非线性系统的李雅普诺夫稳定性分析
李雅普诺夫稳定性分析

⑥ V(x)函数只表示了平衡状态附近的某领域内的局部 运动稳定状况。不能提供域外的运动信息。 ⑦ V(x)的构造需要较多技巧,可通过计算机来完成, 人力难以估测。因此,此方法常用于难以判定的复 杂问题。例如高阶时变非线性系统。
李雅普诺夫稳定性在线性系统中的应用
线性系统中的应用
线性连续定常系统稳定性分析 线性离散定常系统稳定性分析 线性连续时变系统稳定性分析 线性离散时变系统稳定性分析
V ( x) 0,V ( x) 0,V ( x) 0
李雅普诺夫函数讨论
⑤ V ( x) 0 V ( x) 0 V ( x) 0
能量的趋近速度是负的,所以能量最 终为0,趋向于原点,系统是渐进稳 定的。 能量最终为可能0,趋向于原点,也 有可能停止在ε内的某处。 能量是递增的,因此是不稳定的。
李雅普诺夫稳定性
上述定理的标量函数V(X,t)称为李亚普诺夫函数. 李亚普诺夫稳定性定理是判定系统稳定的充分条件, 但非必要条件。 一般李亚普诺夫函数对某个系统来说不止一个,即不 唯一。
状态 系统 能量函数
寻找的
?
系统 稳定
李雅普诺夫稳定性
示例有一个非线性状态方程,Xe=0为一个平衡状态
是否就一定不稳定呢?是否标量函数不合适呢?需要另外判断。 从李雅普诺夫第一方 法来看,解特征方程
s 1 1 2 sI A 1 s 1 s 2s 2 0
李雅普诺夫函数讨论
李雅普诺夫第二方法关键在于寻找一个满足条件的李 雅普诺夫函数。 ① V(x)是满足稳定性盘踞条件的一个正定标量函数,具 有连续一阶偏导。 ② 对于一个给定系统,如果V(x)能找到,那么通常是非 唯一的,但是不影响结论一致性。 ③ V(x)最简形式是二次型,但未必都是。 ④ 如果V(x)是标准二次型,V(x)可表示为从原点到x的 距离。V (x) 表征了系统相对原点运动的速度。
5.4_非线性系统的李雅普诺夫稳定性分析解析

克拉索夫斯基法(3/7)
V ( x ) [ f ( x ) f ( x )] f ( x ) f ( x ) x f ( x ) f ( x ) x x x f ( x) J ( x) f ( x) f ( x) J ( x) f ( x) ˆ ( x) f ( x) f ( x) J
克拉索夫斯基法(6/7)
例4-12 试确定如下非线性系统的平衡态的稳定性:
3x1 x2 f ( x) x 3 x x x 2 1 2
(t ) f ( x ) x
克拉索夫斯基法(2/7)
定理5-11 非线性定常连续系统的平衡态xe=0为渐近稳定的充 分条件为
ˆ ( x ) J ( x) J ( x) J
为负定的矩阵函数,且
V ( x) x x f ( x) f ( x)
为该系统的一个李雅普诺夫函数。
由于 V ( x) f ( x) f ( x)为系统的一个李雅普诺夫函数,即
f ( x) f ( x) 正定。
ˆ (x)负定,则 V ( x, t ) f ( x ) J ˆ ( x) f ( x )必为负定。 因此,若 J
所以 , 由定理 5-4 知 , 该非线性系统的平衡态 xe=0 是渐近稳 定的。
0 1 ˆ J ( x) J ( x) J ( x) 1 14
不是负定矩阵 , 故由克拉索夫斯基定理判别不出该系统 为渐近稳定的。
可见,该定理仅是一个充分条件判别定理。
克拉索夫斯基法(5/7)
若 V(x)=f(x)f(x) 正定 , 为 Lyapunov 函数 , 则说明只有当 x=0 时,才有V(x)=0,即原点是唯一的平衡态。 因此,只有原点是系统的由该定理判别出的渐 近稳定的平衡态一定是大范围渐近稳定的。 由克拉索夫斯基定理可知 ,系统的平衡态xe=0是渐近稳定 的条件是J(x)+J(x)为负定矩阵函数。 由负定矩阵的性质知 , 此时雅可比矩阵 J(x) 的对角线 元素恒取负值 , 因此向量函数 f(x) 的第 i 个分量必须包 含变量xi, 否则 , 就不能应用克拉索夫斯基定理判别该 系统的渐近稳定性。 将克拉索夫斯基定理推广到线性定常连续系统可知 :对称 矩阵A+A负定,则系统的原点是大范围渐近稳定的。
李雅普诺夫稳定性分析方法

(2)李雅普诺夫第二方法
• 也称直接法,属于直接根据系统结构判断内 部稳定性的方法.
