函数的平均变化率导学案

函数的平均变化率导学案
函数的平均变化率导学案

函数的平均变化率导学案

【学习要求】

1.理解并掌握平均变化率的概念.

2.会求函数在指定区间上的平均变化率.

3.能利用平均变化率解决或说明生活中的一些实际问题.

【学法指导】

从山坡的平缓与陡峭程度理解函数的平均变化率,也可以从图象上数形结合看平均变化率的几何意义.

【知识要点】

1.函数的平均变化率:已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx = ,Δy =y 1-y 0=f (x 1)-f (x 0)= ,则当Δx ≠0时,商

x

x f x x f ?-?+)()(00=____叫做函数y =f (x )在x 0到x 0+Δx 之间的 .

2.函数y =f (x )的平均变化率的几何意义:Δy Δx

=__________ 表示函数y =f (x )图象上过两点(x 1,f (x 1)),(x 2,f (x 2))的割线的 . 【问题探究】

在爬山过程中,我们都有这样的感觉:当山坡平缓时,步履轻

盈;当山坡陡峭时,气喘吁吁.怎样用数学反映山坡的平缓与陡峭

程度呢?下面我们用函数变化的观点来研究这个问题.

探究点一 函数的平均变化率

问题1 如何用数学反映曲线的“陡峭”程度?

问题2 什么是平均变化率,平均变化率有何作用?

例1 某婴儿从出生到第12个月的体重变化如图所示,试分别计算

从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率.

问题3 平均变化率有什么几何意义?

跟踪训练1 如图是函数y =f (x )的图象,则:

(1)函数f (x )在区间[-1,1]上的平均变化率为________;

(2)函数f (x )在区间[0,2]上的平均变化率为________.

探究点二 求函数的平均变化率

例2 已知函数f (x )=x 2,分别计算f (x )在下列区间上的平均变化率:

(1)[1,3];(2)[1,2];(3)[1,1.1];(4)[1,1.001].

跟踪训练2 分别求函数f (x )=1-3x 在自变量x 从0变到1和从m 变到n (m ≠n )时的平均变化率.

问题 一次函数y =kx +b (k ≠0)在区间[m ,n ]上的平均变化率有什么特点?

探究点三 平均变化率的应用

例3 甲、乙两人走过的路程s 1(t ),s 2(t )与时间t 的关系如图,试比较两人的平均速度哪个大?

跟踪训练3 甲用5年时间挣到10万元,乙用5个月时间挣到2万元,如何比较和评价甲、乙两人的经营成果?

【当堂检测】

1.函数f (x )=5-3x 2在区间[1,2]上的平均变化率为__________

2.一物体的运动方程是s =3+2t ,则在[2,2.1]这段时间内的平均速度为________

3.甲、乙两厂污水的排放量W 与时间t 的关系如图所示,治污效果较好的是________.

【课堂小结】

1.函数的平均变化率可以表示函数值在某个范围内变化的快慢;平均变化率的几何意义是曲线割线的斜率,在实际问题中表示事物变化的快慢.

2.求函数f (x )的平均变化率的步骤:

(1)求函数值的增量Δy =f (x 2)-f (x 1);

(2)计算平均变化率Δy Δx =1

212)()(x x x f x f --. 【拓展提高】

1.设函数()y f x =,当自变量x 由0x 改变到0x x +?时,函数的改变量y ?为( )

A .0()f x x +?

B .0()f x x +?

C .0()f x x ?

D .00()()f x x f x +?-

2.质点运动动规律23

s t=+,则在时间(3,3)t

+?中,相应的平均速度为()

A.6t

+?B.

9

6t

t

+?+

?

C.3t

+?D.9t

+?

【教学反思】

九年级数学第26章反比例函数导学案

第26章反比例函数导学案 26.1.1反比例函数(31) 课型:编者:使用时间: 学习目标: 1.理解并掌握反比例函数的概念 2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想 学习重点:理解反比例函数的概念,能根据已知条件写出函数解析式 学习难点:理解反比例函数的概念 学习过程: 一、温故知新 1、回忆什么叫做函数?什么是正比例函数、什么是一次函数?它们的一般形式是怎样的?·一般地,在一个变化的过程中,如果有两个变量x和y,并且对于x的每个确定的值,y都有的值与之对应,则称x为,y是x的 . 2、我们学过哪些函数,它们分别是怎样定义的? ?一般地,形如的函数,叫做正比例函数,其中叫做比例系数。 ?一般地,形如的函数,叫做一次函数。 ?一般地,形如的函数,叫做二次函数。 二、自主学习 自学课本P2“思考” 自学提纲: 探究一:下列问题中,变量间具有函数关系吗? 探究二:如果有,它们的解析式有什么共同特点? 探究三:尝试给反比例函数下定义,并指出自变量x的取值范围。 1、京沪铁路全程为1463km,某次列车的平均速度为v(km/h)随此次列车的全程运行时间t(h)的变化而变化。 2、某住宅小区要种植一个面积为1000 2 m的矩形草坪,草坪的长y(单位:m)随宽x (单位:m) 的变化而变化。 3、已知北京市的总面积为1.68×4 10平方千米,人均占有的土地面积s(单位:平方千米/人)随全市总人口n(单位:人)的变化而变化。 以上三个函数的共同点: 归纳:一般地,形如的函数称为反比例函数。 反比例函数的自变量x的取值范围是. 探究四:请说一说例1的解题思路。 三、练一练

