勾股定理应用中的数学思想方法
培优专题12 闪耀在勾股定理中的数学思想方法

AC2=32+42=25,所以 AC =5dm,所以这圈金属丝的最小长度为2 AC =10dm.
类型四:面积法
6. 如图,在△ ABC 中, AB = AC =13, BC =10,点 D 为 BC 的中点, DE ⊥ AB ,
垂足为点 E ,则 DE 等于(
A.
B.
D )
C.
∠ ACB =90°,∠ ACD =90°,所以 AB2- BC2= AC2, AD2- CD2= AC2,所以
AB2
- BC2= AD2- CD2,即172-(9+ x )2=102- x2,解得 x =6,所以 CD =6,所
以
AC2= AD2- CD2=64,所以 AC =8.
4. 如图,在△ ABC 中, AD ⊥ BC 于点 D ,且 AC + AD =32, BD =5, CD =
16,
求 AB 的长.
◉答案
解:设 AD = x ,则 AC =32- x .在△ ACD 中,因为∠ ADC =90°,所以
AD2+ CD2= AC2,即 x2+162=(32- x )2,解得 x =12,所以 AD =12.在△
ABD
中,因为∠ ADB =90°,所以 AD2+ BD2= AB2.所以 AB2=122+52=169,所以 AB
=13.
类型三:转化思想
5. [空间观念]如图,已知圆柱底面周长为8dm,高为3dm,在圆柱的侧面上,点 A
和点 C 相对,过点 A 和点 C 嵌有一圈金属丝,求这圈金属丝的最小长度.
◉答案
解:如图,把圆柱的侧面展开,则这圈金属丝的最小长度为2 AC 的长度.因
为圆柱底面的周长为8dm,圆柱高为3dm,所以 AB =3dm, BC =BC'=4dm,所
学习《勾股定理》提炼思想方法

学习好资料欢迎下载学习《勾股定理》提炼思想方法河北杜友平数学教材不仅仅是数学知识的载体,还反映了一定的数学思想方法.掌握并应用数学思想方法去解决问题,是数学学习的重要目的,因此在数学学习中要学会提炼和总结数学思想方法.下面将与勾股定理相关的数学思想方法帮同学们加以提炼,供同学们学习时参考.一、观察、实验、归纳、验证的方法数学规律的发现往往需要通过观察、实验、归纳、验证最后才能得到.教材中从观察实物引起思考,再通过由特殊到一般的实验,归纳出了直角三角形三边的数量关系,最后通过拼接几何图形后面积不变的方法验证了勾股定理.这种探索问题的思想方法,值得大家学习、借鉴.二、逆向思维的方法从课本上,我们学到了一个定理:如三角形三边长a,b,c有下面的关系a2+b2=c2,那么这个三角形是直角三角形.这便是勾股定理的逆用.而且这种逆向思维的方法有着广泛的应用.例1如图1,在△ABC中,D为BC边上一点,已知AB=13,AD=12,AC=15,BD=5,那么DC=_____.解:在△ABD中,因为AB=13,AD=12,BD=5,所以AB2=AD2+BD2.根据勾股定理的逆用得∠ADB=90°,从而∠ADC=90°,在Rt△ADC中,DC===.由勾股定理可得9三、数形结合思想在验证勾股定理的过程中将图形和数字有机结合起来,启迪同学们在数学学习中,要善于发现和总结,抓住问题的本质特征,学会动脑是学好数学的前提.勾股定理本身就是一个数形结合的定理,它的验证和应用,都体现了数形结合思想.四、方程思想由于勾股定理反映了直角三角形三边的数量关系,所以在应用勾股定理解决问题时,要考虑应用定理列方程来求解.例2如图2,在△ABC中,AB=15,BC=14,CA=13,求BC边上的高AD.析解:设DC=x,则BD=14-x,在Rt△ABD和Rt△ACD中,由勾股定理可得:(14-x)2+AD2=152,x2+AD2=132.两式相减得22--=,解得x=5.在Rt△ACD中,由勾股定理得AD=12.(14)56x x。
在勾股定理的教学中渗透数学思想方法

在勾股定理的教学中渗透数学思想方法东莞东华初级中学 陈佩弟《全日制义务教育数学课程标准》指出:“通过数学学习,学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法.”数学思想方法是数学的生命和灵魂,是数学知识的精髓,是把知识转化为能力的桥梁.因此,在数学教学活动中,教师应重视数学思想方法的渗透,注重对学生进行数学思想方法的培养,为学生的持续学习和发展作好奠基.勾股定理是平面几何有关度量的最基本、最重要的定理,也是中考的重要考点之一,其中蕴涵着多种数学思想,现小结如下:一.勾股定理与数形结合思想所谓数形结合思想,就是抓住数与形之间本质上的联系,将抽象的数学语言与直观的图形结合起来,通过“以形助数”或“以数解形”,使复杂问题简单化、抽象问题具体化,从而达到迅速解题的目的.勾股定理反映了直角三角形三条边之间的关系,它是把三角形有一个直角的“形”的特征,转化为三边“数”的关系,因此它是数形结合的一个典范.例1:(课本P76习题18.2 T5)△ABC 中,AB=13cm,BC=10cm,BC 边上的中线AD=12cm.