不同排法.
[评注] 排列问题中,部分元素 相邻的问题可用“视一法”解;部分 元素不相邻的问题可用“插入法”解, 部分元素定序的问题也可用“插入法” 解.
[例5] 按以下要求分配6本不同的书, 各有几种分法?
(1) 平均分给甲、乙、丙三人,每人 2本;
(2) 平均分成三份,每份2本; (3) 甲、乙、丙三人一人得1本,一 人得2本,一人得3本;
4×3×2×2×2=96种;若区域4与区域6
不栽同一种花,则区
域2、3两块中有1种栽
5
法,总共有4×3×2× 6 1 4
1×1=24,所以一共有
方法二, 在四面体中取定一个面,
记为, 那么取不同不共面的4个点, 可
分为四类:
第一类, 恰有3个点在 上, 这时该
3点必然不在同一条棱上, 因此, 4个点 的不同取法数为4(C633)=68.
第二类,恰有2个点在α上,可分两 种情况:①该2点在同一条棱上,这时4 个点的不同取法数为4C32(C42-3)=27; ② 该2点不在同一条棱上,这时4个点的不 同取法数为(C62-3C32)(C42-1)=30.
(4) 安排甲、乙和丙3人以外的其他4 人,有A44种排法;由于甲、乙要相邻, 故再把甲、乙排好, 有A22种排法, 最后把 甲、乙排好的这个整体与丙分别插入原 先排好的4人的空档中有A52种排法, 这样, 总共有A44 A22 A52=960种不同排法.
(5) 从7个位置中选出4个位置把男 生排好, 则有A74种排法; 然后再在余下 的3个空位置中排女生, 由于女生要按 身体高矮排列, 故仅有一种排法, 这样 总共有A74 840种不同排法.
[评注] 排列问题中,部分元素 相邻的问题可用“视一法”解;部分 元素不相邻的问题可用“插入法”解, 部分元素定序的问题也可用“插入法” 解.
[例5] 按以下要求分配6本不同的书, 各有几种分法?
(1) 平均分给甲、乙、丙三人,每人 2本;
(2) 平均分成三份,每份2本; (3) 甲、乙、丙三人一人得1本,一 人得2本,一人得3本;
4×3×2×2×2=96种;若区域4与区域6
不栽同一种花,则区
域2、3两块中有1种栽
5
法,总共有4×3×2× 6 1 4
1×1=24,所以一共有
组合与二项式23页PPT

m n
m
nmn(n1)(nm 2)L! (nm1)
m
C
m n
n-m n!!m!,Cnn Cn0 1
组合数的性质:
C C 性质1:
m
nm
n
n
C C C 性质2:
m m m1
n1
n
n
解决排列组合问题的方法有:
优限法: 有特殊位置、元素 捆绑法: 相邻 插入法 : 不相邻 先取后排: 有组合又有排列
N=m1+m2+…+mn 种不同的方法。
分步计数原理
完成一件事,需要分成n个步骤 ,做第一步有m1种不同的方法,做 第二步有m2种不同的方法,……, 做第n步有mn种不同的方法,那么 完成这件事有
N=m1×m2×…×mn 种不同的方法。
排列定义:
从 n 个不同元素中,任取 m (m≤n) 个元素,按照一定的顺序 排成一列,叫做从 n 个不同元素 中取出 m 个元素的一个排列。
例4. 1-90C110+902C210-903C310+… +(-1)k90kCk10+…+9010C1010 除以88的余数是( B )
(A)-1 (B)1 (C)-87 (D)87
9,( 05江苏)设 k1,2,3,4,5,
则( x 2 ) 5 的展开式中 x k 的系
数不可能是
(C )
目的要求: 1、分类计数原理与分步计数原理。 2、排列、排列数。 3、组合、组合数、组合数的性质。 4、解决排列组合问题的方法有那 些?
分类计数原理
完成一件事,有n类办法,在第一 类办法中有m1种不同的方法,在第二 类办法中有m2种不同的方法,…… ,在第n类办法中有mn种不同的方法 。那么完成这件事共有
高中数学 排列、组合、二项式定理 二项式定理 (初始课件)

引出定理,总结特征
(a b) C a C a
n 0 n n 1 n
n 1
bC a
2 n r
n 2
b
2 n
C a
r n
n r
b C b
n n
二项展开式定理:
一般地,对于nN*,有:
(a b) C a C a
n 0 n n 1 n
n 1
bC a
系数
C4
0
C4
1
C4
2
C4
3
C4
4
(a+b)4 = C40 a4 +C41 a3b +C42 a2b2 +C43 ab3 +C44 b4
将(a+b)n展开的结果又是怎样呢? 发现规律: 对于(a+b)n=
(a b)(a b) (a b)
n个
的展开式中an-rbr的系数是在n个括号中,恰有r个 r 括号中取b(其余括号中取a)的组合数 C n .那么, 我们能不能写出(a+b)n的展开式?
r 1 n
二项展开式定理: n 0 n 1 n 1 r n r r n n (a b) Cn a Cn a b Cn a b Cn b
1.项数规律: 展开式共有n+1个项 2.二项式系数规律:
(n N )
C 、C 、C 、 、C
0 n 1 n 2 n
n n
3.指数规律:
(1)各项的次数和均为n; (2)二项和的第一项a的次数由n逐次降到0, 第二项b的次数由0逐次升到n.
