线段的垂直平分线的判定

合集下载

线段的垂直平分线性质(第一课时)

线段的垂直平分线性质(第一课时)
4、题目
已知点$P$是线段AB的垂直平分线上 的一点,若$PA = 2cm$,则点$P$到
线段AB中点的距离是____$cm$.
答案与解析
1、答案
2、答案
3、答案
4、答案
到这条线段两个端点的距离相 等;解析:根据线段的垂直平 分线的定义,垂直平分线上的 任意一点到线段两个端点的距 离相等。
$2cm$;解析:由于点$P$是 线段$AB$的垂直平分线上任意 一点,根据垂直平分线的性质, 有$PA = PB$,所以$PA + PB = AB = 2cm$.
在数学问题中的应用
01
02
03
解决几何问题
利用垂直平分线的性质, 可以解决各种几何问题, 例如证明线段相等、角相 等、平行线等。
解决代数问题
在代数问题中,可以利用 垂直平分线的性质来解决 一些问题,例如解方程、 不等式等。
解决三角函数问题
利用垂直平分线的性质, 可以解决一些三角函数问 题,例如求三角形的边长、 角度等。
THANKS
感谢观看
线段的垂直平分 线性质(第一课时)
目录
• 引言 • 线段的垂直平分线定义 • 线段的垂直平分线的性质证明 • 线段的垂直平分线的应用 • 练习题与答案
01
引言
课程目标
理解线段垂直平分线 的定义和性质。
会利用线段垂直平分 线的性质解决实际问 题。
掌握线段垂直平分线 的作法。
学习重点与难点
学习重点
05
练习题与答案
练习题
1、题目
线段垂直平分线上的点到这条 线段两个端点的距离相等吗?
为什么?
2、题目
已知$AB = 2cm$,点$P$是线段 $AB$的垂直平分线上任意一点,则 $PA + PB$的值是多少?

线段垂直平分线的性质和判定讲课文档

线段垂直平分线的性质和判定讲课文档

B(A)
总结归纳
线段垂直平分线的性质定理: 线段垂直平分线上的点到线段两端的距离相等.
第八页,共22页。
典例精析
例1 如图,在△ABC中,AB=AC=20cm,DE垂直 平分AB,垂足为E,交AC于D,若△DBC的周长为 35cm,则BC的长为( ) C
A.5cm B.10cm C.15cm D.17.5cm
线段垂直平分线的性质和判定
第一页,共22页。
学习目标
1.理解线段垂直平分线的概念; 2.掌握线段垂直平分线的性质定理及逆定理;(重点) 3.能运用线段的垂直平分线的有关知识进行证明或计算. (难点)
第二页,共22页。
导入新课
问题引入
A
某区政府为了方便居民的生活,计划在三 个住宅小区A、B、C之间修建一个购物中 心,试问该购物中心应建于何处,才能使得 它到三个小区的距离相等?
(2)当点P在线段AB外时,如右图所示. 因为PA=PB, 所以△PAB是等腰三角形. 过顶点P作PC⊥AB,垂足为点C, 从而底边AB上的高PC也是底边AB上的中线. 即 PC⊥AB,且AC=BC. 因此直线PC是线段AB的垂直平分线, 此时点P也在线段AB的垂直平分线上.
第十三页,共22页。
总结归纳
P3
P1A __=__P1B P2A __=__ P2B
P2
P1
A
B
P3A __=__ P3B
l
第六页,共22页。
活动探究
作关于直线l 的轴反射(即沿直线l 对折),由于l 是 线段AB的垂直平分线,因此点A与点B重合. 从而线段PA 与线段PB重合,于是PA=PB.
P
(B) A
l
第七页,共22页。

线段的垂直平分线(二)