求AC 思考与分析:解答本题一定要先根据题意画出相应的图形,求出BD=CD=5cm ,再将题目所给的数据标在图上,得到如图,因此很容易就想到本题的解答思路是:先利用勾股定理的逆定理说明∠ADB=90°,从而∠ADC=90°,再用勾股定理即可求得AC解: ∵AD 是BC 边上的中线∴BD=CD=21BC=21×10=5cm (由形到数) ∵169144251252222=+=+=+AD BD1691322==AB∴222AB AD BD =+∴△ADB 为直角三角形,且∠ADB=90°(由数到形)∴∠ADC=180°-∠ADB=90°∴△ADC 为直角三角形 (由数到形) ∴131695122222==+=+=CD AD AC cm (由形到数)B C D 13 12 5 5反思:此题综合运用了勾股定理及逆定理,充分体现了由形到数,再由数到形的数形结合的思想,从中你可以体会到数形结合的奥妙.二.勾股定理与分类讨论思想分类讨论思想是指在解题过程中,当条件或结论不确定或不唯一时,往往会产生几种可能的情况,这就需要依据一定的标准对问题进行分类,再针对各种不同的情况分别予以解决,最后综合各类结果得到整个问题的结论.分类讨论实质上是一种“化整为零,各个击破,再积零为整”的数学方法.例2:(课本P76习题18.2 T3)小明向东走80m 后,沿另一方向又走了60m,再沿第三个方向走100m 回到原地.小明向东走80m 后又向哪个方向走的?思考与分析:观察数据80、60、100,根据勾股定理的逆定理可以判断出小明所走的路线形成了一个直角三角形,即小明向东走的80m 是一直角边,转了90°角后走的60m 是另一直角边,最后走的100m 是斜边.因此得到本题的关键是弄清楚转的90°是往哪个方向转的.情况不确定,故须分类讨论:如果往右转90°,则向南走;如果往左转90°,则向北走.从而得到答案是向南或北走.本题若利用数形结合的思想,根据题意画出如图,思考起来会更直观.教师在讲解本题时也可以先让学生做课本P76练习 T3:A 、B 、C 三地的两两距离如图所示,A 地在B 地的正东方向,C 地在B 地的什么方向?这样设计的目的是让学生经历由易到难的过程,通过类比学习,明白这两题的本质是:一题是明确给出图形,情况唯一;另一题没有给图,情况不唯一,须 分类讨论.还有一道常考题:直角三角形的两条边长分别为3和4,则第三边长为 ,学生审题不清,或容易受到定势思维的影响而漏掉一种情况.教师也可以让学生先做:直角三角形的两条直角边长分别为3和4,则第三边长为 .对比学习,学生印象更深刻反思:当已知条件中没有给出图形时,应认真读句画图,避免遗漏情况;另在直角三角形中,已知两边长但不明确是直角边还是斜边时,应分类讨论.A B C 12km13km5km北 南南 北三.勾股定理与方程思想方程思想就是指在解决数学问题时,从分析问题的数量关系入手,通过设未知数,把问题中的已知量与未知量之间的数量关系联系起来,从而建立方程或方程组的数学模型,然后求解方程或方程组使问题得以解决.用方程思想分析、处理问题,思路清晰,解题灵活、简便.例3:(课本P81复习题18 T7)一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是多少?(这是我国古代数学著作《九章算术》中的一个问题.其中的丈、尺是长度单位,1丈=10尺.)思考与分析:本题若想直接在Rt △ABC 中运用勾股定理求AB 是行不通的,因为只知道一条边BC 的长,AC 的长不知道,但AC 与AB 有关系AC+AB=10,因此可设AB 为x 尺,则AC 为(10-x )尺,利用勾股定理可列出方程()222103x x -=+,解得x=4.55反思:勾股定理说到底是一个等式,而含有未知数的等式就是方程,所以,在利用勾股定理求线段的长时常常利用列方程来解决.勾股定理表达式中有三个量,当无法已知两个量求第三个量时,应采用间接求法,灵活地寻找题中的数量关系,利用勾股定理列方程.四.勾股定理与转化思想转化思想是指将陌生的问题转化为熟悉的问题,将特殊的问题转化为一般的问题,将复杂的问题转化为简单的问题,将综合的问题转化为基本的问题等一种解题的手段.如解方程(组)问题中,高次转化为一次,多元转化为一元;在几何问题中,将多边形转化为三角形,将空间图形转化为平面图形等都是转化思想的具体体现.例4:(课本P81复习题18 T8)已知圆柱的底面半径为6cm,高为10cm,蚂蚁从A 点爬到B 点的最短路程是多少厘米?(结果保留小数点后1位)思考与分析:我们知道蚂蚁在圆柱表面爬行的路线是一条曲线,目前学生还无法用所学的知识求曲线的长,另外,在一个曲面上,最短的路线怎样走更是无从知道.但我们知道在平面几何中有一个结论“两点之间,线段最短”,因此我们可以借助平面展开的方法,把圆柱的侧面展开成一个矩形如图,AB 即为所求.