圆锥曲线(椭圆、双曲线、抛物线)知识点总结

合集下载

椭圆双曲线抛物线知识点汇总

椭圆双曲线抛物线知识点汇总

椭圆双曲线抛物线知识点汇总一、椭圆椭圆是平面内到定点 F1、F2 的距离之和等于常数(大于|F1F2|)的动点 P 的轨迹,F1、F2 称为椭圆的焦点,两焦点的距离|F1F2|称为椭圆的焦距。

1、椭圆的标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。

焦点在 y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a > b > 0\))。

2、椭圆的性质范围:对于焦点在 x 轴上的椭圆,\(a \leq x \leq a\),\(b\leq y \leq b\);对于焦点在 y 轴上的椭圆,\(b \leq x \leq b\),\(a \leq y \leq a\)。

对称性:椭圆关于 x 轴、y 轴和原点对称。

顶点:焦点在 x 轴上时,顶点坐标为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点坐标为\((0, \pm a)\),\((\pm b, 0)\)。

离心率:椭圆的离心率\(e =\frac{c}{a}\)(\(0 < e <1\)),它反映了椭圆的扁平程度,\(e\)越接近0,椭圆越接近圆;\(e\)越接近 1,椭圆越扁。

3、椭圆的参数方程焦点在 x 轴上:\(\begin{cases}x = a\cos\theta \\ y =b\sin\theta\end{cases}\)(\(\theta\)为参数)焦点在 y 轴上:\(\begin{cases}x = b\cos\theta \\ y =a\sin\theta\end{cases}\)(\(\theta\)为参数)4、椭圆中的焦点三角形设 P 为椭圆上一点,F1、F2 为焦点,\(\angle F1PF2 =\theta\),则三角形 PF1F2 的面积为\(S = b^2\tan\frac{\theta}{2}\)。

圆锥曲线知识点

圆锥曲线知识点

圆锥曲线知识点圆锥曲线是数学中一类重要的曲线,它们是平面上所有与两个固定点(焦点)距离之和为常数的点的集合。

这些曲线包括椭圆、抛物线和双曲线。

以下是圆锥曲线的知识点总结:1. 椭圆:椭圆是平面上所有与两个焦点距离之和等于常数的点的集合。

这个常数大于两个焦点之间的距离。

椭圆的标准方程可以表示为:\[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]其中,\( a \) 是椭圆的半长轴,\( b \) 是椭圆的半短轴。

2. 抛物线:抛物线是平面上所有与一个焦点和一个定点(顶点)距离相等的点的集合。

抛物线的标准方程可以表示为:\[ y^2 = 4ax \]或者\[ x^2 = 4ay \]其中,\( a \) 是抛物线的参数,表示顶点到焦点的距离。

3. 双曲线:双曲线是平面上所有与两个焦点距离之差的绝对值等于常数的点的集合。

这个常数小于两个焦点之间的距离。

双曲线的标准方程可以表示为:\[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \]或者\[ \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \]其中,\( a \) 是双曲线的实半轴,\( b \) 是双曲线的虚半轴。

4. 圆锥曲线的性质:- 椭圆具有两个焦点,所有点到两个焦点的距离之和是常数。

- 抛物线具有一个焦点和一个顶点,所有点到焦点的距离等于到顶点的距离。

- 双曲线具有两个焦点,所有点到两个焦点的距离之差的绝对值是常数。

- 圆锥曲线的焦点可以通过方程的参数确定。

5. 圆锥曲线的应用:- 椭圆在天文学中描述行星的轨道。

- 抛物线在光学中描述光线通过抛物面反射后的路径。

- 双曲线在工程学中用于设计某些类型的天线。

6. 圆锥曲线的参数化:- 椭圆的参数方程可以表示为:\[ x = a \cos(t) \]\[ y = b \sin(t) \]- 抛物线的参数方程可以表示为:\[ x = at^2 \]\[ y = 2at \]- 双曲线的参数方程可以表示为:\[ x = a \sec(t) \]\[ y = b \tan(t) \]7. 圆锥曲线的几何特征:- 椭圆的长轴和短轴是对称的,且椭圆是封闭的。