• 该方法直接面对非线性系统,基于引入具有 广义能量属性的Lyapunov函数和分析李氏 函数的定量性, 建立判断稳定性的相应结 论.
• 因此直接法也是一般性方法----Lyapunov 第二法更具有一般性.
(2).平衡状态的形式.平衡状态 可由方程定 出,对二维自治系统, 的形式包括状态空 间中的点和线段.
(3).不唯一性.平衡状态 一般不唯一.
对定常线性系统而言,平衡状态 的解.
• 若矩阵A非奇,则有唯一解 • 若矩阵A奇异,则解 不唯一.
为方程
(4).孤立平衡状态,该状态是指状态空间彼此 分隔的孤立点形式的平衡状态,孤立平衡状 态的重要特征是:通过坐标移动可将其转换 为状态空间的原点.
• Lyapunov函数与
有关,用V(x)来
表示.
• 一般情况下V(x)>0 , 间的变化率.
表示能量随时
•当 少.
表明能量在运动中随时间推移而减
•当 加.
表明能量在运动中随时间推移而增
1.预备知识 1).标量函数V(x)性质意义:
令V(x)是向量x的标量函数,Ω是x空间包含 原点的封闭有限区域. (1).如果对所有区域Ω中的非零向量x,有 V(x)>0,且在x=0处有V(x)=0则在域Ω内称 V(x)为正定.
(3)用李氏方法分析的必要性 • 以一个例子说明:用特征值来判断线性时变
系统一般稳定性是会失效的.
• 其中特征值为 -1,-1.
• 但由于其解为
• 当 时,若 则必有 • 故平衡状态是不稳定的,即系统的实际表现
非线性系统的李雅普诺夫稳定性分析

非线性系统的李雅普诺夫稳定性分析(2/4)
本节主要研究Lyapunov方法在非线性系统中的应用。
由于非线性系统千差万别,没有统一的描述,目前也不存在 统一的动力学分析方法,因此对其进行稳定性分析是困难 的。 对于非线性系统,李雅普诺夫第二法虽然可应用于非线性 系统的稳定性判定,但其只是一个充分条件,并没有给出建 立李雅普诺夫函数的一般方法。 而只能针对具体的非线性系统进行具体分析。
V ( x ) V1 (x ,0,,0) dx1 V2 (x , x ,0,,0) dx2 Vn
0
1
x1
x2
xn
0
1
2
0
(x1 , x2 ,, xn )
dxn
变量梯度法 (5/10)
按变量梯度法构造李雅普诺夫函数方法的步骤如下。
1) 将李雅普诺夫函数V(x)的梯度假设为
由于 V ( x ) f ( x ) f ( x )为系统的一个李雅普诺夫函数,即
f ( x ) f ( x ) 正定。
ˆ (x)负定,则 V ( x, t ) f ( x ) J ˆ ( x ) f ( x )必为负定。 因此,若 J
所以 , 由定理 5-4 知 , 该非线性系统的平衡态 xe=0 是渐近稳 定的。
V x V 1 1 dV gradV ( x ) dx V Vn xn
舒尔茨和吉布生建议 ,先假设gradV具有某种形式 , 并由此 求出符合要求的V(x)和V'(x)。
1 6 0, 6 2 2 2 36 x 2 8 0 2 2 2 6 x2
ˆ ( x ) 负定,所以由克拉索夫斯基定理可知,平衡 故矩阵函数 J 态xe=0是渐近稳定的。
李雅普诺夫方法分析控制系统稳定性0306

2.渐近稳定 1)是李氏意义下的稳定
x(t ; x0 , t0 ) xe 0 2)lim t
与t0无关 一致渐进稳定
3.大范围内渐进稳定性
对 x0 s( )
t
都有 lim x(t; x0 , t0 ) xe 0
初始条件扩展到整个空间,且是渐进稳定性。
3.4 李雅普诺夫第二法(直接法)
稳定性定理:
f ( x, t ) 设系统状态方程:x 其平衡状态满足 f (0, t ) 0 ,假定 状态空间原点作为平衡状态( xe 0),并设 在原点邻域存在V ( x, t )对 x 的连续一阶偏 导数。