通过分析可知AC 对应圆柱的高10cm,BC 是底面圆的周长的一半即为π6,根据勾股定理得 ()m AB 3.2136100610222≈+=+=ππ 反思:在立体图形的表面讨论最短距离,应先将立体图形转化为平面图形,再利用“两点3尺 Ax10-x B A ●C之间,线段最短”及勾股定理求解.本题还可以拓广到在正方体、圆锥、长方体中求最短距离.还应明确的是圆柱、正方体、圆锥的展开方式只有一种,而长方体的展开方式不只一种,须分类讨论,再通过比较得出最后的答案.五.勾股定理与整体思想 整体思想是指对于某些数学问题,如果拘泥常规,从局部着手,则难以求解;如果把问题的某个部分或几个部分看成一个整体进行思考,就能开阔思路,较快解答题目.例5.在直线l 上依次摆放着七个正方形(如图).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,求4321S S S S +++思考与分析:本题不可能具体求出1S 、2S 、3S 、4S 的值,但我们可以利用三角形全等和勾股定理分别求出21S S +、32S S +、43S S +解:易证Rt△ABC ≌ Rt△CDE∴ AB = CD∵222CE DE CD =+∴222CE DE AB =+∵32S AB =,42S DE =,32=CE ∴343=+S S同理可得121=+S S∴4314321=+=+++S S S S反思:化分散为集中的整体策略是数学解题的重要方法,利用整体思想,不仅会使问题化繁为简、化难为易,而且有助于培养学生的创造性思维能力.六.勾股定理与类比思想类比思想是数学学习的一种重要发现式和创造性思维.它是通过两个已知事物在某些方面所具有的共同属性,去推测这两个事物在其他方面也有相同或类似的属性,从而大胆猜想得到结论.例6.(1)如图①,分别以Rt △ABC 的三边为边向外作三个正方形,其面积分别用1S 、2S 、3S 表示,请说明132S S S =+(2)如图②,分别以Rt △ABC 的三边为直径向外作三个半圆,其面积分别用1S 、2S 、3S 表示,132S S S =+仍然成立吗?请说明理由.(3)如图③,分别以Rt △ABC 的三边为边向外作三个等边三角形,其面积分别用1S 、2S 、3S 表示,请你确定1S 、2S 、3S 之间的关系并加以证明.古人云: “授人以鱼,不如授人以渔.”数学教师不仅要教会学生解题,更重要的是让学生学会解题的方法,让学生具备独立分析和解决问题的能力,从而达到举一反三的目的,这是二十一世纪现代素质教育的要求.因此,在数学课堂教学中,需要我们教师有意识的将这些数学思想方法加以点拨并渗透,这对学生来说是终生受益的.。
勾股定理教学中体现的数学思想

勾股定理教学中体现的数学思想丹阳市华南实验学校 夏青梅随着新课程标准的逐步实行与推广,数学教学在培养学生基础知识和基本技能的同时,应更加注重培养学生的思维能力。
本文以勾股定理的教学为例,谈谈新课程中体现的数学思想,与广大同仁共同探讨。
勾股定理是数学中的至宝,在古今中外数学发展史上,是一个最基本最重要的定理。
在运用勾股定理解决实际问题时,常会遇到一些疑难问题,若能结合运用一些数学思想方法,转换思维角度,便可使思路开阔,方法简捷。
现举例说明:一、化归思想所谓化归思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个简单的问题,这种化归思想不同于一般所讲的“转化”、“转换”,它具有不可逆转的单向性。
例1、 已知△ABC 中∠B=60°,∠C=45°,AB=4,求BC 的值。
评析:△ABC 为斜三角形,利用化归思想可通过化斜三角形为直角三角形,从而利用勾股定理得以解决。
过A 点作BC 边上的高AE ,将△ABC 分成两个特殊的直角三角形ABE 与ACE ,根据勾股定理由AB=4,∠B=60°,先分别求出BE=2,AE=22,再由∠C=45°得AE=CE ,求出CE=22,从而得到BC 的值为22+2。
本题将一个较复杂的问题转化归结为一个简单的基本的问题,从而得到解决。
例2、八(1)小刚同学代表学校在北京参加航模比赛,这天小刚与老师、同学兴冲冲来到机场,却遇到了一个大问题:机场规定旅客随机携带的物品的长、宽、高不得超过一米,而小刚的飞机模型却有1.6米长,飞机模型不能折断、拆卸,托运又来不及,怎么办呢?正当老师与同学们发愁的时候,小刚灵机一动,利用课堂上学到的知识将飞机模型完整地带上了飞机。
同样聪明的你,想到什么办法吗?并请你讲出其中的道理。
评析:这是一个生活实际问题,我们可以将它转化归结为一个数学问题。
先在底面ABCD 的直角三角形ABD 中利用勾股定理由AB=AD=1,求出对角线BD=2;再在对角平面D ’DBB ’的直角三角形DBD ’中,由DD ’=1, BD=2,求出BD ’=3,又因为3≈1.7>1.6 ,因而便可判断能将飞机模型完整地带上了飞机。
勾股定理问题求解中的思想方法

阶如 图1 , 它 的每 一级 的 长、 宽和 高分别等 于5 c m,
3 c m和 1 a m, A和 B是 这
因 为3 2 + 4 2 = 5 , 所 以 6 2 _ c .