椭圆双曲线抛物线知识点

椭圆双曲线抛物线知识点

椭圆,双曲线,抛物线知识点- 椭圆、双曲线和抛物线是三种重要的圆锥曲线,它们在数学和实际生活中都有广泛的应用。

以下是关于这三种曲线的一些主要知识点:1.椭圆:定义:椭圆是平面上到两个固定点(焦点)的距离之和等于常数(大于两个焦点间的距离)的点的轨迹。

这个常数称为椭圆的焦距。

性质:•椭圆上的任意一点到两个焦点的距离之和是常数(2a)。

•在椭圆长轴的顶点处,短轴的半径最小。

•在短轴顶点处,长轴的半径最大。

•椭圆的离心率是数学中一个重要的概念,定义为e=c/a,其中a是半长轴,c是半短轴。

椭圆的离心率越接近1,椭圆的形状就越扁。

2.双曲线:定义:双曲线是平面上到两个固定点(焦点)的距离之差的绝对值等于常数(小于两个焦点间的距离)的点的轨迹。

这个常数称为双曲线的实轴长度。

性质:•双曲线上的任意一点到两个焦点的距离之差是常数(2a)。

•双曲线的两个分支是无限延伸的,它们不会相交。

•双曲线的离心率是数学中一个重要的概念,定义为e=c/a,其中a是半实轴长度,c是半虚轴长度。

双曲线的离心率越大,双曲线的形状就越扁。

3.抛物线:定义:抛物线是平面上到定点(焦点)和直线(准线)的距离相等的点的轨迹。

定点(焦点)和直线(准线)的距离d称为抛物线的焦距。

性质:•抛物线上的点到定点(焦点)的距离等于到直线(准线)的距离。

•抛物线的开口大小由焦距决定,焦距越大,开口越小。

•抛物线可以被认为是圆锥曲线的一种特殊形式,因为它可以看作是由一个平面切割圆锥体得到的。

在数学中,这三种曲线都有广泛的应用,包括解决各种几何问题、优化问题、微分方程等。

它们也是很多科学和工程学科的基础,如物理学、天文学、经济学等。

此外,在计算机图形学、动画制作、摄影等领域,这三种曲线也经常被用到。

在求解具体问题时,需要根据具体的问题选择合适的曲线。

例如,在解决航天工程中的轨道问题时,可能需要使用椭圆;在解决一些需要快速下降或者远离某一点的运动问题时,可能需要使用双曲线;在解决一些需要速度最大或者最小的问题时,可能需要使用抛物线。

高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结一、椭圆1.平面内与两个定点 , 的距离之和等于常数(大于 )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。

这两个定点称为椭圆的焦点, 两焦点的距离称为椭圆的焦距.2.椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b+=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率 ()22101c b e e a a==-<<二、双曲线1.平面内与两个定点 , 的距离之差的绝对值等于常数(小于 )的点的轨迹称为双曲线. 即: 。

这两个定点称为双曲线的焦点, 两焦点的距离称为双曲线的焦距.2.双曲线的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210,0x y a b a b-=>> ()222210,0y x a b a b-=>> 范围 或 ,或 ,顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性关于 轴、 轴对称, 关于原点中心对称离心率()2211c b e e a a==+>渐近线方程b y x a=±a y x b=±3.等轴双曲线: 双曲线 称为等轴双曲线, 其渐近线方程为 , 离心率 . 4、共渐近线的双曲线系方程:三、抛物线1.平面内与一个定点 和一条定直线 的距离相等的点的轨迹称为抛物线. 定点 称为抛物线的焦点, 定直线 称为抛物线的准线.2.抛物线的几何性质:标准方程22y px =()0p >22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴x 轴y 轴焦点,02p F ⎛⎫⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程2px =-2p x =2p y =-2p y =离心率 1e =范围0x ≥ 0x ≤0y ≥ 0y ≤3.过抛物线的焦点作垂直于对称轴且交抛物线于 、 两点的线段 , 称为抛物线的“通径”, 即 .4.焦半径公式:若点 在抛物线 上, 焦点为 , 则 ; 若点 在抛物线 上, 焦点为 , 则 ; 5、焦点弦: = +p四、圆1.定义: 点集{M ||OM |=r }, 其中定点O 为圆心, 定长r 为半径.2.方程: (1)标准方程: 圆心在c(a,b), 半径为r 的圆方程是(x-a)2+(y-b)2=r2圆心在坐标原点, 半径为r 的圆方程是x2+y2=r2(2)一般方程: ①当D2+E2-4F >0时, 一元二次方程x2+y2+Dx+Ey+F=0叫做圆的一般方程, 圆心为 半径是 。