单三步
小结
• 二项式定理是初中多项式乘法的延伸,又 是后继学习概率的基础,要理解和掌握好 展开式的规律,利用它对二项式展开,进 行相应的计算与证明。
排列组合与二项式定理PPT课件
(1)C0n+Cn1
+
…+
Crn+…
+
Cnn= 2n;
C0n+
Cn2
+
…=
Cn1
+
C
3 n
+…=2n-1.
(2) 应 用 “ 赋 值 法 ” 可 求 得 二 项 展 开 式 中 各项 系 数 和 为
f(1).“奇数(偶次)项”系数和为12[f(1)+f(-1)],“偶数(奇次)
项”系数和为12[f(1)-f(-1)].
第18讲 │ 要点热点探究
要点热点探究
► 探究点一 计数原理及其应用
例1(1)在任意两个正整数m和n间定义某种运算,用⊗表 示运算符号,并规定,当m和n都为奇数或都为偶数时,m⊗n =m+n;当m和n中有一个为奇数,另一个为偶数时,m⊗n =mn,设集合M={(a,b)|a⊗b=36,a、b∈N+},则集合M 中共有________个元素;
第18讲 │ 要点热点探究
41 【解析】 一类:当 m、n 都为奇数时,由 m+n=36, 可知 m=1,3,5,…,35,相应的 n 随之确定,共有 18 个不同 数对(a,b);
二类:当 m 和 n 都为偶数时,由 m+n=36,可知 m= 2,4,6,…,34,相应的 n 随之确定,共有 17与D”看成一个整体,故有2A
3 4
=
48种涂法.
故不同的涂法共有24+48=72种,选A.
【点评】 本题的涂色问题是一类典型应用两个计数原理解决的 计数问题,在高考中多次出现这类问题,解决的基本思路有两条:一 是按照颜色的种类进行分类;二是按区域一个一个地涂色.在具体填 涂的过程中应用计数原理,找到问题的解决方案.
第18讲 │ 要点热点探究
【点评】 分清是分类还是分步,是决定用分类计算原理 还是分步计算原理的必要条件;分类时标准统一,做到不重不 漏.分步时程序清晰,做到独立、完整.如果题目中既要用到 分类计数原理,又要用到分步计数原理,一般应遵循“先分 类,再分步”的原则.
超实用高考数学复习教学课件:第1部分 第5讲排列组合二项式定理理
•
()
• A.20
B.40
C.60
D.120 C
【解析】 由题意可分成两类: (1)一名教师和三名学生,共 C13C35=30; (2)两名教师和两名学生,共 C23C25=30; 故不同的选派方案的种数是 30+30=60.故选 C.
• 5.(2020·合肥模拟)现有三本相同的语文书和一本数学书,分发 给三个学生,每个学生至少分得一本,不同分法的种数为 ( )
【解析】 (3x-1)5 的展开式的通项公式为 Tr+1=Cr5(3x)5-r(-1)r, 令 5-r=1,可得 r=4, 所以 a1=C45×3×(-1)4=15; 在(3x-1)5=a0+a1x+a2x2+a3x3+a4x4+a5x5 中, 令 x=1,可得 a0+a1+a2+a3+a4+a5=(3-1)5=32.
(1)当三个数为 1,1,4 时,共有 C13=3 种排法; (2)当三个数为 1,2,3 时,共有 A33=6 种排法; (3)当三个数为 2,2,2 时,只有 1 种排法, 由分类计数原理可得,共有 3+6+1=10 种不同排法,即这样的数 共有 10 个.故选 C.
• 3.(2020·山西四校联考)高三要安排毕业晚会的4个音乐节目,2 个舞蹈节目和1个曲艺节目的演出顺序,要求2个舞蹈节目不连排, 则不同排法的种数是
计数原理得出总数.②分步法:选定一个适当的标准,将事件分成
几个步骤来完成,分别计算出各步骤的排列数,再由分步乘法计数
原理得出总数. • (2)捆绑法:相邻问题捆绑处理,即可以把相邻元素看作一个整 体与其他元素进行排列,同时注意捆绑元素的内部排列.
• (3)插空法:不相邻问题插空处理,即先考虑不受限制的元素的 排列,再将不相邻的元素插在前面元素排列后的空中.