个 台 阶 的 两 个 相 对 的 端点, A点 上 有 一 只 蚂
b
圈
( Ⅱ)
Y Y
( I)
二 、积 累配 方 策 略
例 2 如 果 AAB C的 三 边 分 别 为 a 、 b 、
C. 且 满足 0 2 + 6 + c + 5 0 = 6 a + 8 b - 4 - l O c , 手 0 断
口 口 口[ ]
Y
( Ⅲ)
图 3
T n t el l i g e n t ma t h e ma t i c s
1 智 麓敦 攀
这 是 因为 只 有 具 备 了 整 式 ( 1 )请 你 用 图3 (Ⅱ) 的 面 积 表 达 式 验 八 年 级 才 学 习 ,
证勾 股定理 ( 其 中四 个 直 角 三 角形 全 等 ) ;
面, 再利用勾股定理求解 .
例3 在 学 习勾股 定 理 时 , 我 们 学会
运 用 图3 (I) 验 证 它 的 正确 性 . 图 中 大 正 方
a + b ) , 也 可 表 示 为C 【 分析 】 首先 将 三 个 台 阶表 面 展 成 平 形 的 面 积 可 表 示 为 (
B
/ ‘ { .
D C
【 分析】 这 是一道 设计 比较 新颖 , 与图
【 分 析 】根据 已知条
图7
C的 长 . 因 此 可 尝 试 利 形 的组 合 验 证 数 学 关 系 式 有 关 的 题 目. 实 件 无 法 直 接 求 出 B 用 勾 股 定 理 的 逆 定 理 先 找 出 图 形 中 的 直 际上是对课本 知识 的一个 拓展 . 涉 及 勾 股 然 后 再 考 虑 利 用 勾 股 定 理 求 出 定 理 和 整 式 的乘 法 两 个 方 面 的 知 识 , 掌 握 角 三 角 形 . 好 图形 面 积 的计 算 方 法 , 不 难 组 合 成 与 表 线 段 的 长 .
勾股定理应用中的数学思想

勾股定理应用中的数学思想勾股定理是平面几何有关度量的最基本定理之一,它从边的角度进一步刻画了直角三角形的特征,揭示了直角三角形的一个重要的三边关系.在勾股定理的探索和应用过程中,蕴含着丰富的数学思想.下面试举几例:一、方程思想方程思想是初中数学中一种常用的数学思想,它通过设未知量、寻找相等关系建立方程模型,运用方程的有关知识沟通“已知”和“未知”之间关系的思想,即方程思想.例1、如图1,△ABC 中,AB=15,BC=14,AC=13,求BC 边上的高AD .分析:本题的图形是由一条公共边AD 的两个直角三角形(Rt △ABD 和Rt △ACD )组成的图形,我们一般称为复合三角形.求解复合三角形的基本思路是抓住公共边,利用公共边相等来建立方程.解析:设DC=x ,则BD=14- x .根据勾股定理得 AD 2=152-(14- x )2, AD 2=132- x 2∴152-(14- x )2=132- x2225-(196-28x + x 2)=169- x 2225-196+28x -x 2=169- x 228x=169-225+196 28x=365-225 28x=140 x=5在Rt △ACD 中 AD 2= AC 2-CD 2=132-52= 144 ∴ AD=12 二、数形结合思想数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”,即通过抽象思维与形象思维的结合,使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.例1.如图2有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC•沿直DABC图1线AD 折叠,使它落在斜边AB 上,且与AE 重合,求CD 长.解析:本题关键在于观察图形,明确折叠前、后的两个图形是全等的,特别要注意△DEB 仍是直角三角形.通过Rt △ABC ,∠C=90°,AC=6,BC=8 利用勾股定理可求出 AB=10.由题意知△ACD ≌△AED ⇒∠AED=∠C=90°⇒∠DEB=90°,且DE=CD ,AC=AE=6,设CD=x ,则DE=x ,而EB=10-6=4,抓住Rt △DEB 的三边关系,利用勾股定理就可以求出.在Rt △DEB 中,BD 2=DE 2+BE 2(8-x )2=x 2+42, 64-16x+x 2=x 2+16, 16x=48, 解得x=3(cm ). 即CD 的长是3 cm. 三、分类讨论思想在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法.