第九章 反比例函数复习学案

双曲线的两个分支分别位于第 象限; ,y 随着x 。 双曲线的两个分支分别位于第 象限;在 ,y 随着的增大而 。 第九章 反比例函数复习学案 【知识点 1】反比例函数 1、 反比例函数的定义:一般地,形如_________( )的函数叫做反比例函数。其中x 是______,_______是_______的函数,k 是________ 2、 反比例函数自变量的取值范围:____________________ 3、 分式为0的条件:______________________ 【基础练习】 1、下列函数中y 是x 的反比例函数的有( )个 (1)x a y =(2)xy = -1 (3)11 +=x y (4)13y x = A 、1 B 、2 C 、 3 D 、4 2、函数5 2)2(--=a x a y 是反比例函数,则a 的值是( ) A 、-1 B 、-2 C 、2 D 、2或-2 【知识点 2】反比例函数的图像与性质 注意:反比例函数的图像是_____________________对称图形。 【基础练习】 1、若x k y 1 += 的图像经过(-1,3),则k =_________________ 2、写出一个反比例函数,使它的图象经过第二、四象限__________________ 3、已知函数2 5 (1)m y m x -=+是反比例函数,且图像在每一象限内,y 随x 的增大而增大, 则 m 的值是______ 4、正比例函数5y x =-的图象与反比例函数(0)k y k x =≠的图象相交于点A (1,a ),则k =________. 【知识点 3】反比例函数性质的应用 【基础练习】 1、若点(1x ,1y )、(2x ,2y )和(3x ,3y )分别在反比例函数2 y x =- 的图象上,且1230x x x <<<,则下列判断中准确的是( ) A .123y y y << B .312y y y << C .231y y y << D .321y y y << 2、反比例函数x y 6 = 图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<,则1y ,2y ,3y 的大小关系是 ( ) A .321y y y << B .312y y y << C .213y y y << D .123y y y << 3、一次函数1y kx b =+ 和反比例函数k =y x 的图象, 观察下列图象,写出当k ax b x +>时, x 的取 值范围________________________。 【知识点 4】反比例函数k 的几何意义 【基础练习】 1.已知点P 是反比例函数 图象上的一点,PD ⊥x 轴于D .则△POD 的面积为__________. 2y x =

人教版高中数学全套教案导学案111变化率问题

1. 1.1变化率问题课前预习学案。知道平均变化率的定义。,课本中的问题1,2 预习目标:“变化率问题”预习内容:气球膨胀率问题1 气球,,随着气球内空气容量的增加我们都吹过气球回忆一下吹气球的过程,可以发现 ,如何描 述这种现象呢?的半径增加越来越慢.从数学角度43?r?r)V(dmVL r)气球的体积:(单位:之间的函数关系是)与半径(单位33V?)r(V V r,如果将半径那么表示为体积的函数3?4在吹气球问题中,当空气容量V从0增加到1L时,气球的平均膨胀率为__________ 当空气容量V从1L增加到2L时,气球的平均膨胀率为__________________ 当空气容量从V增加到V时,气球的平均膨胀率为_____________21问题2 高台跳水 h 与起跳后)单位:m在高台跳水运动中,,运动员相对于水面的高度h(2如何用运动+10. +6.5-4.9tt 的时间t(单位:s)存在函数关系h(t)= v? 粗略地描述其运动状态员在某些时间段内的平均速度v5t.?00?=_________________ 这段 时间里,在v2?t?1=_________________ 这段时间里,在ot 问题3 平均变化率????xffxx到从已知函数,则变化率可用式子_____________,此式称之为函数1x?xx看做是相表示=___________,可把,即习惯上用 ___________.x??x?x122x?xx__________________,代替对于类似有的一个“增量”,可用,?x)?f(x?211_______________________ 于是,平均变化率可以表示为提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 课内探究学案 1.学习目标理解平均变化率的概念; 2.了解平均变化率的几何意义; .

新人教版九年级下数学反比例函数导学案

杏山镇中心学校九年级数学导学案 课题:反比例函数 备课人: 审核人:学习目标:1.理解并掌握反比例函数的概念 2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式 学习重点:理解反比例函数的概念,能根据已知条件写出函数解析式; 学习难点:理解反比例函数的概念及建模; 知识链接:1、形如)0(≠=k kx y 的函数叫做正比例函数,2,形如 )0k b (≠+=是常数,且、k b kx y 的函数叫做一次函数。当b=0时称为正比例函数 1、一般地,如果两个变量x 、y 之间的关系可以表示成y = (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.反比例函数的基本形式还能表示为 2、下列等式中,哪些是反比例函数? (填序号) (1)3x y = (2)x y 2-= (3)xy =21 (4)25+= x y (5)x y 23- = (6)31 +=x y (7)y =x -4 3、苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关系式为 4、矩形的面积为4,一条边的长为x ,另一条边的长为y ,则y 与x 的函数解析式为 5、函数2 1 +- =x y 中自变量x 的取值范围是 6、y 是x 的反比例函数,下表给出了x 与y 的一些值: x -2 -1 2 1- 21 1 3 y 3 2 2 -1 (1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表。 三、探究、合作、交流:(根据掌握的知识,认真填写下列内容) 1、已知y 与x 成反比例,且当x =-2时,y =3,则y 与x 之间的函数关系式是 , 当x =-3时,y = 2、已知y-2与x 成反比例,当x=3时,y=1,则y 与x 间的函数关系式是 。 3、当n 何值时,y =(n 2+2n )2 1 n n x +-是反比例函数?。 4、已知y 与x 成反比例,且当x=2时,y=6,求y 与x 的函数关系式. 5、已知y 与x-1成反比例函数,当x=2时y=1,则这个函数的表达式是( ) A 、11-=x y B 、1-=x k y C 、11+=x y D 、11 -=x y 6、已知y 与x 2成反比例,并且当x=3时y=4.

