轨道型号参数

轨道型号参数

回答人的补充2009-08-05 09:58

七、轨道材料重量表

钢轨每米重量表

钢轨类型(公斤/米) 尺寸(毫米)截面面积

F(厘米2)

理论重量(公斤/米) 高A度底B宽头C宽腰D厚

轻轨5 50 44 22 4.5 6.41 5.03 8 65 54 25 7.0 10.76 8.42 11 80.5 66 32 7.0 14.31 11.20 15 91 76 37 7.0 18.80 14.72 18 90 80 40 10.0 23.07 18.06 24 107 92 51 10.9 31.24 24.46

重轨33 120 110 60 12.5 42.5 33.286 38 134 114 68 13 49.5 38.73 43 140 114 70 14.5 57.0 44.653 50 152 132 70 15.5 65.8 51.514

钢轨的类型,以每1米大致质量kg数表示。目前,我国铁路的钢轨类型主要有75kg/m、60kg/m、50kg/m及43kg/m。

世界上最重型的钢轨已达到77.5kg/m,我国也在重载线路上逐步铺设75kg/m钢轨。

钢轨标准长度为12.5m和25m两种。

铁路钢轨知识:

(1)重型钢轨知识:每米公称重量大于30kg的钢轨。火车钢轨和起重机轨都属重轨。火车钢轨:用于铺设铁路,要承受火车营运时的压力、冲击载荷和摩擦,要求有足够的强度和一定的韧性。质量要求严格,除保证其化学成分外,还要求检验力学性能、落锤试验和酸浸低倍组织等。生产厂有武钢、鞍钢、包钢和攀钢等。起重机轨:即吊车轨,其高度较低,头宽及腰厚尺寸较大,只要求检验化学成分和抗拉强度。用于铺设起重机大于及小车轨道。生产厂有鞍钢和攀钢。

(2)轻型钢轨知识:是每米公称重量小于或等于30kg的钢轨。轻轨的质量要求比重轨低,只要求检验其化学成分、抗拉强度、硬度和落锤试验等。主要用途:轻轨主要用于林区、矿区、工厂及施工现场等处铺设临时运输线路和轻型机车用线路。

铁路钢轨型号:

(1)轻型钢轨型号,钢轨材质: Q235,55Q ;钢轨规格:30kg/m,24kg/m,22kg/m,18kg/m,15kg/m,12 kg/m,8 kg/m。

(2)重型钢轨型号, 钢轨材质: 45MN,71MN;钢轨规格:50kg/m,43kg/m,38kg/m,33kg/m。(3)起重钢轨型号,钢轨材质: U71MN;钢轨规格:QU70kg/m ,QU80kg/m,QU100kg/m,QU120kg/m。以上钢轨型号为常用钢轨型号。

常见卫星参数大全

1、CBERS-1 中巴资源卫星 CBERS-1 中巴资源卫星由中国与巴西于1999年10月14日合作发射,是我国的第一颗数字传输型资源卫星 卫星参数: 太阳同步轨道 轨道高度:778公里,倾角:98.5o 重复周期:26天 平均降交点地方时为上午10:30 相邻轨道间隔时间为4 天扫描带宽度:185公里星上搭载了CCD传感器、IRMSS红外扫描仪、广角成像仪,由于提供了从20米-256米分辨率的11个波段不同幅宽的遥感数据,成为资源卫星系列中有特色的一员。 红外多光谱扫描仪:波段数:4波谱范围:B6:0.50 –1.10(um)B7:1.55 – 1.75(um)B8:2.08 – 2.35(um)B9:10.4 – 12.5(um)覆盖宽度:119.50公里空间分辨率:B6 – B8:77.8米B9:156米CCD相机:波段数:5波谱范围:B1:0.45 – 0.52(um)B2:0.52 – 0.59(um)B3:0.63 – 0.69(um)B4:0.77 – 0.89(um)B5:0.51 – 0.73(um)覆盖宽度:113公里空间分辨率:19.5米(天底点)侧视能力:-32 士32 广角成像仪:波段数:2波谱范围:B10:0.63 – 0.69(um)B11:0.77 – 0.89(um)覆盖宽度:890公里空间分辨率:256米 CBERS-1卫星于1999年10月14日发射成功后,截止到2001年10月14日为止,它在太空中己运行2年,围绕地球旋转10475圈,向地面发送了大量的遥感图像数据,已存档218201景0级数据产品。CBERS-1卫星的设计寿命是2年,但据航天专家测定CBERS-1卫星在轨道上运行正常。有效载荷除巴西研制的宽视场成像仪于2000年5月9日因电源系统故障失效外,其余均工作正常,而且目前星上的所有设备均工作在主份状态,备份设备还未启用,星上燃料绰绰有余。因此,虽然卫星设计寿命是2年,但航天专家设计时对各个器件都打有超期服役的余量,从CBERS-1卫星目前的运行情况来,其寿命肯定要远远大于2年。所以欢迎用户继续踊跃使用CBERS-1的数据。2002年我国将发射CBERS-2卫星,用户期望的中巴地球资源卫星在太空中双星运行的壮观将会实现。 2、法国SPOT卫星 法国SPOT-4卫星轨道参数: 轨道高度:832公里 轨道倾角:98.721o 轨道周期:101.469分/圈 重复周期:369圈/26天 降交点时间:上午10:30分 扫描带宽度:60 公里 两侧侧视:+/-27o 扫描带宽:950公里