完美版圆锥曲线知识点总结

完美版圆锥曲线知识点总结

完美版圆锥曲线知识点总结圆锥曲线是数学中的一类重要曲线,广泛应用于几何、物理、工程等领域。

由于其独特的性质和广泛的应用,掌握圆锥曲线的知识对于提高数学水平和解决实际问题具有重要意义。

本文将对圆锥曲线的基本概念、性质和常见类型进行总结和归纳。

一、圆锥曲线的基本概念圆锥曲线是由平面和一个固定点(焦点F)以及一个固定直线(准线L)共同确定的曲线。

根据焦点和准线的位置关系,圆锥曲线分为椭圆、抛物线和双曲线三类。

1. 椭圆:椭圆是焦点到准线的距离之和恒定于两倍焦半径的轨迹。

椭圆具有对称性,焦点位于椭圆的两个焦点之间。

2. 抛物线:抛物线是焦点到准线的距离等于焦半径的轨迹。

抛物线具有对称轴,焦点位于抛物线的焦点上方或下方。

3. 双曲线:双曲线是焦点到准线的距离之差恒定于两倍焦半径的轨迹。

双曲线也具有对称性,焦点位于双曲线的两个焦点之间。

二、圆锥曲线的性质圆锥曲线具有一系列重要的性质,为研究和应用圆锥曲线提供了基础。

1. 对称性:椭圆和双曲线具有两个关于准线和两个焦点的对称轴,抛物线具有一个关于准线的对称轴。

2. 焦距和半焦距:焦距是焦点到对称轴的距离,半焦距是焦距的一半。

焦距对于不同类型的圆锥曲线有不同的计算方法,但都是相对于准线和对称轴计算的。

3. 焦半径:焦半径是焦点到曲线上点的距离,焦半径对于同一曲线上不同点的值是相等的。

4. 离心率:离心率是焦半径与半焦距的比值,用e表示。

对于椭圆,离心率范围在0和1之间;对于抛物线,离心率等于1;对于双曲线,离心率大于1。

5. 焦点和准线的关系:焦点和准线的位置关系决定了曲线的类型。

当焦点在准线上时,曲线是抛物线;当焦点在准线之上时,曲线是椭圆;当焦点在准线之下时,曲线是双曲线。

三、常见类型的圆锥曲线。

圆锥曲线知识点整理

圆锥曲线知识点整理

圆锥曲线知识点整理圆锥曲线是数学中的重要概念,它包括椭圆、双曲线和抛物线三种形式。

本文将整理圆锥曲线的基本定义、性质和应用。

1. 圆锥曲线的定义圆锥曲线是由平面与一个圆锥相交而产生的曲线。

根据与圆锥相交的方式不同,可以分为三种类型:椭圆、双曲线和抛物线。

2. 椭圆的性质椭圆是圆锥曲线中最简单的一种形式。

它具有以下性质:- 椭圆是一个闭合曲线,其形状类似于拉伸的圆。

- 椭圆有两个焦点,对称轴为椭圆的长轴。

- 椭圆的离心率是一个小于1的正实数。

- 椭圆的周长和面积可以通过一系列公式计算得出。

3. 双曲线的性质双曲线与椭圆相似,但具有一些不同的性质:- 双曲线是一个非闭合曲线,其形状类似于拉伸的超越函数。

- 双曲线有两个焦点,对称轴为双曲线的长轴。

- 双曲线的离心率是一个大于1的正实数。

- 双曲线的性质使得它在几何光学和天体力学等领域中有广泛应用。

4. 抛物线的性质抛物线是另一种常见的圆锥曲线形式,具有以下性质:- 抛物线是一个非闭合曲线,其形状类似于开口向上或向下的碗。

- 抛物线只有一个焦点和一条对称轴。

- 抛物线的离心率为1。

- 抛物线的性质使得它在物理学和工程学等领域中有广泛应用,如抛物线天线和抛物线反射面。

5. 圆锥曲线的应用圆锥曲线在数学和实际应用中有广泛的应用,包括:- 电磁学中的电磁波传播和天线设计。

- 物理学中的天体力学和轨道计算。