线段的垂直平分线(二)
如果一条直线与线段相交,并且与线段垂直,那么这条直线就是线段的垂直平分线。
02 垂直平分线的作法
利用直角三角形的性质作垂直平分线
直角三角形斜边的中线等于斜 边的一半。
直角三角形斜边的中线也是斜 边上的高。
直角三角形斜边的中线将直角 三角形分为两个等腰三角形。
利用等腰三角形的性质作垂直平分线
等腰三角形底边上的中点到两腰的距 离相等。
垂直平分线上的任意 一点到线段两端点的 距离相等。
垂直平分线是唯一的, 即一条线段只有一条 垂直平分线。
垂直平分线与线段垂 直,且与线段相交于 中点。
垂直平分线的判定
如果一条直线通过线段的中点,并且与线段垂直,那么这条直线就是线段的垂直平 分线。
如果一条直线上的任意一点到线段两端点的距离相等,那么这条直线就是线段的垂 直平分线。
1 2

确定点与线段的位置关系
通过垂直平分线,可以确定一个点是否在线段的 中垂线上,从而确定该点与线段的位置关系。
证明三角形等腰
如果一个三角形两边上的中点在同一条垂直平分 线上,则这个三角形是等腰三角形。
3
计算线段长度
利用垂直平分线性质,可以计算线段的长度。
在日常生活中的应用
01
02
03
确定物体位置
在几何证明和作图中有重要应用, 如利用角的平分线作平行线。
平行线的性质与判定
性质
平行线具有同位角相等、内错角 相等、同旁内角互补等性质。
判定
平行线的判定包括同位角相等、 内错角相等、同旁内角互补等条
件。
应用
在几何证明和作图中有重要应用, 如利用平行线的性质证明线段的
比例关系。
三角形的高、中线与角平分线

线段垂直平分线的性质定理及逆定理

线段垂直平分线的性质定理及逆定理

课堂小结
一、性质定理:线段垂直平分线上的点到这条线段两个端
点的距离相等。
二、逆定理:到一条线段两个端点距离相等的点,在这条
线段的垂直平分线上。 线段垂直平分线上的点到这
点P在线段 条线段两个端点的距离相等
AB的垂直
PA=PB
平分线上 到线段两个端点距离相等的点,
在这条线段的垂直平分线上
三、 线段的垂直平分线的集合定义: 线段的垂直平分线可以看作是到线段两上
端点距离相等的所有点的集合
拓展题
布置作业
第1课时 线段垂直平分 线的性质定理及逆定理
学习目标
经历证明线段垂直平分线的性质 定理和判定定理的过程,并能够熟练 运用此定理解题。
定理:线段垂直平分线上的点到这条线段两个端点
的距离相等。
定理:线段垂直平分线上的点到这条线段两个端点的距离相等。
已知:如图,直线MN⊥AB,垂足为C, 且AC=CB. 点P在MN上.
线段的垂直平分线上。
线段垂直平分线上的点到这
点P在线段 条线段两个端点的距离相等
AB的垂直
PA=PB
平分线上 到线段两个端点距离相等的点,
在这条线段的垂直平分线上
三、 线段的垂直平分线的集合定义:
线段的垂直平分线可以看作是到线 段两上端点距离相等的所有点的集合
1、如图直线MN垂直平 分线段AB,则AE=AF。
逆命题: 到线段两个端点距离相等的点,在这条线段的 垂直平分线上。 P
点P在线段
AB的垂直
?
平分线上
PA=PB
几何语言叙述:
∵PA=PB
∴点P在线段AB的垂直平分线上 A
C
B
线段的垂直平分线
一、性质定理:线段垂直平分线上的点到这条线段两个端