STK实验卫星轨道参数仿真

S T K实验卫星轨道参数 仿真 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

实验一卫星轨道参数仿真 一、实验目的 1、了解STK的基本功能; 2、掌握六个轨道参数的几何意义; 3、掌握极地轨道、太阳同步轨道、地球同步轨道等典型轨道的特点。 二、实验环境 卫星仿真工具包STK 三、实验原理 (1)卫星轨道参数 六个轨道参数中,两个轨道参数确定轨道大小和形状,两个轨道参数确定轨道平面在空间中的位置,一个轨道参数确定轨道在轨道平面内的指向,一个参数确定卫星在轨道上的位置。 轨道大小和形状参数: 这两个参数是相互关联的,第一个参数定义之后第二个参数也被确定。 第一个参数第二个参数

semimajor axis 半长轴 Eccentricity 偏心率apogee radius 远地点半径 perigee radius 近地点半径apogee altitude 远地点高度 perigee altitude 近地点高度Period 轨道周期 Eccentricity 偏心率 mean motion平动 Eccentricity 偏心率 图1 决定轨道大小和形状的参数 轨道位置参数: 轨道倾角(Inclination)轨道平面与赤道平面夹角 升交点赤经(RAAN)赤道平面春分点向右与升交点夹角 近地点幅角(argument of perigee)升交点与近地点夹角 卫星位置参数: 表1 卫星位置参数

(2)星下点轨迹 在不考虑地球自转时,航天器的星下点轨迹直接用赤经α、赤纬δ表示(如图2)。直接由轨道根数求得航天器的赤经赤纬。 图2 航天器星下点的球面解法 在球面直角三角形SND中:

卫星星历计算和轨道参数计算编程实习

专业:地图学与地理信息工程(印刷) 班级:制本49—2 学号:3272009010 姓名:张连杰 时间:2012/9/21 一、概述 在C++6.0中建立基于单文档的MFC工程,利用简洁的界面方便地由卫星轨道根数计算卫星的实时位置和速度,并可以根据卫星的星历反求出卫星轨道根数。 二、目的 通过卫星编程实习,进一步加深理解和掌握卫星轨道参数的计算和卫星星历的计算方法,提高编程能力和实践能力。 三、功能 1、由卫星位置与速度求取卫星轨道参数; 2、由卫星轨道参数计算卫星星历。 四、编程环境及工具 Windows7环境,VC++6.0语言工具 五、计划与步骤 1.深入理解课本上的星历计算方法和轨道根数的求取方法,为编程实习打下算法基础; 2.学习vc++对话框的设计和编程,解决实习过程中的技术难题; 3.综合分析程序的实现过程,一步步编写代码实现。 六、程序异常处理 1.在进行角度转换时候出现的问题导致结果错误。计算三角函数时候先要把角度转换成弧度进行计算,最后输出结果的时候需要再把弧度转换回角度输出。 2.在计算omiga值得时候的错误。对计算出的omiga值要进行象限的判断,如果不符合条件要加或减一个周期pi(因为是反正弦函数)。 七、原创声明 本课程设计报告及相应的软件程序的全部内容均为本人独立完成。其间,只有程序中的中间参量计算值曾与同学共同讨论。特此声明。 八、程序中的关键步骤和代码 1、建立基于单文档的名字为TrackParameter的MFC工程。 2、在资源视图里面增加一个对话框改属性ID为IDD_DIALOG1,在新的对话框IDD_DIALOG1上面添加控件按钮,并建立新的类CsatelliteDlg. 3、在菜单栏里面添加菜单实习一,并添加命令响应函数OnMenuitem32771(),在该函数中编写代码 CsatelliteDlg dlg; dlg.DoModal();