- 工程学中的光学设计和结构建模。

总结:圆锥曲线是由平面与一个圆锥相交而产生的曲线,包括椭圆、双曲线和抛物线三种形式。

每种曲线都有其独特的性质和应用。

理解和掌握圆锥曲线的知识对于数学学习和实际应用都具有重要意义。

通过本文的整理,希望读者能够对圆锥曲线有更深入的了解,并能应用于相关领域的问题解决中。

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结第一篇:圆锥曲线基础知识圆锥曲线是一类重要的几何图形,它由一固定点(焦点)和一条直线(直母线)确定。

圆锥曲线包括椭圆、双曲线、抛物线和圆。

1. 椭圆椭圆是所有圆锥曲线中最简单的一种。

当一个圆锥截面与其直母线平行时,得到的图形就是一个椭圆。

椭圆具有如下性质:(1) 椭圆中心:椭圆的中心是其两个焦点的中垂线的交点。

(2) 焦点:椭圆上有两个焦点,它们在椭圆的长轴上,且到椭圆中心的距离相等。

(3) 长轴和短轴:椭圆上的两个焦点和中心共线,中心到焦点的距离称为焦距,长轴是椭圆上离焦点最远的两个点之间的距离,短轴是椭圆上离焦点最近的两个点之间的距离,长轴和短轴的长度之间的比值称为离心率。

(4) 方程:椭圆的标准方程为(x/a)^2+(y/b)^2=1, 其中a和b分别为长轴和短轴的一半。

(5) 旋转:如果椭圆不是以坐标轴为轴旋转的,则称其为斜椭圆,斜椭圆可以通过平移和旋转把它转变为标准方程的椭圆。

2. 双曲线双曲线是圆锥曲线中另一个重要的图形,当一个圆锥截面与其直母线的夹角小于圆锥的母线夹角时,得到的图形就是双曲线。

双曲线具有如下性质:(1) 中心:双曲线的中心是对称轴与渐近线的交点。

(2) 焦点:双曲线有两个焦点,它们位于对称轴上,且到中心的距离相等。

(3) 渐近线:一条直线是双曲线的渐近线,当直线与双曲线的距离接近于零时,该直线就称为双曲线的渐近线。

(4) 方程:双曲线的标准方程为(x/a)^2-(y/b)^2=1,其中a和b分别为双曲线上的两个焦点之间的距离的一半和中心到直线y=0的距离。

(5) 分类:双曲线可以分为右开口和左开口的两种,短轴在x轴的正半轴上的为右开口,反之为左开口。

3. 抛物线抛物线是圆锥曲线中另一种重要的图形,当一个圆锥截面与其直母线垂直时,得到的图形就是抛物线。

抛物线具有如下性质:(1) 焦点和直线:抛物线有一个焦点F和一条直线L,直线L称为准线。

对于抛物线上的任意一点P,它到焦点F的距离等于它到准线L的距离。

(完整版)圆锥曲线知识点归纳总结

(完整版)圆锥曲线知识点归纳总结

完整版)圆锥曲线知识点归纳总结1.圆锥曲线的定义和构造圆锥曲线是在平面上由一个固定点(焦点)和一个固定直线(准线)决定的点集。

三种经典的圆锥曲线分别为椭圆、抛物线和双曲线。

构造圆锥曲线需要确定焦点和准线的位置以及确定参数值。

2.椭圆的特性椭圆是圆锥曲线中最常见的一种形式,由两个焦点和一个大于等于焦距的参数决定。

椭圆的离心率小于1,且离心率等于焦点到准线的距离除以准线长度。

椭圆的焦缩比为焦点到椭圆上某一点的距离与该点到准线的距离的比值。

重要公式:椭圆的标准方程为(x^2/a^2) + (y^2/b^2) = 1;焦缩比为e = c/a,其中c^2 = a^2 – b^2.3.抛物线的特性抛物线是圆锥曲线中的一种形式,由一个焦点和一个参数决定。