分类讨论是一种逻辑方法,也是一种重要的数学思想.例3.在一个直角三角形中,已知有两条边的长分别为3和4,求以第三条边为边长的正方形的面积.解析:此题中并没有说明第三条边是直角边还是斜边,所以需要分类讨论,设第三条边的长为x .(1)当x 为斜边时,根据勾股定理得x 2=32+42=52=25,所以第三条边为边长的正方形的面积是25.(2)当x 为直角边时,根据勾股定理得x 2=42-32=16-9=7,所以第三条边为边长的正方形的面积是7.因此,以第三条边为边长的正方形的面积是25或7. 四、转化思想转化思想是把未知的问题转化到在已有知识范围内可解问题的一种重要的思想方法.数学的解题过程,就是图3AMG C DEH FB从“未知”向“已知”、从“复杂”到“简单”的化归转换过程.在本章中,求长方体、圆柱等立体图形表面的最短距离时,通常都是把其侧面展开成平面图形,然后根据“两点之间,线段最短”,利用勾股定理求解.例4. 如图3是一个长8 m、宽6m、高5m的长方体形仓库,在其内壁的A(长的四等分点)处有一只壁虎、B(宽的三等分点)处有一只蚊子,请你帮壁虎设计爬到蚊子处的最短路线,并说明理由.解析:解决立体图形中最短距离问题的关键是把利用转化思想,把陌生的立体图形转化到熟悉的平面图形,再利用“两点之间,线段最短”求解,壁虎要从A点爬到B点,有两条路线可走:(1)如图a,经过CDEF面后进入CFGH面到达B点.在Rt△ABE中,BE=4+5=9m,AE=6m,根据勾股定理得AB2=AE2+BE2=62+92=117 .(2)如图b,经过CDEF面后进入EFGM面,在Rt△ABN中,EN=FB=4m,AN=AE+EN=6+4=10m, BN=FE=5m,所以AB2=AN2+BN2=102+52=125. 显然125>117,所以壁虎趴到蚊子处的最短路线是沿着图a中的线段AB.图aHCD EFGAB图bG CDFAB。
勾股定理中的数学思想方法.docx
勾股定理中的数学思想方法山东李敏数学思想是数学知识的精髓,又是把知识转化为能力的桥梁,如果能正确把握数学思想方法, 在解题时可思路开阔,方法简便、快捷,下面就勾股定理屮的数学思想方法归纳如下,供同学们在复习时参考,一、方程思想例1、(课本题)在我国古代数学著作《九章算术》中记载看〈池葭出水〉的一道趣题:有一个正方形的池子,边长为1丈,池中心有一株芦苇,露出水面1尺,将芦苇拉至池边,它的末端正好与水面一样平,水有多深?芦苇有多长?求解此题(“丈”和“尺”都是旧制长度单位,现已停止使用,1丈二10尺,1米二3尺)分析、由图1和题意,我们可抽象出图2,在图2屮AC为水深,BC为水面宽的一半,AD 和AB都等于芦苇的长度,AABC为直角三角形解、设水深AC=x尺,芦苇长为AB=(x+l)尺,D 在RtAABC中,根据勾股定理得:X2+52=(X+1)2解得:x=12所以水池的深度为12尺,芦苇长为13尺点评、方程虽然是代数中的内容,但是很多儿何图形的计算问题,都可以转化为方程问题来解决,本题虽然只有一条直角三角形的边,但题意中包含看另二条边的关系,因此我们可以从这一数量关系入手就可以利用勾股定理列出方程,通过方程使问题得以解决.二、转化思想例2、如图3,有一个圆柱,它的高等于12厘米,底面半径等于3厘米,在图柱下底面的A 处有一只蚂蚁,它想吃到上底面上与A处相对的B处的食物,沿着圆柱的侧面爬行的最短距离是多少?(兀取3.)分析、木题看上去是一个曲面上的路线最短问题,但实际上可通过圆柱的侧面展开图转化为平面上的路线最短问题,使曲转化为直,如图4是圆柱的侧面展开图,其一边长为圆柱的高, 另一边长为圆柱的底面周长,显然,蚂蚁沿AB线爬行时,其爬行的路线最短,解、画出圆柱的侧面展开图,如图4, 根据题意,蚂蚁在A处,食物在B处,AB为蚂蚁爬行的最短路线,IL AC=12,1BO- X2 n X3=92在RtAABC中,根据勾股定理AB2=AC2+BC2=122+92= 152所以蚂蚁爬行的最短路线AC=15厘米点评、本题将曲面上的问题,转化为平面上的问题,充分体现了,转化思想在解题屮的应用.三、整体思想例3、(课本题)已知a 、b^ c 分别是RtAABC 的两条直角边和斜边,且a+b 二14, c=10,贝§ S AABC = ____________分析,一般的想法,耍求直角三角形的面积,先求出其两条直角边a 、b,则S AABC 即可求 出,但这样求a 、b 非常繁杂,甚至在现阶段不可能,如果注意到:S AABC =-^,那么只要2求出ab 这一整体就可以了.