平面结构的几何构造分析

合集下载

结构力学《第二章几何组成分析》龙奴球

结构力学《第二章几何组成分析》龙奴球

第二章 结构的几何构造分析
瞬变体系(
×)
体系是由三个刚片用三个共线的铰 ABC相连,故为瞬变体系。( )
×
第二章 结构的几何构造分析
几种常用的分析途径
1、去掉二元体,将体系简单化,然 后再分析。
D A
C
B
依次去掉二元体A、B、C、D后, 剩下大地。故该体系为无多余约 束的几何不变体系。
第二章 结构的几何构造分析 2、如上部体系与基础用满足要求三个约束相联可去掉 基础,只分析上部。
第二章 结构的几何构造分析
用一链杆将一刚片与地面相联 两刚片用一链杆相联
1、2、3、4是链杆, 折线型链杆、曲线型 链杆可用直线型链杆 代替。
3 6 4

1 5
5、6不是链杆。
第二章 结构的几何构造分析
单铰:联结两个刚片的铰称为单铰
一个单铰相当于几个约束呢? 在平面内两个刚片自由 度等于6 加入一个单铰后自由度 等于4,减少了2个自由 度
A
C B
规则4 三刚片以不在一条直线 上的三铰 两两相连,组成无多余 约束的几何不变体系。
如约束不满足限制条件,将出现下列几种形式的瞬变体系
三铰共线瞬变体系
第二章 结构的几何构造分析
关于无穷远瞬铰的情况
1 C II
I A
2
B
III
图示体系,一个瞬铰C在无穷远处,铰A、 B连线与形成瞬铰的链杆1、2不平行,故三个 铰不在同一直线上,该体系几何不变且无多 余约束。
(3) 各∞点都在同一直线上,此直线称为∞线。
(4) 各有限远点都不在∞线上。
第二章 结构的几何构造分析
§2-2 几何不变体系的组成规则
基本规律:三角形规律

结构力学 PPT课件

结构力学 PPT课件

总复习
1
NaA 2
1 1m×4=4m
解:取1-1以右为分离体 ∑Y=0 NC=-10kN 取2-2以右为分离体
O
∑Y=6+YB+YC=0
6kN
YB=0
∑MO=0 NA=0
a
2
6kN
8kN
6kN
总复习
第八章 静定结构影响线
一、影响线的定义:
定义:当单位荷载(P=1)在结构上移动时,表示结构某一指
定截面中某项内力变化规律的曲线,称为该项内力的影响线。
二、叠加法绘制弯矩图
Q M AB M BA Q0
AB
l
AB
•首先求出两杆端弯矩,连一虚线, •然后以该虚线为基线, •叠加上简支梁在跨间荷载作用下的弯矩图。
三、内力图形状特征 1、在自由端、铰支座、铰结点处,无集中力偶作用,截
面弯矩等于零,有集中力偶作用,截面弯矩等于集中力偶的值。
总复习
M M 0 Hy
Q Q0 cos H sin N Q0 sin H cos
2、在拱的左半跨取正右半跨取负;
3、仍有 Q=dM/ds 即剪力等零处弯矩达极值;
4、 M、Q、N图均不再为直线。
5、集中力作用处Q图将发生突变。
6、集中力偶作用处M图将发生突变。
四、三铰拱的合理轴线 在给定荷载作用下使拱内各截面弯矩
2、刚结点上各杆端弯矩及集中力偶应满足结点的力矩平 衡。两杆相交刚结点无m作用时,两杆端弯矩等值,同侧受拉。
3、具有定向连结的杆端剪力等于零,如无横向荷载作用, 该端弯矩为零。
4.无何载区段 5.均布荷载区段 6.集中力作用处 7.集中力偶作用处
平行轴线
Q图

第4章-平面杆件体系的几何组成分析

第4章-平面杆件体系的几何组成分析

第四章平面杆件体系的几何组成分析4.1 几何组成分析的基本概念结构是由若干根杆件通过结点间的连接及与支座连接组成的。

结构是用来承受荷载的,因此必须保证结构的几何构造是不可变的。

例如:4.1.1 几何不变体系和几何可变体系1. 几何不变体系(geometrically unchangeable system):在不考虑材料应变的条件下,体系的位置和形状不能改变。