排列组合二项式定理复习ppt中小学教学课件
闻,由同狱鲁思蒂谦笔录成书《马可.波
罗游记》, 此书盛道东方之富庶和文明,
深受大众喜爱和传诵. 后来,他获释后
回到威尼斯. 1324年,马可·波罗70岁。
当年去世,葬於威尼斯的圣.多雷玆教
堂
。
( 威尼斯) 帕米尔高原
波 斯
(大都)
河西走廊
吐鲁番
楼兰古城
玉门关
敦煌
秦陵兵马俑
大雁塔
真真假假
马可·波罗一行经过长途跋涉,来到了繁华的 楼兰城,见到了美丽的楼兰姑娘。
D 10
3.1 3 32 399 被4除所得的系数为( A )
A.0 B.1
C.2
D.3
二填空题
1(05湖南 ) (1 x) (1 x)2 (1 x)3 (1 x)6 展开式中x2 的系数是___3_5__________
2 20012000 被22除所得的余数为 1 。
3 已知 (x 1)6 (ax 1)2 展开式中的 x3 系数是56,
例1:1993年全国高考题:同室4人各写1张贺年卡,先集
中起来,然后每人从中各拿1张别人送出的贺年卡,则4张
贺年卡不同的分配方式有( )
A.6种
B.9种
C.11种
D.23种
解法1:设四人A,B,C,D写的贺年卡分别是a,b,c,d, 当A拿贺年卡b,则B可拿a,c,d中的任何一个,即B拿a, C拿d,D拿c或B拿c,D拿a,C拿d或B拿d,C拿a,D拿c, 所以A拿b时有三种不同分配方法.同理,A拿c ,d时也各
3×3×3×3=81
1.排列和组合的区别和联系:
名称
排列
组合
一个~
从n个不同元素中取出m个元 素,按一定的顺序排成一列
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)加法原理:做一件事,完成它可以有 N类办法 在第一类办法中有m1种不同的方法,在第二类办法 中有m2种不同的方法……在第n类办法中有mn种不 同的方法。那么完成这件事共有N= m1+ m2+……+ mn种不同的方法。
(二)乘法原理:做一件事,完成它需要分成 n个
步骤
做第一步有m1种不同的方法,做第二步有m2种不同的 方法……做第n步有mn种不同的方法。那么完成这件事 共有N=m1m2……mn种不同的方法。
从乙地到丙地有三条陆路可走 从甲地不经过乙地到丙地有两条水路可走
甲
丙
乙
1、从甲地经乙地到丙地有多少种不同的走法? 2、从甲地到丙地共有多少种不同走法?
练习4
如图
从甲地 到乙地有2 条路可通,
从乙地到丙地有3条路可通
从甲地到丁地有4条路可通 从丁地到丙地有2条路可通
从甲地到丙地有多少种不同的走法?
甲 乙
练习1 从甲地到乙地,可以乘火车,也可以乘轮 船,还可以乘汽车。一天中火车有4班,汽 车有2班,轮船有3班。问:一天中乘坐这 些交通工具从甲地到乙地共有多少种不同 走法?
练习2
有数字1、2、3、4、5、6、7、8、9可以组 成多少个七位数字的电话号码(各位上数 字允许重复)?
练习3
如图
从甲地到乙地有两条陆路可走,
丁
丙
解:(1)从书架上任取一本书,有两类 办法:第一类 办法是从上层取数学书,可以从6本书中任取一本,有6 种方法;第二类办法是从下层取语文书,可以从5本书中 任取一本,有5种方法; 据加法原理得到不同的取法种 数为:N=m1+m2=6+5=11 答:从书架上任取一本书有11种不同的取法。 (2)从书架上任取数学书语文书各1本,可以分成两个步骤 完成。第一步,取1本数学书有6种方法。第二步,取1语文 书有5种方法。根据乘法原理得到不同的取法种数为: N=m1.m2=6×5=30 答:从书架上任取数学书语文书各1本有30种不同的取法。
第九章 排列、组合、二
项式定理
9.1基本原理
教学目的: 1、正确理解加法原理和乘法原理
2、能正确运用它们来解决排列组合问题
教学重点:
加法原理和乘法原理的区别
教学难点: 对复杂事件的分步与分类
例1
书架上层放有6本不同的数学书,下层放有5本不同 的语文书。 (1)从中任取1本有多少种不同的取法? (2)从中任取数学书语文书各1本,有多少种不同 的取法?
作业
例2
由 可数 可以字 以组 1 重成、 复多 2 的少、 三个 3 位各 数位、 ?数 4 字、 5
解:要组成一个三位数可以分成 三个步骤完成:
第一步确定百位数字,从5个数字中任选一个数字 共有5种选法; 第二步确定十位数字,由于数字允许重复仍有5种选法 第三步确定个位数字,同理也有5种选法 根据乘法原理 可以组成的三位数的个数为: N=5×5×5=125
问题1
某人从甲地到乙地,旱路有5条,水 路有4条,问从甲地到乙地有多少种 不同走法?
问题2
从甲村到达乙村有3条路,从乙村到达丙村 有2条路。问从甲村经乙村到达丙村共有多 少种不同走法?甲Biblioteka 乙甲 丙乙
思考?
由 数 不可 字 可以 1 以组 、 重成 2 复多 、 的少 3 三个 各 位位、 数数 4 ?字、 5