STK实验卫星轨道全参数仿真

实验一卫星轨道参数仿真 一、实验目的 1、了解STK的基本功能; 2、掌握六个轨道参数的几何意义; 3、掌握极地轨道、太阳同步轨道、地球同步轨道等典型轨道的特点。 二、实验环境 卫星仿真工具包STK 三、实验原理 (1)卫星轨道参数 六个轨道参数中,两个轨道参数确定轨道大小和形状,两个轨道参数确定轨道平面在空间中的位置,一个轨道参数确定轨道在轨道平面内的指向,一个参数确定卫星在轨道上的位置。 ?轨道大小和形状参数: 这两个参数是相互关联的,第一个参数定义之后第二个参数也被确定。 第一个参数第二个参数 semimajor axis 半长轴 Eccentricity 偏心率apogee radius 远地点半径 perigee radius 近地点半径 apogee altitude 远地点高度 perigee altitude 近地点高度Period 轨道周期 Eccentricity 偏心率 mean motion平动 Eccentricity 偏心率

图1 决定轨道大小和形状的参数 ?轨道位置参数: 轨道倾角(Inclination)轨道平面与赤道平面夹角 升交点赤经(RAAN)赤道平面春分点向右与升交点夹角 近地点幅角(argument of perigee)升交点与近地点夹角 ?卫星位置参数: (2)星下点轨迹 在不考虑地球自转时,航天器的星下点轨迹直接用赤经α、赤纬δ表示(如图2)。直接由轨道根数求得航天器的赤经赤纬。

图2 航天器星下点的球面解法 在球面直角三角形SND 中: ?? ? ??+==??+Ω=+==)tan(cos tan cos tan )sin(sin sin sin sin f i u i f i u i ωαα αωδ (1) 由于地球自转和摄动影响,相邻轨道周期的星下点轨迹不可能重合。设地球自转角速度为E ω,t 0时刻格林尼治恒星时为0G S ,则任一时刻格林尼治恒星时G S 可表示成: )(00t t S S E G G -+=ω (2) 在考虑地球自转时,星下点地心纬度? 与航天器赤纬δ仍然相等,星下点经度(λ)与航天器赤经α的关系为: ?? ?=---=-=δ ?ωααλ) (00t t S S E G G (3) 将(1)代入上式,得到计算空间目标星下点地心经纬度()?λ,的公式,即空间目标的星下点轨迹方程为: ?? ??=---?+Ω=) sin arcsin(sin ) ()tan arctan(cos 00u i t t S u i E G ?ωλ (4) 其中? 为星下点的地理纬度,λ 为星下点的地理经度,u 是纬度幅角,ωE 为地球自转角速度。由(4)中的第二式可知,i =90?时,? 取极大值?max 。i =-90?时,? 取极小

III型板式轨道基本结构

Ⅲ型板式轨道基本结构 (武汉城际、盘营客专铁路轨道培训班讲义) 西南交通大学土木工程学院王其昌 (二〇一二年一月四川?成都) 1.引言 1.1研发目的 为了构建武汉城市圈城际铁路和盘营客专铁路板式无砟轨道,在总结我国既有无砟轨道研究与应用经验的基础上,结合无砟轨道技术再创新研究成果,并借鉴成灌线的经验,研发并提出了具有完全自主知识产权的CRTSⅢ型板式无砟轨道。 1.2自主创新。 CRTSⅢ型板式无砟轨道是对既有无砟轨道的优化与集成,其主要创新点是:改变了板式轨道的限位方式、扩展了板下填充层材料、优化了轨道板结构、改善了轨道弹性及完善了设计理论体系等方面。 1)板下填充层材料 Ⅲ型板式轨道通过轨道板板下两排U形筋,将内设钢筋网片的自密实混凝土与轨道板可靠连接成复合结构,结构整体性好,可以控制轨道板离缝、翘曲和板下填充层开裂;自密实混凝土与CAM填充层相比较,其工艺简单、性能稳定、耐久性好、成本低廉。 2)板式轨道限位方式 Ⅲ型板式轨道采用板下U形筋+自密实混凝土+底座凹槽的限位方式,彻底取消了Ⅰ型板的凸台、Ⅱ型板的端刺限位方式。同时也取消了作为板下填充层材料用的CA砂浆。从而,可简化施工工艺,减少环境污染,降低工程投资。 3)轨道弹性 轨道板改原用无挡肩板为有挡肩板,配套弹性不分开式扣件,有利于降低轨道刚度,提高轨道弹性。 1.3中国模式 CRTSⅢ型板式无砟轨道已在成灌铁路成功铺设,迄今运营状态良好。武汉城市圈城际铁路经再行优化、完善后的CRTSⅢ型板式无砟轨道施工图,可用于