九年级数学上册 反比例函数全章学案(无答案)配套练习讲解(无答案) 北师大版

反比例函数概念 1、写出函数关系式,找出共同点, (1)长方形的面积为122 cm ,设一边为xcm,邻边为ycm ,则x 与y 的函数关系式为:y= . (2)京沪线铁路全长为1463,乘坐某次列车所用的时间t 与该次列车平均速度v 的函数关系为: . (3)已知工程队承包一项工程,写出工程效率v 与完成时间之间t 的函数关系式为: . 上述三个函数是一次函数吗? 2、记住反比例函数的概念:一般地,如果两个变量x,y 之间的关系可以表示成y=k x (k ≠0)的形式,那么我们称y 是x 的反比例函数。 引导学习——概念的巩固与应用 3、下列函数中,哪些是反比例函数,其k 值为多少? ①5y x = ②33y x =- ③ 25y x -= ④y =⑤1 32y =? ⑥1 2y -=- ⑦1 2y x -= ⑧14xy = ⑨ y=5-x ⑩ 33 y x -= 4、例题 例1 已知( ) 22 1 2m m y m m x +-=+ (1) 当m 为何值时,y 是x 的正比例函数? (2) 当m 为何值时,y 是x 的反比例函数? 解: 例2已知y 是x 的反比例函数,当x=3时,y=4求:当x=1时,y 的值. 四、检测: 反比例函数练习题第一课时[A 组] 1、下列函数中,哪些是反比例函数?( )

(1)y=-3x ; (2)y=2x+1; (3) y=-x 2 ;(4)y=3(x-1)2+1; 2、下列函数中,哪些是反比例函数(x 为自变量)?说出反比例函数的比例系数: (1) x y 1 - = ;(2)xy=12 ;(3) xy=-13 (4)y=3x 3、列出下列函数关系式,并指出它们是分别什么函数.说出比例系数 ①火车从安庆驶往约200千米的合肥,若火车的平均速度为60千米/时,求火车距离安庆的距离S(千米)与行驶的时间t(时)之间的函数关系式 ②某中学现有存煤20吨,如果平均每天烧煤x 吨,共烧了y 天,求y 与x 之间的函数关系式. 4、.已知一个长方体的体积是100立方厘米,它的长是ycm ,宽是5cm ,高是xcm . 写出用高表示长的函数式; 写出自变量x 的取值范围; 当x =3cm 时,求y 的值 5、已知y 与x 成反比例,并且x =3时y =7, 求:(1)y 和x 之间的函数关系式;(2)当 1 3x = 时,求 y 的值 (3)y =3时,x 的值。 7、写出一个经过点(-3,6)的反比例函数 你还能写出另外一个也经过点(-3,6)的双曲线吗? 8、当m 为何值时,函数224 -= m x y 是反比例函数,并求出其函数解析式. 9、已知y 成反比例,且当4b =时,1y =-。 求当10b =时,y 的值。 10、若()2 31 1m m y m x ++=+是反比例函数,求m 的值. 11、已知函数k y x = (k ≠0)过点()1,3-,求函数解析式

最新变化率问题导学案

变化率问题导学案

§1.1.1变化率问题导学案 一问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ?气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是。 ?如果将半径r表示为体积V的函数,那么。 分析:, ⑴当V从0增加到1时,气球半径增加了?Skip Record If...? 气球的平均膨胀率为。 ⑵当V从1增加到2时,气球半径增加了?Skip Record If...? 气球的平均膨胀率为。 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V1增加到V2时,气球的平均膨胀率是多少? 问题2 高台跳水 在高台跳水运动中,运动员相对于水面的高度h(单位:m) 与起跳后的时间t(单位:s)存在函数关系h(t)= -Array 4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速?Skip Record If...?度粗略地描述其运动状态? 思考计算:?Skip Record If...?和?Skip Record If...?的平均速度 ?Skip Record If...? 在?Skip Record If...?这段时间里,?Skip Record If...?= ; 在?Skip Record If...?这段时间里, ?Skip Record If...?= ; 探究:计算运动员在?Skip Record If...?这段时间里的平均速度,并思考以下问题: ⑴运动员在这段时间内使静止的吗? ⑵你认为用平均速度描述运动员的运动状态有什么问题吗? 探究过程:如图是函数h(t)= -4.9t2+6.5t+10的图像,结合图形可知,?Skip Record If...?, 所以,?Skip Record If...?= ; 仅供学习与交流,如有侵权请联系网站删除谢谢12

变化率与导数、导数的计算学案(高考一轮复习)

20XX 年高中数学一轮复习教学案 第二章 函数、导数及其应用 第11节 变化率与导数、导数的计算 一.学习目标: 1.了解导数概念的实际背景,理解导数的几何意义; 2.能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =1 x 的导数; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 二.学习重、难点: 1.学习重点:能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数; 2.学习难点:理解导数的几何意义. 三.学习方法:讲练结合 四.自主复习: 1.导数的概念 (1)函数在x =x 0处的导数 函数y =f (x )在x =x 0处的瞬时变化率是__________________________=lim Δx →0 Δy Δx , 称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0 . (2)导函数:当上式中的x 0看作变量x 时,函数f ′(x )为f (x )的________. (3)导数的几何意义:f ′(x 0)是曲线y =f (x )在点P (x 0,f (x 0))处的________,相应的切线方程是_____________________.