解、由 a+b=14,两边平方得:a 2+2ab+b 2=196,根据勾股定理,a 2+b 2=c 2因此、S AABC 二—ab =48 2点评、整体思想,有时可以便问题直奔主体,少走弯路,使问题的解决方便、快捷,在一定 程度上,体现了解题者的目标意识.四、数形结合思想例4、用四个全等的直角三角形可以拼成如图5所示的正方形,这个 图形我们称之为“弦图”,利用这个“弦图”,你能验证:a 2+b 2=c 2 吗?把你的验证过程写下来,并与同伴进行交流.分析、显然,图5以c 为边长的正方形的面积有两种不同的表示方法解、由图可知;S 正方形=4X —ab+ (b-a) 2=a 2+b 22 2 S 正方形二c 所以、a 2+b 2=c 2点评、数形结合思想是数学中的重要思想方法,它可以使抽象的知识 转化为形彖的图形,从而处理起来,更直观、容易,应引起同学们的重视. 所以ab= 196-(/+沪) 2所以,"豊=196-10; =48。
勾股定理中隐含的数学思想
.
■
图 1
一
对数学 问题进行 分情况讨 论求解 ,可使解 题准确 ,从而 避
例 4 下面是数学课堂的一个学 习片断 ,阅读后 ,请 回答 下
免产生漏解现象出现.
面 的问 题 .
学 习勾 股定理有 关 内容后 ,张老 师请 同学们交 流讨 论这 样
解 析 :由题 意可 知 +b =1 ,( 一b z : 3 0 )=1
一
、
课 堂提 问 表 象
思 维起源于 问题 ,没有 问题 就没有思维 . 数学课堂 中每天都 的研究 调查和实 际操作策 略等方 面的研究较 少 ,已有 的成果被
在 思考问题 ,解决 问题 ,但 这些问题 中的含金量 有多少 呢?有 引入 到具体 的数 学教学 实践时 ,在操作 中就 难免会 出现许 多误 下 效 性多大 呢?结合 笔者听课 经历 ,发 现一部分 教师根 据数学 内 区. 面就课 堂教学 提问中存在 的误 区进行分析与探究. 容设计 问题的意识 比较差 ,有效 提问很少 . 这种现状直 接导致课 堂 教学 效率低下 ,急需 改观.
陈 同金 ( 西省赣 州 中学) 江
摘 要 :数学 思想方法对 于打好 “ 双基 ”和加 深对知识 的理
根据完全平方公式 ( —b 2 a n )=a —2b+b 可得 1 3—2b=1 a ,
所 以 26=1. n 2 所 以 ( +b 2 a 0 )=a +2b+b =1 3+1 2=2 . 5
想 ,构造直角三角形 ,再利用勾股定 理求解.任何一个数学 问题
二 、 整体 思 想
对 于数 学问题 ,从 大处着 眼 ,从整 体人手 ,可使 问题 变难 都 是通过数或形 的逐步 转化 ,化 归为一个 比较熟悉 、比较容易
勾股定理教学中体现的数学思想
勾股定理教学中体现的数学思想
勾股定理是数学中最著名的定理之一,它指出,在直角三角形中,两条直角边的平方和等
于斜边的平方。
勾股定理的教学不仅仅是传授知识,更重要的是培养学生的数学思维能力。
首先,勾股定理教学中体现的数学思想是抽象思维。
在教学中,教师要求学生把三角形的
三条边看作是一个抽象的概念,而不是具体的物体,这样学生就可以把它们看作是一个数
学模型,从而更好地理解勾股定理。
其次,勾股定理教学中体现的数学思想是归纳思维。
在教学中,教师要求学生从实际出发,从实际的三角形中抽象出一般的三角形,从而归纳出勾股定理。
最后,勾股定理教学中体现的数学思想是推理思维。
在教学中,教师要求学生从勾股定理
出发,推理出其他的数学定理,如勾股定理的变形,勾股定理的应用等,从而更好地理解
勾股定理。
总之,勾股定理教学中体现的数学思想是抽象思维、归纳思维和推理思维,它们是数学思维能力的基础,也是数学学习的基础。
只有掌握了这些数学思想,学生才能更好地理解勾股定理,并运用它来解决实际问题。
勾股定理中的数学思想方法
勾股定理中的数学思想方法勾股定理是反映自然界基本规律的一条重要结论,它有着悠久的历史,在数学发展中起着重要的作用.它揭示了一个直角三角形三条边之间的数量关系,把数与形统一起来,在现实世界中有着广泛的应用.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a b c 222+=; 逆定理:如果三角形的三边长a ,b ,c 满足a b c 222+=,那么这个三角形是直角三角形.勾股定理揭示了直角三角形三边关系的重要性质;它的逆定理则是从三角形三边关系判定三角形是否是直角三角形的一个方法.学习《勾股定理》这一章,除了掌握上述两个定理之外,还应了解:这一章中蕴含着哪些重要的数学思想方法?