武汉城市圈城际铁路。 我们有理由相信,通过建设及运营实践的不断考核与检验,最终必将形成中国板式无砟轨道模式。 2.武汉城轨与盘营客专铁路Ⅲ型板式轨道结构 2.1 结构组成 CRTS Ⅲ型板式无砟轨道是由钢轨、弹性不分开式扣件、预制有挡肩轨道板、内设钢筋网片的自密实混凝土填充层、中间隔离层和带有限位凹槽的钢筋混凝土底座等部分组成。 路基、桥梁和隧道地段Ⅲ型板式轨道均采用单元分块式结构,轨道板间无连接。 2.2 轨道结构及技术参数 武汉城轨与盘营客专铁路所用CRTS Ⅲ型板式无砟轨道的典型横断面及技术参数分别如图2.2.1和表2.2.2所示。 图2.2.1 III 型板板式轨道典型横断面图 表2.2.2 III 型板板式轨道结构参数结构组成 单位武汉城轨铁路盘营客专铁路类型U71Mn(K) 60U71Mn(K) 60定尺长m 100100钢轨高度 mm 176176类型WJ-8B WJ-8B 扣 件高度mm 3838

卫星轨道参数计算

卫星轨道平面的参数方程: 1cos( ) p e r r :卫星与地心的距离 P :半通径(2 (1)p a e 或21p b e ) θ:卫星相对于升交点角 ω:近地点角距 卫星轨道六要素: 长半径a 、偏心率e 、近地点角距ω、真近点角f (或者卫星运动时间t p )、轨道面倾角i 、升交点赤径Ω。

OXYZ─赤道惯性坐标系,X轴指向春分点T ; ON─卫星轨道的节线(即轨道平面与赤道平面的交线),N为升交点; S─卫星的位置; P─卫星轨道的近地点; f─真近点角,卫星位置相对于近地点的角距; ω─近地点幅角,近地点到升交点的角距; i─轨道倾角,卫星通过升交点时,相对于赤道平面的速度方向; Ω─升交点赤经,节线ON与X轴的夹角; e─偏心率矢量,从地心指向近地点,长度等于e; W─轨道平面法线的单位矢量,沿卫星运动方向按右旋定义,它与Z轴的夹角为i; a─半长轴; α,δ─卫星在赤道惯性坐标系的赤经、赤纬。 两个坐标系:地心轨道坐标系、赤道惯性坐标系。 地心轨道坐标系Ox0y0z0:以e e 1为x0轴的单位矢量,以W为z0轴的单位矢量,y0轴的单位矢量可以由x0轴的单位矢量与z0轴的单位矢量确定,它位于轨道平面内。 赤道惯性坐标系:OXYZ,X轴指向春分点。 由地心轨道坐标系到赤道惯性坐标系的转换: 1.先将地心轨道坐标绕W旋转角(-ω),旋转矩阵为R Z(-ω); 2.绕节线ON旋转角(-i),旋转矩阵为R X(-i); 3.最后绕Z轴旋转角(-Ω),旋转矩阵为R Z(-Ω); 经过三次旋转后,地心轨道坐标系和赤道惯性坐标系重合。 在地心轨道坐标系中,卫星的位置坐标是: 0 0 0 cos sin 0 x r f y r f z