定理1:若(1) V ( x, t ) 正定; . (2) V ( x, t ) 负定; 则原点是渐进稳定的。 . 说明: V ( x, t ) 负定 能量随时间连续单调 衰减。 定理2:若(1) V . ( x, t ) 正定; (2) V . ( x, t ) 负半定; (3) V [ x(t ; x0 , t ), t ] 在非零状态不 恒为零,则原点是渐进稳定的。 V ( x) 如果V(x)还满足 lim x
数判据,Nquist稳定判据,根轨迹 判据等
非线性系统:相平面法(适用于一,
二阶非线性系统)
1982年,俄国学者李雅普诺夫提出的
稳定性定理采用了状态向量来描述, 适用于单变量,线性,非线性,定常, 时变,多变量等系统。
应用:自适应,最优控制,非线性控
制等。
主要内容:
李氏第一法(间接法):求解特征方
程的特征值
李氏第二法(直接法):利用经验和
技巧来构造李氏函数
2.1 稳定性基本概念
=Ax+Bu(u=0) 1.自治系统:输入为0的系统 x
李雅普诺夫稳定性

x bx5
这时线性化方法不能用来判断它的稳定性。
李雅普诺夫理论基础
例:证明下面单摆的平衡状态 ( , 0) 是不稳定的。
MR2 b MgR sin 0
式中 R 为单摆长度,M 为单摆质量, b 为铰链的摩擦系数,
g 是重力常数。(系统的平衡点是什么?)
在 的邻域内
sin sin cos ( ) h.o.t. ( ) h.o.t. 设 ~ ,那么系统在平衡点附近的线性化结果是
以速度 1 指数收敛于 x 0 。
例2:系统 x x2 , x(0) 1它的解为 x 1/(1 t),是个慢于任 何指数函数 et ( 0) 的函数。
3、局部与全部稳定性
定义:如果渐近(或指数)稳定对于任何初始状态都能 保持,那么就说平衡点是大范围渐近(或指数)稳定的, 也称为全局渐近(或指数)稳定的。
李雅普诺夫理论基础
§2.2 线性化和局部稳定性
李雅普诺夫线性化方法与非线性系统的局部稳定性有关。
Lyapunou线性化方法说明:在实际中使用线性控制方法基
本上是合理的。
对于自治非线性系统 x f (x) ,如果 f (x) 是连续可微的,那
么系统的动态特性可以写成( f (0) 0 ):
x
f x
李雅普诺夫理论基础
第二章 Lyapunov理论基础
稳定性是控制系统关心的首要问题。
稳定性的定性描述:如果一个系统在靠近其期望工作点的某 处开始运动,且该系统以后将永远保持在此点附近运动, 那么就把该系统描述为稳定的。
例如:单摆,飞行器 李雅普诺夫的著作《动态稳定性的一般问题》,并于1892
年首次发表。 1. 线性化方法:从非线性系统的线性逼近的稳定性质得出非
李雅普诺夫稳定性理论

1.2
李雅普诺夫稳定性及判别方法
线性系统稳定性分析的理论框架 稳定性分析 解析 方法 SISO的代数 分析方法 Routh判据 Houwitz判据 1892年俄国数学 家李雅普诺夫 第一 方法 第二 方法
根据SISO闭环特 征方程的系数判 定系统的稳定性
根据状态方程A阵 判定系统的稳定性
线性系统的稳定判据
线性定常系统 ∑=(A,b,c)
x Ax bu
y cx
(1-4)
平衡状态 xe 0 渐进稳定的充要条件是矩阵A的所有特征值均具有负实部。 以上讨论的都是指系统的状态稳定性,或称内部稳定性。但从工程意义上看, 往往更重视系统的输出稳定性。
1.2
李雅普诺夫稳定性及判别方法
1.2
李雅普诺夫稳定性及判别方法
与稳定性相关的几个定义
x xe :状态向量x与平衡状态 xe 的距离。
点集s():以xe为中心,为半径的超球体。 若xs() : x xe ,其中 x xe 为欧几里德范数。 则
当很小时,则称s()为xe的邻域。