2.基本初等函数的导数公式 3.运算法则 (1)[f(x)±g(x)]′=_________________; (2)[f(x)·g(x)]′=________________________; (3)[f(x) g(x) ]′=_______________________ (g(x)≠0).五.复习前测: 1.已知函数f(x)=sin x+ln x,则f′(1)的值为() A.1-cos1 B.1+cos1 C.cos1-1 D.-1-cos1

反比例函数导学案

课题:反比例函数 学习目标:1.理解并掌握反比例函数的概念 2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式 学习重点:理解反比例函数的概念,能根据已知条件写出函数解析式; 学习难点:理解反比例函数的概念及建模; 知识链接:1、形如)0(≠=k kx y 的函数叫做正比例函数,2、形如 )0k b (≠+=是常数,且、k b kx y 的函数叫做一次函数。当b=0时称为正比例函数 一、引入新知 1、一般地,如果两个变量x 、y 之间的关系可以表示成y = (k 为常数,k ≠0)的 形式,那么称y 是x 的反比例函数.反比例函数的基本形式还能表示为 2、下列等式中,哪些是反比例函数? (填序号) (1)3x y = (2)x y 2 -= (3)xy =21 (4)25+= x y (5)x y 23- = (6)31 +=x y (7)y =x -4 3、苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关系式为 4、矩形的面积为4,一条边的长为x ,另一条边的长为y ,则y 与x 的函数解析式为 5、函数2 1 +- =x y 中自变量x 的取值范围是 6、 (1二、探究、合作、交流:(根据掌握的知识,认真填写下列内容) 1、已知y 与x 成反比例,且当x =-2时,y =3,则y 与x 之间的函数关系式是 , 当x =-3时,y = 2、已知y-2与x 成反比例,当x=3时,y=1,则y 与x 间的函数关系式是 。 3、当n 何值时,y =(n 2+2n )2 1 n n x +-是反比例函数?。 4、已知y 与x 成反比例,且当x=2时,y=6,求y 与x 的函数关系式. 5、已知y 与x-1成反比例函数,当x=2时y=1,则这个函数的表达式是( ) A 、11-= x y B 、1-=x k y C 、11+=x y D 、11 -=x y

第26章反比例函数全章导学案(共7份)

赣州一中2014—2015学年度第一学期初三数学导学案 26.1 反比例函数 【学习目标】 1.会识别相关量之间的反比例关系,理解反比例函数的意义,能确定简单的反比例函数关系式. 2.通过对实际问题的分析、类比、归纳,培养学生的能力,并体会函数在实际问题中的应用. 【学习重点】理解和领会反比例函数的概念 【学习难点】反比例函数的建模,能列出实际问题中反比例关系式.. 【学习过程】 一、课前导学:预习课本第1页至第3页,完成下列问题: 1.我们形如 的函数叫做一次函数,当 时,又叫做正比例函数. 2.探究:反比例函数的意义 问题1:(1)京沪线铁路全长1 463km ,某次列车的平均速度vkm/h?随此次列车的全程运行问题th 的变化而变化,其关系可用函数式表示为: (2)某住宅小区要种植一个面积为1 000m 2 矩形草坪,草坪的长ym 随宽xm?的变化而变化,可用 函数式表示为 (3)已知北京市的总面积为 1.68×104km 2 ,人均占有的土地面 积Skm 2 /人,随全市总人口n 人的变化而变化,其关系可用函数式表示为 . 问题2上述问题中的函数关系式都有什么共同的特征? 答: . 4. 反比例函数的意义:一般的,形如 的函数,叫做反比例函数,其中x 是自变量, y 是函数学.自变量的取值范围是 的一切实数. 5.下列哪个等式中的y 是x 的反比例函数? 6.已知y 是x 的反比例函数,当x=2时,y=6.写出y 与x 的函数关系式; 求当x=4时,y 的值. 7.若y 与x 成正比例,z 与y 成反比例,则x 与z 之间成______________关系. 8.已知y 与(2x+1)成反比例,且x=1时,y=2,那么当x=0时,y 的值是 二、 合作、交流、展示: 1.比例函数的意义:反比例函数的解析式 ,y= x k 反比例函数的变形形式:(1)xy=k (2)1 -=kx y 2.例题1.下列等式中,哪些是反比例函数? (1)3 x y = (2)x y 2-= (3)xy =21 (4)25+=x y (5)x y 23- = (6)31 +=x y (7)y =x -4 例题2.当m 取什么值时,函数2 3)2(m x m y --=是反比例函数? 例题3(拓展提升).已知函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5 (1)求y 与x 的函数关系式; (2)当x =-2时,求函数y 的值 归纳总结: 注意y 1与x 和y 2与x 的函数关系中的比例系数 ,故不能都设为k , 要用 的字母表示。 三、巩固与应用: 1已知函数y=(m+2)x |m |- 3是反比例函数,则m 的值是 .. 2.已知y=y 1-y 2,y 1与x 成反比例,y 2与x -2成正比例,并且当x=3时,y=5; 当x=1时,y=-1.求y 与x 之间的函数关系式. 3.下列各变量之间的关系属于反比例函数关系的有( ) ①当路程s 一定时,汽车行驶的平均速度v 与行驶时间t 之间的关系; ②当电压U 一定时,电路中的电阻R 与通过的电流强度I 之间的函数关系; ③当矩形面积S 一定时,矩形的两边a 与b 之间的函数关系; ④当受力F 一定时,物体所受到的压强p 与受力面积S 之间的函数关系. A.①②③ B.②③④ C.①③④ D.①②③④ 4.一张一百元的新版人民币把它换成50元的人民币,可得几张?换成10元的人民币可得几张?依次换成5元,2元,1元的人民币,各可得几张?换得的张数y 与面值x 之间有怎样的关系呢?请同学们填表: 换成的面值x(元) 50 20 10 5 2 1 换成的张数y(张) (1)用含有x 的代数式表示y. (2)换成的面值x 会怎样变化呢?变量y 是x 的什么函数?为什么? 四、小结: 1.反比例函数的意义;2.列出实际问题中反比例关系式 五、作业:必做:课本第3页; 选做:《作业精编》相应练习 赣州一中2014—2015学年度第一学期初三数学导学案 ()()()(). 5 18;57;76;3652x y x y xy x y ==-=+-=()()()(). 24;23;4.02;51====xy x y x y x y