卫星轨道和TLE数据

卫星轨道和TLE数据 转自虚幻天空 最近由于Sino-2和北斗的关系,很多网友贴了表示卫星运行轨道的TLE数据。这里想对卫星轨道参数和TLE的格式做一个简单介绍。虽然实际上没有人直接读TLE数据,而都是借助软件来获得卫星轨道和位置信息,但是希望这些介绍可以对于理解卫星轨道的概念有所帮助。由于匆匆写成,可能有一些错误,如果看到还请指出。 前面关于轨道一部分写得较早,后来发现和杂志上关于我国反卫的一篇文章里的相应部分类似。估计都参考类似的资料,这个东西本身也是成熟的理论了。 首先来看一下卫星轨道。太空中的卫星在地球引力等各种力的作用下做周期运动,一阶近似就是一个开普勒椭圆轨道。由于其他力的存在(比如地球的形状,大气阻力,其他星球的引力等等),实际的轨道和理想的开普勒轨道有偏离,这个在航天里称为“轨道摄动”。这里我们暂时不看摄动,就先说说理想开普勒轨道时的情况。 为了唯一的确定一个卫星的运行轨道,我们需要6个参数,参见下面的示意图: 1. 轨道半长轴,是椭圆长轴的一半。对于圆,也就是半径 2. 轨道偏心率,也就是椭圆两焦点的距离和长轴比值。对于圆,它就是0.

这两个要素决定了轨道的形状 3. 轨道倾角,这个是轨道平面和地球赤道平面的夹角。对于位于赤道上空的同步静止卫星来说,倾角就是0。 4. 升交点赤经:卫星从南半球运行到北半球时穿过赤道的那一点叫升交点。这个点和春分点对于地心的张角称为升交点赤经。 这两个量决定了卫星轨道平面在空间的位置。 5. 近地点幅角:这是近地点和升交点对地心的张角。 前面虽然决定了轨道平面在空间的位置,但是轨道本身在轨道平面里还可以转动。而这个值则确定了轨道在轨道平面里的位置。 6. 过近地点时刻,这个的意义很显然了。卫星位置随时间的变化需要一个初值。 有一点要指出的是,上面的6个参数并不是唯一的一组可以描述卫星轨道情况的参数,完全也可以选取其他参数,比如轨道周期。但是由于完备的描述也只需要6个参数,所以他们之间存在着固定的换算关系。比如轨道周期就可以由半长轴唯一来确定(这在下面讲TLE的时候也会涉及到),反之亦然。上面选取的这组是比较自然的一组。 ---------------------------------------------------------------------------------------------------------------------------- 下面讲讲TLE(Two-Line Element)两行数据。以北斗最近的数据为例 BEIDOU 2A 1 30323U 07003A 07067.68277059 .00069181 13771-5 44016- 2 0 587 2 3032 3 025.0330 358.9828 7594216 197.8808 102.7839 01.92847527 650 真正的数据实际上是下面2行,但是上面有一行关于空间物体其他情况的一些信息(空间物体可以是卫星,可以是末级火箭,可以是碎片。这里简单起见,就叫卫星)。头一个是卫星名称。注意这个是会变的,而且不一定准确。卫星发射后的头几个TLE数据里,往往只叫Object A, B, C... 慢慢的会搞清楚哪个是卫星,哪个是末级火箭,哪个是分离时的碎片,并且给予相应的名称。但是如果这个是其他国家的保密卫星,则这个卫星名字就纯粹是美国的猜测了,比如我们的这个北斗。有些情况下,名称这一行里还包含了一些数字,关于卫星的尺度,亮度等等。 TLE第一行数据 1 30323U 07003A 07067.68277059 .00069181 13771-5 44016- 2 0 587 30323U 30323是北美防空司令部(NORAD)给出的卫星编号。U代表不保密。我们看到的都是U,否则我们就不会看到这组TLE了 07003A 国际编号,07表示2007年(2位数字表示年份在50年以后会出问题,因为1957年人类发射了第一个轨道物体),003表示是这一年的第3次发射。A则表示是这次发射里编号为A的物体,其他还有B,C,D等等。国际编号就是2007-003A. 07067.68277059 这个表示这组轨道数据的时间点。07还是2007年,067表示第67天,也就是3月8日。 68277059表示这一天里的时刻,大约是16时22分左右。