如系统的解 x (t ; x0 , t0 ) 位于球域s()内,则:
x f [ x, t ]
x (t , x0 , t0 )
(1-2)
式(1-2)描述了系统(1-1)在n维状态空间中从初始条件(t0 x0 ) 出发的一条状态运动的轨迹,简称为系统的运动和状态轨线。
1.2
李雅普诺夫稳定性及判别方法
系统的平衡状态:若系统(1-1)存在状态矢量 xe ,对所有t, 使得: f ( xe , t ) 0 (1-3)
大范围渐 近稳定
渐近稳定
1.2
李雅普诺夫稳定性及判别方法
第4章李雅普诺夫稳定性分析

第4章李雅普诺夫稳定性分析李雅普诺夫稳定性分析是数学分析中的一个重要概念,它用于判断非线性系统在其中一点附近的稳定性。
李雅普诺夫稳定性分析方法最初由俄国数学家李雅普诺夫提出,广泛应用于控制论、微分方程和动力系统等领域。
在进行李雅普诺夫稳定性分析时,首先需要确定非线性系统的平衡点。
平衡点是指系统在其中一时刻的状态不再发生变化,即各个状态变量的导数为零。
在平衡点附近,可以通过线性化的方法来近似非线性系统,即将非线性系统转化为线性系统进行分析。
接下来,利用李雅普诺夫稳定性定理可以判断线性化系统的稳定性。
根据定理的不同形式,可以分为不动点稳定性定理和周期解稳定性定理。
不动点稳定性定理是指当线性化系统的特征根都具有负的实部时,非线性系统在平衡点附近是稳定的;而当至少存在一个特征根具有正的实部时,非线性系统在平衡点附近是不稳定的。
这个定理对于线性化系统为一阶系统或者线性化系统的特征根为复数的情况适用。
周期解稳定性定理是指当线性化系统的所有特征根满足一定条件时,非线性系统在周期解附近是稳定的。
这个定理对于封闭曲线解以及周期解的情况适用。
当线性化系统无法满足上述定理时,可以使用李雅普诺夫直接法来判断非线性系统的稳定性。
李雅普诺夫直接法是基于李雅普诺夫函数的概念,通过构造合适的李雅普诺夫函数来判断非线性系统的稳定性。
李雅普诺夫函数是满足以下条件的函数:1)李雅普诺夫函数的导数在其中一区域内是负定的,即导数的每个分量都小于或等于零;2)在平衡点附近,李雅普诺夫函数取得最小值。
通过构造合适的李雅普诺夫函数,并验证满足上述条件,就可以判断非线性系统的稳定性。
如果李雅普诺夫函数的导数在整个状态空间都是负定的,则非线性系统是全局稳定的;如果李雅普诺夫函数的导数在一些有限的状态空间内是负定的,则非线性系统是局部稳定的。
总之,李雅普诺夫稳定性分析是一种有力的工具,可以用于判断非线性系统的稳定性。
不过需要注意的是,李雅普诺夫稳定性分析方法仅适用于平衡点附近的稳定性分析,对于非线性系统的全局稳定性分析还需要其他的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(t ) f ( x ) x
克拉索夫斯基法(2/7)
定理5-11 非线性定常连续系统的平衡态xe=0为渐近稳定的充 分条件为
ˆ ( x ) J ( x) J ( x) J
为负定的矩阵函数,且
x f ( x) f ( x) V ( x) x
为该系统的一个李雅普诺夫函数。
a11 x1 a12 x2 a1n xn a x a x a x 22 2 2n n gradV 21 1 a x a x a x 2n 2 nn n n1 1
式中,aij(i,j=1,2,…,n)为待定系数,它们可以是常数,也可以是t 的函数或x1,x2,…,xn的函数。
由于 V ( x ) f ( x ) f ( x )为系统的一个李雅普诺夫函数,即
f ( x ) f ( x ) 正定。
ˆ (x)负定,则 V ( x, t ) f ( x ) J ˆ ( x ) f ( x )必为负定。 因此,若 J
所以 , 由定理 5-4 知 , 该非线性系统的平衡态 xe=0 是渐近稳 定的。