导数的变化率学案.doc

临清三中高二年级导学案 编号:1编者:张慧时间:2013.02.25

可以看出,随者气球体积逐渐增大,它的平均膨胀率逐渐变小了. 思考:当空气容量从%增加到巧时,气球的平均膨胀率是多少? 答: 问题2高台跳水 在高台跳水运动中,运动员相对于水而的高度力(单位:冲与起跳后的时间t(单位:s)存在函数关系此)=-4.9F+6.5片10.如何用运动员在某些时间段内的平均速1度粗略地描述其运动状态? 思考计算:0 V 1 £ 0.5和1 C £ 2的平均速度v, ^E0

A(— 1,- 2)及临近一点8(-1 + & ,- 2 + △),),则段= _____ Ax 例2. 求y = /在工=%附近的平均变化率. 三、训练巩 1 .质点运动规律为S =尸+ 3,贝U在时间(3,3 + &)中相应的平均速度为 2.物体按照雄)=3广+汁4的规律作直线运动,求在4s附近的平均变化率. 四、小结提升: 1.平均变化率的概念; 2.函数在某点处附近的平均变化率. 五、达标检测:

(完整版)变化率与导数、导数的计算知识点与题型归纳

1 ●高考明方向 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义求函数 y =c (c 为常数),y =x ,y =x 2,y =x 3,y =1 x 的导数. 4.能利用基本初等函数的导数公式和导数的四则运算法则 求简单函数的导数. ★备考知考情 由近几年高考试题统计分析可知,单独考查导数运算的题目很少出现,主要是以导数运算为工具,考查导数的几何意义为主,最常见的问题就是求过曲线上某点的切线的斜率、方程、斜率与倾斜角的关系,以平行或垂直直线斜率间的关系为载体求参数的值,以及与曲线的切线相关的计算题.考查题型以选择题、填空题为主,多为容易题和中等难度题,如2014广东理科10、文科11. 2014广东理科10 曲线52-=+x y e 在点()0,3处的切线方程为 ; 2014广东文科11 曲线53=-+x y e 在点()0,2-处的切线方程为 ;

一、知识梳理《名师一号》P39 知识点一导数的概念 (1)函数y=f(x)在x=x0处的导数 称函数y=f(x)在x=x0处的瞬时变化 率lim Δx→0Δy Δx=lim Δx→0 f(x0+Δx)-f(x0) Δx 为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x =x0 . (2)称函数f′(x)=lim Δx→0f(x+Δx)-f(x) Δx为f(x)的导函数. 注意:《名师一号》P40 问题探究问题1 f′(x)与f′(x0)有什么区别? f′(x)是一个函数,f′(x0)是常数, f′(x0)是函数f′(x)在点x0处的函数值. 例.《名师一号》P39 对点自测1 1.判一判 (1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.() (2)f′(x0)与[f(x0)]′表示的意义相同.() (3)f′(x0)是导函数f′(x)在x=x0处的函数值.() 答案(1)×(2)×(3)√ 2

反比例函数学案

反比例函数导学案 学习目标: 1. 理解反比例函数的概念. 2.能根据实际问题中的条件确定反比例函数的表达式. 3.能判断一个给定的函数是否为反比例函数. 学习重点:经历建立反比例函数这一数学模型的过程,理解反比例函数的概念。 学习难点:结合实际问题对反比例函数意义的理解。 学习过程: 一、课前预习: 1.分别写出下列各问题中两个变量之间的关系式。 (1).一辆汽车从南京开往上海 ①若速度是60(km/h),那么行驶的路程s(km)随时间t(h)变化而变化; ②若汽车已经行驶了50km,按照(1)中的速度,那么行驶的路程s(km)随时间t (h)变化而变化; ③南京到上海的路程约300km,全程所用时间t(h)随速度v(km/h)的变化而变化。 (2).一个面积为6400 m2的长方形的长a(m)随宽b(m)的变化而变化; (3).某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的年平均还款额y(万元)随还款年限x(年)的变化而变化; (4) .游泳池的容积为5000 m3,向池内注水,注满水所需时间t(h)随注水速度v(m3/h) 的变化而变化; (5).实数m与n的积为-200,m随n的变化而变化; 2、根据以上函数形式特点类比一次函数的定义给出反比例函数的概念.