15.2线段的垂直平分线

15.2线段的垂直平分线
∵AE+EC=AC,
∴BE+EC=AC.
∵AC=17,BC=16.
D
E
∴ △BCD的周长=BE+EC+BC=AC+BC=17+16=33.
练习3、如右图,△ABC中,AB=AC=16cm,AB的垂 直平分线ED交AC于D点. (1)当AE=13cm时,BE= cm; (2)当△BEC的周长为26cm时,则BC= cm; (3)当BC=15cm,则△BEC的周长是 cm.
C
A
O
B
线段垂直平分线的判定定理
定理 到线段两端距离相等的点在线段 的垂直平分线上.
P
几何语言 如图,
∵ PA=PB(已知)
∴点P在线段AB的垂直平分线上 (到线段两端距离相等的点在 A 线 段的垂直平分线上.)
线段垂直平分线的判定定理
B
练习1、
已知:如图,AC=AD,BC=BD, 求证:AB垂直平分CD。
E
交流与小结 本节课你学到了什么呢?
• • • • • 线段垂直平分线的折法 线段垂直平分线的画法 线段垂直平分线的性质 线段垂直平分线的判定 线段垂直平分线的应用
尺规作图 三角板取中点 画垂线
五、线段垂直平分线的判定
线段垂直平分线的性质定理 •线段垂直平分线上的点到线段两端距离相等. • 思考:你能写出上面定理的逆命题吗? • 它是真命题吗?如何证明呢? 命题 到线段两端距离相等的点在 这条线段的垂直平分线上. •
<一>操作:画线段垂直平分线 方法一
尺规画法
1
①分别以点A、B为圆心,大于 ½ AB长为半径画弧交于点E、F 则直线EF就是线段AB的垂直平分 线(如图) 方法二 利用三角板过中点画垂线

垂直平分线的定义和性质

垂直平分线的定义和性质

垂直平分线的定义和性质
垂直平分线,又称“中垂线”,是指经过某一条线段的中点,并且垂直于这条线段的直线。

基本定义:
经过某一条线段的中点,并且旋转轴这条线段的直线,叫作这条线段的垂直平分线,又称“中垂线”。

n是ab的中点,过n点作mn⊥ab,则,mn为ab的垂直平分线。

性质了解:
(1)垂直平分线垂直且平分其所在线段
(2)垂直平分线上任一一点,至线段两端点的距离成正比
(3)三角形三条边的.垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等
(4)垂直平分线的认定:必须同时满足用户(1)直线过线段中点;(2)直线⊥线段。

垂直平分线定义性质及判定

垂直平分线定义性质及判定
线段两个端点的距离相等.
2、如图; NM是线段AB的中垂线
下列说法正确的有:①②③&
①AB⊥MN,②AD=DB, ③
MN⊥AB, ④MD=DN,⑤AB是
A
MN的垂直平分线
A
D
C
M
D
B
N
如图;若AC=12,BC=7,AB的垂直平分
线交AB于E,交AC于D,求△BCD的周长
A
& 解: ∵ED是线段AB的垂直平分线
在何处?你的方案是什么?
B
P30:7题
L
高速公路
7、如图;已知∠AOB和定点P、Q,求作:点M,使 PM=MQ,且点M到∠AOB两边的距离相等&
思考:生活中的数学
某区政府为了方便居民的生 活;计划在三个住宅小区A、B、 C之间修建一个购物中心,试问, 该购物中心应建于何处,才能 使得它到三个小区的距离相等&
l是AB的垂直平分线;观察P1A和
P3
P1B,P2A和P2B,P3A和P3B之
P2
间的关系?
P1
A
B
l
求证:
线段垂直平分l 线上的点到这条线段两端的距离相等
P
A C
能不能写出已知求证并 B 证明呢?
已知:直线m是线段AB的垂直平分线;
P为直线m上的任意一点;
m
P
求证:PA=PB.
证明:通过证明两个三角形全等.
与一条线段两个端点距离相 等的点;在这条线段的垂直平分 线上&
点P在线段 AB的垂直 平分线上
线段垂直平分线上的点 和这条线段两个端点的 距离相等(性质
点到线段两个 端点距离相等
PA=PB
P 与一条线段两个端点距离相 等的点;在这条线段的垂直平 分线上(判定