(t ) f ( x ) x
且所讨论的平衡态为原点,即xe=0。
变量梯度法 (2/10)
设所找到的非线性系统的判定平衡态 xe=0是渐近稳定的李雅 普诺夫函数为 V ( x ),它是 x 的显函数 , 而不是时间 t 的显函数 , 则 V(x)的单值梯度gradV存在。
梯度gradV是如下定义的n维向量:
阿依捷尔曼法
克拉索夫斯基法(1/7)
5.4.1 克拉索夫斯基法
设非线性定常连续系统的状态方程为
(t ) f ( x ) x
对该系统有如下假设: 1) 所讨论的平衡态xe=0; 2) f(x)对状态变量x是连续可微的,即存在雅可比矩阵
J ( x) f ( x) / x
对上述非线性系统,有如下判别渐近稳定性的克拉索夫斯 基定理。
而rot(gradV)=0的充分必要条件是: gradV的雅可比矩阵
Vi gradV ( x) x x j
nn
是对称矩阵,即
Vi V j x j xi i, j 1, 2, , n
当上述条件满足时,式(5-29)的积分路径可以任意选择,故 可以选择一条简单的路径,即依各个坐标轴xi的方向积分
由gradV可得如下V(x)的导数
( x ) (gradV ) x V x2 [a11 x1 a12 x2 a21 x1 a22 x2 ] 3 x x 2 1 2 x1 x2 (a11 a21 a22 x12 ) x2 (a12 a22 ) a21 x14
克拉索夫斯基法(4/7)
在应用克拉索夫斯基定理时,还应注意下面几点。 克拉索夫斯基定理只是渐近稳定的一个充分条件,不是必 要条件。 如对于渐近稳定的线性定常连续系统
1 0 1 x1 x x x 2 7 2 2
由于
1 6 0, 6 2 2 2 36 x 2 8 0 2 2 2 6 x2
ˆ ( x ) 负定,所以由克拉索夫斯基定理可知,平衡 故矩阵函数 J 态xe=0是渐近稳定的。
变量梯度法 (1/10)
5.4.2 变量梯度法
舒尔茨和吉布生在1962年提出的变量梯度法,为构造李雅普诺 夫函数提供了一种比较实用的方法。 该方法的思想是设法构造出Lyapunov函数的梯度来分析 Lyapunov函数的定号性。 设非线性定常连续系统的状态方程为
非线性系统的李雅普诺夫稳定性分析(2/4)
本节主要研究Lyapunov方法在非线性系统中的应用。
由于非线性系统千差万别,没有统一的描述,目前也不存在 统一的动力学分析方法,因此对其进行稳定性分析是困难 的。 对于非线性系统,李雅普诺夫第二法虽然可应用于非线性 系统的稳定性判定,但其只是一个充分条件,并没有给出建 立李雅普诺夫函数的一般方法。 而只能针对具体的非线性系统进行具体分析。
5) 确定平衡态xe=0渐近稳定的范围。
变量梯度法 (7/10)—例5-14
由上述构造过程可知,变量梯度法只是建立非线性系统的李 雅普诺夫函数的充分性方法。 用这种方法没有找到适宜的李雅普诺夫函数,并不意味着 平衡态就不是渐近稳定的。 例5-14 试确定如下非线性系统的平衡态的稳定性。
变量梯度法 (3/10)
由
V ( x ) V x 1 n (gradV ) x V x x1 xn
可知,V(x)可由gradV的线积分求取,即
V ( x ) (gradV ) dx
0 x x n 0
Vi dxi
i 1
式中,积分上限x是状态空间的一点(x1,x2,…,xn)。
1 x2 x 2 x2 x13 x
解 显然xe=0是系统的平衡态。
可设李雅普诺夫函数V(x)的梯度为
V1 a11x1 a12 x2 gradV V a x a x 2 21 1 22 2
变量梯度法 (8/10)
V ( x ) V1 (x ,0,,0) dx1 V2 (x , x ,0,,0) dx2 Vn
0
1
x1
x2
xn
0