二、合作探究 1.y 是否是x . (1)y = (2) y = (4) y =2x )y = 3x +1 2.写出下列问题中两个变量之间关系的函数表达式,并判断它们是否为反比例函数。 (1).面积是50cm 2的矩形,一边长y(cm)随另一边长x(cm)的变化而变化。 (2).体积是100cm 3的圆锥,高h(cm)随底面面积S(cm 2)的变化而变化。 3.当m = 时,关于x 的函数 是反比例函数? 4.已知y 是x 的反比例函数,当x=1时 y=?3,求反比例函数的关系式 5.已知y=y 1+y 2,y 1与x+1成正比例,y 2与x 成反比例,且当x=1时,y=0;当x=4时, y=9.求y 与x 的之间的函数表达式。

2020-2021学年人教A版数学选修-学案-1.1.1-变化率问题-1.1.2-导数的概念-含解析

1.1变化率与导数 1.1.1变化率问题1.1.2导数的概念 内容标准学科素养 1.了解导数概念的实际背景; 2.会求函数在某一点附近的平均变化率; 3.会利用导数的定义求函数在某点处的导数. 强化数学概念 完善逻辑推理 提升数学运算 授课提示:对应学生用书第1页 [基础认识] 知识点一函数的平均变化率 预习教材P2-3,思考并完成以下问题 假设如图是一座山的剖面示意图,并建立如图所示平面直 角坐标系,A是出发点,H是山顶.爬山路线用函数y=f(x) 表示. 自变量x表示某旅游者的水平位置,函数值y=f(x)表示此 时旅游者所在的高度.设点A的坐标为(x1,y1),点B的坐标 为(x2,y2). (1)若旅游者从点A爬到点B,自变量x和函数值y的改变量分别是多少? 提示:自变量x的改变量为x2-x1,记作Δx,函数的改变量为y2-y1,记作Δy. (2)怎样用数量刻画弯曲山路的陡峭程度? 提示:对山路AB来说,用 Δy Δx = y2-y1 x2-x1 可近似地刻画其陡峭程度. 知识梳理函数y=f(x)从x1到x2的平均变化率 (1)定义式: Δy Δx= f(x2)-f(x1) x2-x1 .

(2)实质:函数值的增量与自变量的增量之比. (3)作用:刻画函数值在区间[x 1,x 2]上变化的快慢. (4)几何意义:已知P 1(x 1,f (x 1)),P 2(x 2,f (x 2))是函数y =f (x )的图象上两点,则平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1 表示割线P 1P 2的斜率. 知识点二 瞬时速度 预习教材P 4-6,思考并完成以下问题 1.物体的路程s 与时间t 的关系是s (t )=5t 2.试求物体在[1,1+Δt ]这段时间内的平均速度. 提示:Δs =5(1+Δt )2-5=10Δt +5(Δt )2, v =Δs Δt =10+5Δt . 2.当Δt 趋近于0时,思考1中的平均速度趋近于多少?怎样理解这一速度? 提示:当Δt 趋近于0时,Δs Δt 趋近于10,这时的平均速度即为当t =1时的瞬时速度. 知识梳理 瞬时速度 (1)物体在某一时刻的速度称为瞬时速度. (2)一般地,设物体的运动规律是s =s (t ),则物体在t 0到t 0+Δt 这段时间内的平均速度为 Δs Δt = s (t 0+Δt )-s (t 0)Δt .如果Δt 无限趋近于0时,Δs Δt 无限趋近于某个常数v ,我们就说当Δt 趋近于0 时,Δs Δt 的极限是v ,这时v 就是物体在时刻t =t 0时的瞬时速度,即瞬时速度v =lim Δt →0 Δs Δt =lim Δt →0 s (t 0+Δt )-s (t 0) Δt . 知识点三 函数在某点处的导数 知识梳理 一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0) Δx ,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0) =lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . 思考:1.函数f (x )在区间[x 1,x 2]上的平均变化率的大小与曲线y =f (x )在区间[x 1,x 2]上的“陡峭”程度有什么关系? 提示:平均变化率的绝对值越大,曲线y =f (x )在区间[x 1,x 2]上越“陡峭”,反之亦然. 2.函数的平均变化率是固定不变的吗? 提示:不一定,在平均变化率中,当x 1取定值后,Δx 取不同的数值时,函数的平均变化率不一定相同;当Δx 取定值后,x 1取不同的数值时,函数的平圴变化率也不一定相同.事实