在运用勾股定理解题时,若能正确地把握数学思想,则可思路开阔,方法简便快捷,下面举例说明,供同学们参考. 一、数形结合思想勾股定理本身就是数形结合的定理,它的验证和应用,都体现了数形结合的思想. 例1.如图1是一种“羊头”形图案,其做法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②′,…,然后依次类推,若正方形1的边长为64cm ,则正方形的边长为 cm .析解:这是一类关于“勾股树”(国外叫做“毕达哥拉斯树”)的探讨题,主要考查灵活运用勾股定理解决问题的能力,这里只要由勾股定理的规律通过一系列的探索就可以得到答案是8.例2.有一直立标杆,它的上部被风吹折,杆顶着地,离杆脚20cm ,修好后又被风吹杆,因新断处比前次低了5cm ,且标杆顶着地处比前次远10cm ,求标杆的高.析解:依题意作图如2,数形结合求解,设第一次吹折后下段AB 的长为xcm ,上段BC 的长为ycm ,第二次折后下段AD 的长为(x-5)cm ,上段DE 的长为(y+5)cm ,依题意得⎪⎩⎪⎨⎧=--+=-22222230)5()5(20x y x y只要求出x+y 的值即求出标杆的高而不必单独求x 与y 的值.②-①得10(x+y )=500∴x+y=50故标杆的高为50cm评析:利用三边的平方关系或辅助线或生活常识可获得直角三角形,进而可求边长或面积.数形结合思想是数学中的重要思想方法,它可以使抽象的知识转化为形象的图形,从而处理起来,更直观、容易,应引起同学们的重视.二、方程思想例3.在印度数学家拜·斯加罗的著作中,记载了一个有趣的“荷花问题”:“平平湖水清可鉴,面上半尺声红莲;图1出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”,请你用学过的数学知识回答这个问题.析解:此诗的大意是:在平静的湖面上,有一朵荷花高出水面0.5尺,忽然一阵狂风把荷花吹在水中淹没了,最后荷花垂直落到湖底,到了秋天,渔翁发现,落到湖底的荷花离根部有2尺远,如图,你知道这个湖的水深是多少尺吗?解答过程应该是这个样子的:设水深为x 尺,根据勾股定理,可得2222(0.5)x x +=+,所以x=3.75,故这个湖的水深是3.75尺. 三、转化思想例4.如图3所示,有一根高为2m 的木柱,它的底面周长为0.3m ,为了营造喜庆的气氛,老师要求小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,问:小明至少需要准备多长的一根彩带?分析与解:(1)将一张直角三角形的纸片在铅笔上缠绕七圈,将纸片展开,发现彩带的长相当于直角三角形的斜边长(如图4),可以利用勾股定理求出彩带的长.∵BC 为木柱的高,∴2m BC =.又∵木柱的底面周长为0.3m ,∴AC 的长为0.37 2.1m ⨯=.在Rt ACB △中,由勾股定理,得222AB AC BC =+,因此彩带的长为 2.9m AB =.(2)在木柱上均匀地缠绕7圈,相当于将木柱分成相等的七段,在每一段木柱上由底向正上方缠绕一根彩带,其侧面展开图是一个矩形,对角线的长为每段彩带的长(如图5).∵EF 为木柱的17,∴2m 7EF =. 又∵DE 为木柱展开后的底面周长,∴0.3m DF =. 在Rt DEF ∆中,由勾股定理,得222DE DF EF =+, ∴29m 70DE =,因此,彩带的长为7 2.9m DE ⨯=. 评析:遇到一些空间问题,通过动手实际操作一下,建立实物模型,这是建立空间概念的良好训练方法;而对实际问题进行分解、转化是数学解题中常用的思路.四、分类讨论思想例5.如图6是一块长、宽、高分别为6厘米、4厘米、3厘米的长方题木块.一只蚂蚁要从木块的一定点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( ).A .)323(+厘米B .97厘米C .85 厘米D .9厘米分析:这个问题是个空间问题,应该把他平面化.所以将长方体展开是解决本题的关键.分类一:我将长方体相邻两侧面展开可得图7,由图7,可得222310AB +==109. 分类二:我展开的图形和小敏的不一样,我的展开图如图8,根据图8可得22267AB +==85.分类三:我还有一种展开的方法,请大家看图9,这个时候我可得22294AB +==97. 评析:同学们思考的都非常有道理,通过比较我们可以发现沿图8的爬行路径路程最短,所以85=AB 厘米.故选C .