2. 几何可变体系(geometrically changeable system):不考虑材料的变形,在微小荷载作用下,不能保持原有几何形状和位置的体系。

图4-1 几何可变体系和不变体系显然只有几何不变体系可作为结构,而几何可变体系是不可以作为结构的。

因此在选择或组成一个结构时必须掌握几何不变体系的组成规律。

4.1.2 自由度和约束1.自由度(degree of freedom) :自由度是指体系运动时,可以独立改变的几何参数的数目;即确定体系位置所需(平移和转动)独立坐标的数目。

(1)平面内一质点有2个自由度;x方向和y方向的运动(2)平面内一刚片有3个自由度;任意点的(x,y)坐标一个绕该点的转动角度。

(3)地基是自由度为零的刚片。

图4-2 点和刚体的平面自由度2. 约束:(restraint) :限制物体自由度的外部条件。

或体系内部加入的减少自由度的装置。

当对刚体施加约束时,其自由度将减少。

能减少一个自由度的约束称为一个联系,能减少n个自由度的约束称为增加了n个联系。

(1)链杆(chainbar):仅在两处与其它物体用铰相连,不论其形状和铰的位置如何。

一根链杆可以减少体系一个自由度,相当于一个约束。

一根链杆相当于一个约束。

链杆连接的两个刚片(减少一个)有五个自由度。

固定一地基上连杆,被连接的刚片(减少一个)还剩2个自由度。

(2)单铰:连结两个刚片的铰。

加单铰前构成体系的两个刚片共有六个自由度。

加单铰后体系有四个自由度。

一个刚片可以自由运动,但是,另一个刚片只能绕结点转动。

结构力学第二章结构的几何组成分析

结构力学第二章结构的几何组成分析
结构系统结构系统 结构系统 平面中的固定铰支座能消去2个自由度(2个线位移),但不能消除转动,因此对应2个约束,c =2空间中的固定铰支座能消去3个自由度, 因此对应3个约束,c =3 平面固支,c =3空间固支,c
=6 结构系统 结构系统结构系统 (c )铰链 平面两个刚片的自由度: 平面单铰相当于2个约束 x y A O A xA yα β 单铰 6 23=?=n 用单铰连接后只剩下4个自由度:β α,,,A A y x 4 =n 2 46=-=∴c 连接两个平面刚片的单铰 x y A O 复铰 m 个刚片 原m 个刚片的总自由度:连接m 个刚片的复铰 用复铰连接后自由度为2个线位移加m 个角度:m m n 33=?=m n +=2故约束数)1(2)2(3-=+-=m m m c 连接m 个刚片的复铰相当于个约束。 )1(2-m m 个铰的总自由度数: 系统中元件(刚体、杆、刚片)和铰既可以看作自由体,也可以看作约束。 1 2 3 4 5 6 m-1
2 3 f >0时,有多余约束,称为静不定(超静定)结构,f 就是静不定的次数。 如果元件安排合理,则
布置不合理
f
=0 f =1 布置合理,1
次超静定 f =0 布置合理,静定
2 由以上分析可见,只有几何不变的系统才能承力和传力,作为“结构”。 系统几何组成分析的目的: (1)判断系统是否几何不变,以决定是否能作为结构 使用; (2)掌握几何不变结构的组成规律,便于设计出合理 的结构; (3)区分静定结构和静不定结构,以确定不同的计算 方法。 2.2 几何不变性的判断 2.2.1 运动学方法 将结构中的某些元件看成自由体,拥有一定数量的自由度; 将结构中的另一些元件看成约束。 如果没有足够多的约束去消除自由度,系统就无法保持原有形状。 所谓运动学方法,就是指这种引用“约束”和“自由度”的概念来判断系统几何不变性的方法。 1、自由度与约束(1)自由度的定义 决定一物体在某一坐标系中的位置所需要的独立变量的数目称为自由度,用n 表示。平面一个点有2个独立坐标,故n =2空间一个点有3个独立坐标,故n =3 x y y ?x ?A A' x y A yA xA z A zA' O 空间一根杆有5个自由度,一个平面刚体(刚片、刚盘)或一根杆有3个自由度,n =3 x y A yAxA z AzA' O B B'