垂直平分线的性质与判定教案

垂直平分线的性质与判定教案

垂直平分线的性质与判定教案第一章:垂直平分线的定义与性质1.1 垂直平分线的定义介绍线段垂直平分线的概念,即垂直平分线是线段所在的直线,且垂直平分线上的每一点到线段的两个端点的距离相等。

1.2 垂直平分线的性质性质1:线段的垂直平分线垂直于线段所在的直线。

性质2:线段的垂直平分线上的每一点到线段的两个端点的距离相等。

性质3:线段的垂直平分线段将线段平分成两个相等的部分。

第二章:垂直平分线的判定2.1 线段垂直平分线的判定条件判定1:如果一条直线垂直于线段所在的直线,并且通过线段的中点,这条直线是线段的垂直平分线。

判定2:如果一条直线上的每一点到线段的两个端点的距离相等,这条直线是线段的垂直平分线。

2.2 垂直平分线的判定方法方法1:使用直角三角形的性质,通过构造直角三角形来判断直线是否为垂直平分线。

方法2:使用尺规作图,通过作图来判断直线是否为垂直平分线。

第三章:垂直平分线与线段的关系3.1 垂直平分线与线段的交点介绍垂直平分线与线段的交点,即垂直平分线与线段相交的点,这个点到线段的两个端点的距离相等。

3.2 垂直平分线与线段的垂直关系介绍垂直平分线与线段的垂直关系,即垂直平分线与线段所在的直线垂直。

3.3 垂直平分线与线段的中点介绍垂直平分线与线段的中点的关系,即垂直平分线通过线段的中点,并且将线段平分成两个相等的部分。

第四章:垂直平分线的应用4.1 垂直平分线在几何作图中的应用介绍垂直平分线在几何作图中的应用,例如利用垂直平分线来作图求解几何问题。

4.2 垂直平分线在证明中的应用介绍垂直平分线在几何证明中的应用,例如利用垂直平分线的性质和判定来证明几何定理。

4.3 垂直平分线在实际问题中的应用介绍垂直平分线在实际问题中的应用,例如利用垂直平分线来解决生活中的问题。

第五章:总结与拓展5.1 垂直平分线的性质与判定的总结对垂直平分线的性质和判定进行总结,加深学生对垂直平分线的理解。

5.2 垂直平分线的拓展与应用介绍垂直平分线的拓展与应用,例如垂直平分线在平面几何中的重要作用,以及与垂直平分线相关的其他几何概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线段的垂直平分线的判定
线段的垂直平分线是指将一条线段在其中点处垂直于本身,将其一分为二的一条线段。

它在几何学中具有重要意义,可以用来表示构成物体形状和构造的组成部分的对称性,而这种对称性则恰恰是美学中的基础。

因此,如何判断一条线段的垂直平分线是一门重要的学科。

一般来说,判断一条线段的垂直平分线可以通过三种方法:
(1)直线法。

即通过在线段的两端画上同样长度的直线,使它们垂直于线段,然后再画一条直线将它们连接起来,就得到了线段的垂直平分线。

(2)三角形法。

即将线段的两端分别作为三角形的两边,线段的中点作为三角形的顶点,再画出三角形的第三条边,就可以得到线段的垂直平分线。

(3)数学法。

以线段AB所在直线的斜率为k,则线段AB的垂直平分线斜率为-1/k。

例如,线段AB的斜率为3,则线段AB的垂直平分线斜率为-1/3。

上述三种方法都可以用来判断线段的垂直平分线,但是对于有些特殊的情况,还需要根据实际情况选择合适的方法。

如果线段的两端不在同一条直线上,则可以使用三
角形法;如果两端是在同一条直线上的,但是斜率不容易计算,则可以使用直线法。

有时候,当线段的两端都在同一条直线上,斜率也容易计算时,可以使用两种方法结合起来:先用直线法将线段分割,再用数学法计算线段垂直平分线的斜率,最后再画出线段的垂直平分线。

总之,判断一条线段的垂直平分线有多种方法,具体选择哪种方法取决于具体情况。

相关文档
最新文档