五、整体思想例6:(课本题)已知a 、b 、c 分别是Rt △ABC 的两条直角边和斜边,且a+b=14,c=10,则S △ABC =分析:一般的想法,要求直角三角形的面积,先求出其两条直角边a 、b ,则S △ABC 即可求出,但这样求a 、b 非常繁杂,甚至在现阶段不可能,如果注意到:S △ABC =ab 21,那么只要求出ab 这一整体就可以了.解、由a+b=14,两边平方得:a 2+2ab+b 2=196, 所以ab=()219622b a +- 根据勾股定理,a 2+b 2=c 2 所以,ab=21962c -=2101962-=48 因此S △ABC =ab 21=48例7:如图10,BC 长为3厘米,AB 长为4厘米,AF 长为13厘米.求正方形CDEF 的面积.分析:一般的想法,要求出正方形的面积,先求出其边长CF ;要求出CF ,先要求出AC .好,现在我们就顺着这个思路来求.在Rt ABC △中,222223425AC AB BC =+=+=,所以5AC =,在Rt FAC △中,22222135194F C A F A C =+=+=,FC为多少?数不够用了!我们再去看一下题目,是让求正方形的面积,正方形的面积为2FC ,何必去求FC ,只要求出2FC 这个“整体”就可以,原来正方形的面积为194,我们已经求出来了!(解答过程请同学们完成) 评析:整体思想,有时可以便问题直奔主体,少走弯路,使问题的解决方便、快捷,在一定程度上,体现了解题者的目标意识.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理应用中的数学思想方法
作者:陈德前
来源:《初中生之友·中旬刊》2009年第05期
勾股定理是初中数学中的一个重要定理,灵活运用数学思想方法与勾股定理可使解题准确、迅速。
一、分类思想
例1若直角三角形的三边长分别为2、4、x,则x的可能值为()。
A. 1个
B. 2个
C. 3个
D. 4个
解析本题没有说明4和x哪一个是斜边,故应分两种情况讨论:若4为斜边,则x为直角边,由勾股定理可得一值;若x为斜边,由勾股定理可得另一值。
因此x的值有两个,答案选B。
二、方程思想
例2在Rt△ABC中,两直角边之比为3∶4,斜边为30cm,求此直角三角形斜边上的高。
解析已知两直角边之比为3:4,可设两直角边为3x和4x,利用勾股定理建立方程求出x 的值,再求斜边上的高就容易了。
设两直角边为3x和4x,利用勾股定理可得方程:(3x)2+(4x)2=302,求出x的正值为x=6。
所以两直角边三、数形结合思想
例3 如图1(1)是用硬纸板做成的两个全等的直角三角形,两直角边的边长分别为a和b,斜边长为c。
图1(2)是以c为直角边的等腰直角三角形。
请你开动脑筋,将它们拼成一个能证明勾股定理的图形。
请解答以下问题。
(1) 画出拼成的这个图形的示意图,写出它是什么图形;
(2)用这个图形证明勾股定理;
(3)假设图1(1)中的直角三角形有若干个,你能运用图1(1)中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼图后的示意图(无需证明)。
解析本题考查运用图形来说明代数等式(勾股定理)的能力,是数形结合思想的典型体现。
a2+b2=c2;(3)能拼出证明勾股定理的图形,如图3。
四、转化思想
例4△ABC中,BC=a,AC=b,AB=c。
若∠C=90°,如图4(1),根据勾股定理,则
a2+b2=c2。
若△ABC不是直角三角形,如图4(2)和图4(3),请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论。
解析可以作三角形的高,将斜三角形转化为直角三角形,再应用勾股定理来说明。
若△ABC是锐角三角形,则有a2+b2>c2;若△ABC是钝角三角形,∠C为钝角,则有a2+b2
当△ABC是锐角三角形时,证明如下:
过点A作AD⊥BC,垂足为D,如图5所示,设CD为x,则有BD=a-x。
根据勾股定理,得b2-x2=AD2=c2-(a-x)2,即b2-x2=c2-a2+2ax-x2,
∴a2+b2=c2+2ax。
∵a>0,x>0,∴2ax>0。
则a2+b2>c2。
当△ABC是钝角三角形时,证明如下:
过B作BD⊥AC,交AC的延长线于D,如图6,设CD为x,则有BD2=a2-x2。
根据勾股定理,得(b+x)2+a2-x2=c2,即a2+b2+2bx=c2。
∵b>0,x>0,∴2bx>0,∴a2+b2。