数学北师大版选修1-1导学案-3-1变化的快慢与变化率

第三章 变化率与导数 §3.1变化的快慢与变化率 【学习目标】 1.知道函数的平均变化率和瞬时变化率的概念; 2.会求函数的平均变化率及瞬时变化率。 一、知识记忆与理解 【自主预习】 阅读教材P53-P 58,完成下列问题 1.平均变化率 对一般的函数()x f y =,当自变量x 从1x 变为2x 时,函数值从()1x f 变为()2x f ,它的平均变化率为________________.通常自变量的变化12x x -称作自变量的改变量,记作_______,函数值的变化()()12x f x f -称作函数值的改变量,记作______.这样,函数的平均变化率就可以表示为函数值的改变量与自变量的改变量之比,即________________.我们用它来刻画函数值在区间[]21,x x 上变化的快慢. 2.瞬时变化率 对于一般的函数)(x f y =,在自变量x 从0x 变到1x 的过程中,若设Δx =x 1-x 0,Δy =f (x 1) -f (x 0),则函数的平均变化率是 Δy Δx =0 101) ()(x x x f x f --=______________ 当x ?趋于0时,平均变化率就趋于函数在0x 点的瞬时变化率,瞬时变化率刻画的是__________________________. 3.求函数()x f y =在[]21,x x 上的平均变化率的方法步骤是: (1)计算x ?.求出_____________; (2)计算y ?.求出_____________; (3)计算变化率,求出_____________的值。 【预习检测】 1.如图,函数()x f y =在A ,B 两点间的平均变化率是________________。 2.已知函数12 -=x x f ) (,求自变量x 在以下的变化过程中,函数值的平均变化率: (1)自变量x 从1变到1.1; (2)自变量x 从1变到1.01; (3)估计当1=x 时,函数的瞬时变化率。 二、思维探究与创新 【问题探究】 1.求平均变化率 探究一:求函数23)(2 +==x x f y 在区间 [0x ,x x ?+0]上的平均变化率,并求20=x , x ?=0.1时平均变化率的值。 整理 反思

《反比例函数》导学案

1.1反比例函数 班级 姓名 学习目标: 1、理解反比例函数的意义; 2、熟记反比例函数的一般形式:y=x k (k ≠0,k为常数);. 一、复习强化: 1、一般地,如果在一个变化过程中,有两个变量,例如x 和y ,对于x 的每一个值,y 都有惟一的值与之对应,我们就说x 是___,y 是____,此时也称y 是x 的____. 2、地壳厚度约为8km 到40km,地表以下温度可按y=35x+t 计算,其中x(km)是深度,t(℃)是地球表面温度,y (℃)是地表下x cm 处的温度,在这个关系式中____ 和 ____是变量, _______是 _____的函数,若地球表面温度t=25(℃),当x=20km 时,y=_____. 3、一次函数的概念: 上面函数的形式是用自变量x 一次整式表示的,.我们称它们为一次函数。 一般地,形如y=kx+b (k 、b 是常数,k ≠0?)的函数,叫做___.当b=0时,y=kx+b 即y=kx .这时叫做 ____,所以说正比例函数是一种特殊的一次函数. 二、预习新知: (独立完成)谁先到达终点? 他们在3000m赛马过程中的平均速度分别为15m/s,14.5m/s,14.2m/s, 14m/s 那么他们谁先到达终点?这是什么道理? 分析: 当路程s=3000m 时,所花的时间t 与速度v 的关系是t= . 利用这个公式,可计算出甲、乙、丙、丁所花的时间分别为 、 、 和 在上面的问题情境中,当路程s=3000m 时,所花的时间t (s )与速度v (m/s )的关系为t=v 3000.

上述式子表明:当路程一定时,平均速度v是时间t的函数;所花时间t是速度v的函数. 由于当路程一定时,平均速度v与时间t成反比例关系,因此我们把这样的函数叫作 . 定义:一般地,如果两个变量y与x的关系可以表示成 y=x k (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数。 (亦可表示为xy=k 、 y=kx) 注意:反比例函数的自变量x 取值范围是 。但是在实际问题中,还要根据 ______来进一步确定该反比例函数的自变量取值范围. 三、应用尝试 例1 下列函数中,是反比例函数关系的有—————— (只填序号). (1)y= -3x ; (2)y= -x 2; (3)y= 1-21x 2 ; (4)xy=31 ; (5)y= 28x ; (6)y=x-1; (7)y=1-kx (k ≠0,k 为常数) 例2 已知y 是x 的反比例函数,当x=5时,y=10 (1) 写出y 与x 的函数关系式; 当x= 3时,求y 的值。 四、穿插巩固 1、教材P 3 练习题 1. 2. 2、已知反比例函数的图象经过点( -1,2),求其解析式。 3、若函数y=(m -2)72-+m m x 是反比例函数,求出m 的值并写出解析式. 五、课堂检测 1、小明用10元钱去买同一种菜,买这种菜的数量m kg 与单价n 元/kg?之间的关系式为_____ 2、若y 是x-1的反比例函数,则x 的取值范围是 3、把xy=-1化为y=k x 的形式,其中k= 4、已知y 是x 的反比例函数,当x=2时,y=6. (1)写出y 与x 的函数关系式;(2)求当x=4时y 的值. 5、(A 、B )下列数 表中给出了变量y 与变量x 之间的对应关系,其中是反

人教版八年级下 反比例函数全章学案(共七节)