抛物线的离心率为1,焦缩比为1.抛物线的轴是准线,顶点是焦点和准线的交点。

重要公式:抛物线的标准方程为(x^2/4a) = y。

4.双曲线的特性双曲线是圆锥曲线中的一种形式,由两个焦点和一个焦距决定。

双曲线的离心率大于1,离心率等于焦点到准线的距离除以准线长度。

双曲线的焦缩比为c^2 = a^2 + b^2.重要公式:双曲线的标准方程为(x^2/a^2) – (y^2/b^2) = 1.5.圆锥曲线的应用圆锥曲线在数学和物理学中都有广泛的应用。

椭圆的应用包括轨道运动、天体力学以及密码学等领域。

抛物线的应用包括抛物面反射器、人工卫星的轨道设计等。

双曲线的应用包括电磁波的传播、双曲线钟的标定等。

6.圆锥曲线的性质圆锥曲线有许多共同的性质,如对称性、切线性质和焦点性质等。

对称性:椭圆和双曲线关于x轴和y轴都有对称性,抛物线关于y轴有对称性。

切线性质:圆锥曲线上任意一点的切线与焦点到该点的连线垂直。

焦点性质:圆锥曲线上的任意一点到焦点的距离与焦缩比成正比。

此文档总结了圆锥曲线的定义、特性、应用和性质等重要知识点,并提供了相关公式和图示。

熟悉了这些知识后,我们可以更加深入地理解和应用圆锥曲线的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双曲线知识点一、 双曲线的定义:1. 第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长〔<|F 1F 2|〕的点的轨迹〔21212F F a PF PF <=-〔a 为常数〕〕这两个定点叫双曲线的焦点.要注意两点:〔1〕距离之差的绝对值.〔2〕2a <|F 1F 2|.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在.2. 第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程:12222=-b y a x 〔a >0,b >0〕(焦点在x 轴上);12222=-bx a y 〔a >0,b >0〕(焦点在y 轴上);1. 如果2x 项的系数是正数,那么焦点在x 轴上;如果2y 项的系数是正数,那么焦点在y 轴上. a 不一定大于b.2. 与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 3. 双曲线方程也可设为:221(0)x y mn m n-=> 例题:双曲线C 和椭圆221169x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。

三、点与双曲线的位置关系,直线与双曲线的位置关系: 1 点与双曲线:点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>上220022-=1x y a b ⇔2 直线与双曲线:〔代数法〕设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b1) 0m =时,b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕;b k a ≥,bk a≤-,或k 不存在时直线与双曲线没有交点;2) 0m ≠时,k 存在时,假设0222=-k a babk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;假设2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a +=直线与双曲线有一个交点;假设k 不存在,a m a -<<时,直线与双曲线没有交点; m a m a ><-或直线与双曲线相交于两点; 3. 过定点的直线与双曲线的位置关系:设直线:l y kx m =+过定点00(,)P x y ,双曲线)0,0(12222>>=-b a by a x1).当点00(,)P x y 在双曲线内部时:b bk a a-<<,直线与双曲线两支各有一个交点; a bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;b k a >或bk a<-或k 不存在时直线与双曲线的一支有两个交点;2).当点00(,)P x y 在双曲线上时:bk a =±或2020b x k a y =,直线与双曲线只交于点00(,)P x y ;b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕; 2020b x k a y >〔00y ≠〕或2020b x bk a a y << 〔00y ≠〕或b k a <-或k 不存在,直线与双曲线在一支上有两个交点;当00y ≠时,bk a =±或k 不存在,直线与双曲线只交于点00(,)P x y ;b k a >或bk a <-时直线与双曲线的一支有两个交点;b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕; 3).当点00(,)P x y 在双曲线外部时: 当()0,0P 时,b bk a a -<<,直线与双曲线两支各有一个交点; b k a ≥或bk a≤或k 不存在,直线与双曲线没有交点;当点0m ≠时,k =时,过点00(,)P x y 的直线与双曲线相切 bk a=±时,直线与双曲线只交于一点;几何法:直线与渐近线的位置关系例:过点(0,3)P 的直线l 和双曲线22:14y C x -=,仅有一个公共点,求直线l 的方程。