1
2
0
(x1 , x2 ,, xn )
dxn
变量梯度法 (5/10)
按变量梯度法构造李雅普诺夫函数方法的步骤如下。
1) 将李雅普诺夫函数V(x)的梯度假设为
V x V 1 1 dV gradV ( x ) dx V Vn xn
舒尔茨和吉布生建议 ,先假设gradV具有某种形式 , 并由此 求出符合要求的V(x)和V'(x)。
可取作李雅普诺夫函数,因此,有
1 f ( x ) 3 J ( x) 2 1 1 3 x x 2 2 6 ˆ J ( x) J ( x) J ( x) 2 2 2 6 x 2
克拉索夫斯基法(7/7)
由塞尔维斯特准则有
更进一步 , 当 ||x||→∞ 时, 有||f(x)||→∞, 则该平衡态是大范围 渐近稳定的。 证明 当非线性系统的李雅普诺夫函数为
x f ( x) f ( x) V ( x) x
则其导数为
(t ) f ( x ) x
x f ( x) f ( x) V ( x) x
通常将aij选择为常数或t的函数。
变量梯度法 (6/10)
V ( x ) V1 (x ,0,,0) dx1 V2 (x , x ,0,,0) dx2 Vn
0
1
x1
x2
xn
0
1
2
0
(x1 , x2 ,, xn )
dxn
(5 31)
( x ) (gradV ) x ( x )。 定义 V 2) 由 V
克拉索夫斯基法(6/7)
例4-12 试确定如下非线性系统的平衡态的稳定性:
3x1 x2 f ( x) x 3 x x x 2 1 2
解 由于f(x)连续可导且
3 2 f ( x) f ( x) (3x1 x2 )2 ( x1 x2 x2 ) 0
克拉索夫斯基法(3/7)
( x ) [ f ( x ) f ( x )] V f ( x ) f ( x ) x f ( x ) f ( x ) x x x f ( x) J ( x) f ( x) f ( x) J ( x) f ( x) ˆ ( x) f ( x) f ( x) J
非线性系统的李雅普诺夫稳定性分析(4/4)
由于非线性系统的Lyapunov稳定性具有局部的性质,因此在 寻找Lyapunov函数时,须通过将系统的坐标轴平移,将系统的 所讨论的平衡态移至原点。
在讨论稳定性时,通常还要确定该局部渐近稳定的平衡 态的范围。 下面分别讨论如下3种非线性系统稳定性分析方法。 克拉索夫斯基法 变量梯度法
由 场 论 知 识 可 知 , 若 梯 度 gradV 的 n 维 旋 度 等 于 零 , 即 rot(gradV)=0,则V可视为保守场,且上式所示的线积分与路 径无关。
V ( x ) (gradV ) dx
0
x
x n
0
V dx
i 1 i
i
(5 29)
变量梯度法 (4/10)
( x) 由平衡态渐近稳定时 V 为负定的条件,可以决定部 分待定参数aij。
3) 由限制条件
Vi V j x j xi i, j 1, 2,, n
式中决定其余待定参数aij。 4) 按式(5-31)求线积分,获得V(x)。
验证V(x) 的正定性,若不正定则需要重新选择待定Leabharlann 数aij,直至V(x)正定为止。
李雅普诺夫稳定性 分析
非线性系统的李雅普诺夫稳定性分析(1/4)
非线性系统的李雅普诺夫稳定性分析
在线性系统中,如果平衡态是渐近稳定的,则系统的平衡态是 唯一的,且系统在状态空间中是大范围渐近稳定的。 对非线性系统则不然。 非线性系统可能存在多个局部渐近稳定的平衡态(吸 引子),同时还存在不稳定的平衡态(孤立子),稳定性的 情况远比线性系统来得复杂。 与线性系统稳定性分析相比,由于非线性系统的多样 性和复杂性,所以非线性系统稳定性分析也要复杂得 多。
0 1 ˆ J ( x) J ( x) J ( x) 1 14