课题 17.1.1 反比例函数的意义 学习目标: 1.会识别相关量之间的反比例关系,理解反比例函数的意义,能确定简单的反比例函数关系式. 2.通过对实际问题的分析、类比、归纳,培养学生分析问题的能力,并体会函数在实际问题中的应 用. 重点:反比例函数意义的理解. 难点:反比例函数的建模. 学习过程 一、 预习新知 1、 阅读课本第39页至40页的部分,完成以下问题. 问题:(1)京沪线铁路全长1463 km ,某次列车的平均速度v km/h?随此次列车的全程运行时间t h 的变 化而变化,其关系可用函数式表示为: (2)某住宅小区要种植一个面积为1 000 m 2 矩形草坪,草坪的长y m 随宽x m?的变化而变化,可 用函数式表示为 (3) 已知北京市的总面积为1.68×104 km 2,人均占有的土地面积S km 2 /人,随全市总人口n 人的变 化而变化,其关系可用函数式表示为 . 2、合作探究 分析 上述问题中的函数关系式都有y=k x 的形式,其中k 为常数. 归纳 一般地,形如y= k x (k 为常数,且k?≠0)?的函数称为 。 注意 在y=k x 中,自变量x 是分式k x 的分母,当x=0时,分式k x 无意义,所以x?的取值范围 二、课堂展示 【例1】 已知y 是x 的反比例函数,当x=2时,y=6. (1)写出y 与x 的函数关系式; (2)求当x=4时y 的值. 例2. 若反比例函数y= k x 与一次函数y=2x-4的图象都过点A (m ,2). (1)求点A 坐标. (2)求反比例函数解析式. 三、随堂练习 1.写出下列函数关系式,并指出它们各是什么函数 (1)平行四边形面积是24 cm 2 ,它的一边长x m 和这边上的高h cm 之间的关系是 . (2)小明用10元钱去买同一种菜,买这种菜的数量m kg 与单价n 元/kg?之间的关系是 (3)老李家一块地收粮食1000 kg ,这块地的亩数S 与亩产量t kg/亩之间的关系是 2.若y 是x-1的反比例函数,则x 的取值范围是 3.若y= 1 1 n x 是y 关于x 的反比例函数关系式,则n 是

高中数学第三章.1变化率问题3.1.2导数的概念学案含解析新人教A版选修7.doc

3.1.1 & 3.1.2 变化率问题 导数的概念 [提出问题] 假设下图是一座山的剖面示意图,并建立如图所示的平面直角坐标系.A 是出发点,H 是山顶.爬山路线用函数y =f (x )表示. 自变量x 表示某旅游者的水平位置,函数值y =f (x )表示此时旅游者所在的高度.设点 A 的坐标为(x 1,y 1),点 B 的坐标为(x 2,y 2). 问题1:若旅游者从点A 爬到点B ,且这段山路是平直的,自变量x 和函数值y 的改变量Δx ,Δy 分别是多少? 提示:自变量x 的改变量为Δx =x 2-x 1,函数值的改变量为Δy =y 2-y 1. 问题2:Δy 的大小能否判断山路的陡峭程度? 提示:不能. 问题3:怎样用数量刻画弯曲山路的陡峭程度呢? 提示:对山坡AB 来说,Δy Δx =y 2-y 1 x 2-x 1可近似地刻画. 问题4:能用Δy Δx 刻画山路陡峭程度的原因是什么? 提示:因Δy Δx 表示A ,B 两点所在直线的斜率k ,显然,“线段”所在直线的斜率越大, 山路越陡.这就是说,竖直位移与水平位移之比Δy Δx 越大,山路越陡;反之,山路越缓. 问题5:从点A 到点B 和从点A 到点C ,两者的Δy Δx 相同吗? 提示:不相同.

[导入新知] 函数的平均变化率 对于函数y =f (x ),给定自变量的两个值x 1,x 2,当自变量x 从x 1变为x 2时,函数值从 f (x 1)变为f (x 2),我们把式子f x 2-f x 1 x 2-x 1 称为函数y =f (x )从x 1到x 2的平均变化率. 习惯上用Δx 表示x 2-x 1,即Δx =x 2-x 1,可把Δx 看作是相对于x 1 的一个“增量”,可用x 1+Δx 代替x 2.类似地,Δy =f (x 2)-f (x 1).于是,平均变化率可表示为 Δy Δx . [化解疑难] 1.正确理解增量Δx 与Δy Δx 是自变量x 在x 0处的改变量,不是Δ与x 的乘积,Δx 的值可正,可负,但不能为0.Δy 是函数值的改变量,可正,可负,也可以是0.函数的平均变化率为0,并不一定说明函数f (x )没有变化. 2.平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率的“视觉化”.利用平均变化率的大小可以刻画变量平均变化的趋势和快慢程度. [提出问题] 一质点的运动方程为s =8-3t 2 ,其中s 表示位移,t 表示时间. 问题1:试求质点在[1,1+Δt ]这段时间内的平均速度. 提示:Δs Δt = 8-+Δt 2 -8+3×1 2 Δt =-6-3Δt . 问题2:当Δt 趋近于0时,“问题1”中的平均速度趋近于什么?如何理解这一速度? 提示:当Δt 趋近于0时,Δs Δt 趋近于-6.这时的平均速度即为t =1时的瞬时速度. [导入新知] 1.瞬时速度的概念 物体在某一时刻的速度称为瞬时速度: 设物体运动的路程与时间的关系是s =s (t ),当Δt 趋近于0时,函数s (t )在t 0到t 0 +Δt 之间的平均变化率s t 0+Δt -s t 0 Δt 趋近于一个常数,把这个常数称为瞬时速 度. 2.导数的定义

相关文档
最新文档