四、双曲线与渐近线的关系:1. 假设双曲线方程为22221(0,0)x y a b a b-=>>⇒渐近线方程:22220x y a b -=⇔x a by ±=2. 假设双曲线方程为12222=-bx a y 〔a >0,b >0〕⇒渐近线方程:22220y x a b-=ay x b =±3. 假设渐近线方程为x aby ±=⇔0=±b y a x⇒双曲线可设为λ=-2222b y a x , 0λ≠.4. 假设双曲线与12222=-by a x 有公共渐近线那么双曲线的方程可设为λ=-2222by a x 〔0>λ,焦点在x 轴上,0<λ,焦点在y轴上〕五、双曲线与切线方程:1. 双曲线22221(0,0)x y a b a b-=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.2. 过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. 3. 双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A a B b c -=.六、 双曲线的性质:七、弦长公式:假设直线y kx b=+与圆锥曲线相交于两点A、B,且12,x x分别为A、B的横坐标,那么AB=12AB x=-=,假设12,y y分别为A、B的纵坐标,那么12AB y=-=通径的定义:过焦点且垂直于实轴的直线与双曲线相交于A、B两点,那么弦长abAB22||=。

假设弦AB所在直线方程设为x ky b=+,那么AB12y y-。

特别地,焦点弦的弦长的计算是将焦点弦转化为两条焦半径之和后,利用第二定义求解,例:直线1+=x y 与双曲线13222=-y x 相交于B A ,两点,那么AB =_____________ 八、焦半径公式:双曲线12222=-by a x 〔a >0,b >0〕上有一动点00(,)M x y当00(,)M x y 在左支上时10||MF ex a =--,20||MF ex a =-+当00(,)M x y 在右支上时10||MF ex a =+,20||MF ex a =-注:焦半径公式是关于0x 的一次函数,具有单调性,当00(,)M x y 在左支端点时1||MF c a =-,2||MF c a =+,当00(,)M x y 在左支端点时1||MF c a =+,2||MF c a =- 九、等轴双曲线:12222=-by a x 〔a >0,b >0〕当a b =时称双曲线为等轴双曲线; 那么:1. a b =;2.离心率2=e ;3.两渐近线互相垂直,分别为y=x ±;4.等轴双曲线的方程λ=-22y x ,0λ≠;5. 等轴双曲线上任意一点到中心的距离是它到两个焦点的距离的比例中项。

十、共轭双曲线:1.定义:以双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线,通常称它们互为共轭双曲线.2.方程:3.性质:共轭双曲线有共同的渐近线; 共轭双曲线的四个焦点共圆. 它们的离心率的倒数的平方和等于1。

1-2222=b y a x 〔a>0;b>0〕的焦点为1F 与2F ,且p 为曲线上任意一点,θ221=∠PF F 。

那么21F PF ∆的面积θcot 2b S =焦点三角形面积公式:)(,2cot 21221PF F b S PF F ∠==∆θθ高二数学椭圆知识点1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:假设)(2121F F PF PF =+,那么动点P 的轨迹为线段21F F ;假设)(2121F F PF PF <+,那么动点P 的轨迹无图形.2、椭圆的标准方程1〕.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=;.实用文档..2〕.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;3、椭圆:12222=+by a x )0(>>b a 的简单几何性质〔1〕对称性:对于椭圆标准方程12222=+by a x )0(>>b a :是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

〔2〕范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x≤,b y ≤。

〔3〕顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。

③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。

相关文档
最新文档