02-2结构力学第二章 平面体系的几何组成分析-作业答案汇总

02-2结构力学第二章 平面体系的几何组成分析-作业答案汇总

38 3 2 29 3 3
3个单铰结点, 3个折算为2个单铰结点的复铰结点
支杆
b3
11/73
(II III) 刚片II
(I II)
刚片III
几何不变且无多余约束
j9 单链杆:12根 复链杆:2根 折算为6根单链杆
W 2 j b 29 12 6 0
5/73
【作业1】分析图示体系的几何构造
图3

【作业1】分析图示体系的几何构造
图4
先考察如图所示结构
∞(II III)
9/73
【作业2】求图示系统的计算自由度
刚片 m 1 单刚结点 g 4 铰结点 h 0 支杆 b 3
内部无多余约束刚片
W 3m 3g 2h b
31 3 4 3 12
10/73
【作业2】求图示系统的计算自由度
刚片 m 8
单刚结点 g 2
W 3m 3g 2h b
铰结点 h 9
刚片 m 14 单铰链结点 h 18
刚片II
刚片III
(I II)
(I III) 刚片I
瞬变体系
其中折算为2个单铰结点的 复铰结点有6个
∞(II III)
其中折算为3个单铰结点的 复铰结点有2个 单刚结点 2个 g 2 和基础相连的支杆 0个 b 0
W 3m 3g 2h b
314 3 2 218 0
∞(II III)
刚片II (I II) (I III) 刚片III
刚片I
几何不变且无多余约束
(I II) 刚片II (I III) 刚片III
刚片I
几何不变且无多余约束
7/73
【作业2】求图示系统的计算自由度
图1 并进行几何构造分析

二建:建筑结构与建筑设备讲义. 第五章第四节 图乘法求位移及第五节 超静定结构(一)

二建:建筑结构与建筑设备讲义. 第五章第四节 图乘法求位移及第五节 超静定结构(一)

第四节图乘法求位移略第五节超静定结构一、平面体系的几何组成分析(一)几何不变体系、几何可变体系1.几何不变体系在不考虑材料应变的条件下,任意荷载作用后体系的位置和形状均能保持不变[图5-56 (a)、(b)、(c)]。

这样的体系称为几何不变体系。

2.几何可变体系在不考虑材料应变的条件下,即使在微小的荷载作用下,也会产生机械运动而不能保持其原有形状和位置的体系[图5-56 (d)、(e)、(f)]称为几何可变体系(也称为常变体系)。

(二)自由度和约束的概念1.自由度图5-56在介绍自由度之前,先了解一下有关刚片的概念。

在几何组成分析中,把体系中的任何杆件都看成是不变形的平面刚体,简称刚片。

显然,每一杆件或每根梁、柱都可以看作是一个刚片,建筑物的基础或地球也可看作是一个大刚片,某一几何不变部分也可视为一个刚片。

这样,平面杆系的几何组成分析就在于分析体系各个刚片之间的连接方式能否保证体系的几何不变性。

图5-57自由度是指确定体系位置所需要的独立坐标(参数)的数目。

例如,一个点在平面内运动时,其位置可用两个坐标来确定,因此平面内的一个点有两个自由度[图5-57(a)]。

又如,一个刚片在平面内运动时,其位置要用x、y、φ三个独立参数来确定,因此平面内的一个刚片有三个自由度[图5-57 (b)]。

由此看出,体系几何不变的必要条件是自由度等于或小于零。

那么,如何适当、合理地给体系增加约束,使其成为几何不变体系是以下要解决的问题。

2.约束和多余约束减少体系自由度的装置称为约束。

减少一个自由度的装置即为一个约束,并以此类推。

约束主要有链杆(一根两端铰接于两个刚片的杆杆称为链杆,如直杆、曲杆、折杆)、单铰(即连接两个刚片的铰)和刚结点三种形式。

假设有两个刚片,其中一个不动设为基础,此时体系的自由度为3。

若用一链杆将它们连接起来,如图5-58(a)所示,则除了确定链杆连接处A的位置需一转角坐标外,确定刚片绕A转动时的位置还需一转角坐标,此时只需两个独立坐标就能确定该体系的运动位置,则体系的自由度为2,它比没有链杆时减少了一个自由度,所以一根链杆相当于一个约束;若用一个单铰把刚片同基础连接起来,如图5-58 (b)所示,则只需转角坐标够就能确定体系的运动位置,这时体系比原体系减少了两个自由度,所以一个单铰相当于两个约束;若将刚片同基础刚性连接起来,如图5-58 (c),则它们成为一个整体,都不能动,体系的自由度为0,因此刚结点相当于三个约束。

第二章结构几何构造分析方案

第二章结构几何构造分析方案

例题:分析图示体系的几何构造(习题2-10b)
将由若干个杆件组成的几何不变体视为一个刚片,然后 运用规律二。
补充例题:分析图示体系的几何构造
利用规律二, 运用了瞬铰的概念。
补充例题:分析图示体系的几何构造
运用规律二形成更大的 刚片,最后装配于基础 (上部简支与基础)。
补充例题:分析图示体系的几何构造
二元体
两个不共线的链杆,由一个节点相连 。
在任何一个体系上增加或减去一个二元体,对体系 的组成性质无影响。
几何体系的组成
刚片
体系
约束
内部无多余约束的刚片 内部有多余约束的刚片
必要约束 多余约束
几何构造分析方法
1.逐步拆去二元体,使结构简单。 2.从基础出发,反复运用规律一、二进行装配。 3.将由若干个杆件组成的几何不变体视为一个刚片,然后反
体系中全部约束数
体系计算自由度的计算
1.当组成体系的部件为刚片时 W=3m-(3g+2h+b) m:内部无多余约束的刚片数,若有多余约束,则将其 计入 3g+2h+b g:单刚结点数 h:单铰结点数 b:单链杆数
2.当组成体系的部件为结点时 W=2j-b
j:具有自由度的点的个数 b:单链杆数
例题 计算体系的W
W=3m-(3g+2h+b)=3×1-(3×3+2×0+4)=-10
例题 计算体系的W
W=3m-(3g+2h+b)=3×9-(3×0+2×12+3)=0 W=2j-b=2 ×6-12=0
例题 计算体系的W
W=3m-(3g+2h+b)=3×7-(3×0+2×9+3)=0
例题 计算体系的W
W=3m-(3g+2h+b)=3×7-(3×0+2×9+3)=0 W=2j-b=2 ×7-14=0 W=3m-(3g+2h+b)=3×2-3=3 W=3m-(3g+2h+b)=3×1-3=0

平面体系的机动分析—习题课

平面体系的机动分析—习题课
7
结构的几何构造分析
5、在一个平面体系上增加二元体不会改变体系的计算自由度。(√)
(√) 6、若平面体系的计算自由度W<0,则体系不可能是静定结构。 7、若平面体系的计算自由度W=0,则体系为无多余约束的 几何不变体系或瞬变体系,而不可能是常变体系。 (×)
二、选择题
A 1、W≤0是保证体系为几何不变的———条件。 (A)必要条件 (C)非必要条件 (B)充分条件 (D)必要和充分条件 D 2、在土木工程不能作为建筑工程应用的是———— (A)几何不变体系,无多余约束 (C)几何不变体系,有多余约束
而不要成为几何可变体系或瞬变体系,以避免发生严重 的工程事故。尤其新型结构,更应注意结构的几何构造 分析。 2 从几何构造分析的观点看,结构体系可分类如下:
几何体系
几何不变体系 几何可变体系
常变体系 瞬变体系
17
结构的几何构造分析
3 在结构几何构造分析中,可先计算体系的自由度 W (V ) 。
若体系的
5
结构的几何构造分析
2、二个虚铰在无穷远处:
若组成两无穷远处虚铰的两对平行链杆互不平行,则体系 为几何不变体系;若两虚铰的四根链杆互相平行但不等长, 则为体系为瞬变体系;若两虚铰的四根链杆平行且等长,则 体系为常变体系。
3、三个虚铰在无穷远处: 若三刚片用三对平行但不等长的链杆相联,则体系为瞬变 体系;若三刚片用三对平行且等长的链杆相联,则为体系为 常变体系。 注:这里指每对链杆都是从每一个刚片的同侧方向联结另一 个刚片;若两链杆是从刚片的异侧方向联结另一个刚片,则 6 体系为瞬变体系。
W (V ) 0
,则体系为几何可变体系;若体系的
W (V ) 0 ,则应对体系进行几何构造分析。若对几何构造分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档