卫星轨道和TLE数据

百度文库-让每个人平等地提升自我 卫星轨道和TLE数据 转自虚幻天空 最近由于Sino-2和北斗的关系,很多网友贴了表示卫星运行轨道的TLE数据。这里想对卫星轨道参数和 TLE的格式做一个简单介绍。虽然实际上没有人直接读TLE数据,而都是借助软件来获得卫星轨道和位置信息,但是希望这些介绍可以对于理解卫星轨道的概念有所帮助。由于匆匆写成,可能有一些错误,如果看到还请指出。/ 前面关于轨道一部分写得较早,后来发现和杂志上关于我国反卫的一篇文章里的相应部分类似。估计都参考类似的资料,这个东西本身也是成熟的理论了。 首先来看一下卫星轨道。太空中的卫星在地球引力等各种力的作用下做周期运动,一阶近似就是一个开普勒椭圆轨道。由于其他力的存在(比如地球的形状,大气阻力,其他星球的引力等等),实际的轨道和理想的开普勒轨道有偏离,这个在航天里称为轨道摄动”。这里我们暂时不看摄动,就先说说理想开普勒轨道 时的情况。 为了唯一的确定一个卫星的运行轨道,我们需要6个参数,参见下面的示意图: a 1. 轨道半长轴,是椭圆长轴的一半。对于圆,也就是半径 2. 轨道偏心率,也就是椭圆两焦点的距离和长轴比值。对于圆,它就是 0.

这两个要素决定了轨道的形状 3. 轨道倾角,这个是轨道平面和地球赤道平面的夹角。对于位于赤道上空的同步静止卫星来说,倾角就是 0。 4. 升交点赤经:卫星从南半球运行到北半球时穿过赤道的那一点叫升交点。这个点和春分点对于地心的张 角称为升交点赤经。 这两个量决定了卫星轨道平面在空间的位置。 5. 近地点幅角:这是近地点和升交点对地心的张角。 前面虽然决定了轨道平面在空间的位置,但是轨道本身在轨道平面里还可以转动。而这个值则确定了轨道 在轨道平面里的位置。 6. 过近地点时刻,这个的意义很显然了。卫星位置随时间的变化需要一个初值。 有一点要指岀的是,上面的6个参数并不是唯一的一组可以描述卫星轨道情况的参数,完全也可以选取其他参数,比如轨道周期。但是由于完备的描述也只需要6个参数,所以他们之间存在着固定的换算关系。 比如轨道周期就可以由半长轴唯一来确定(这在下面讲TLE的时候也会涉及到),反之亦然。上面选取的这 组是比较自然的一组。 下面讲讲TLE(Two-Line Element)两行数据。以北斗最近的数据为例 BEIDOU 2A 1 30323U 07003A 07067. .00069181 13771-5 44016- 2 0 587 2 3032 3 7594216 01. 650 真正的数据实际上是下面2行,但是上面有一行关于空间物体其他情况的一些信息(空间物体可以是卫星,可以是末级火箭,可以是碎片。这里简单起见,就叫卫星)。头一个是卫星名称。注意这个是会变的,而且 不一定准确。卫星发射后的头几个TLE数据里,往往只叫Object A, B, C...慢慢的会搞清楚哪个是卫星, 哪个是末级火箭,哪个是分离时的碎片,并且给予相应的名称。但是如果这个是其他国家的保密卫星,则这个卫星名字就纯粹是美国的猜测了,比如我们的这个北斗。有些情况下,名称这一行里还包含了一些数字,关于卫星的尺度,亮度等等。 TLE第一行数据 1 30323U 07003A 07067. .00069181 13771-5 44016- 2 0 587 30323U 30323是北美防空司令部(NORAD)给出的卫星编号。U代表不保密。我们看到的都是U,否则我 们就不会看到这组TLE 了 07003A国际编号,07表示2007年(2位数字表示年份在50年以后会出问题,因为1957年人类发射了第一个轨道物体),003表示是这一年的第3次发射。A则表示是这次发射里编号为A的物体,其他还有B,C,D等等。国际编号就是2007-003A. 07067.这个表示这组轨道数据的时间点。07还是2007年,067表示第67天,也就是3月8日。 表示这一天里的时刻,大约是16时22分左右。 .000069181平均运动的对时间一阶导数除2。注意这个并不是瞬时角速度

高分卫星参数

高分系列卫星详细参数 1高分一号 高分一号卫星就是中国高分辨率对地观测系统的首发星,于2013年4月26日由长征二号丁运载火箭在酒泉卫星发射基地成功发射入轨。该卫星突破了高空间分辨率、多光谱与宽覆盖相结合的光学遥感等关键技术,设计寿命5至8年。高分辨率对地观测系统工程就是《国家中长期科学与技术发展规划纲要(2006~2020年)》确定的16个重大专项之一,由国防科工局、总装备部牵头实施。 “高分一号”就是我国高分辨率对地观测卫星系统重大专项(简称“高分专项”)的第一颗卫星。“高分专项”于2010年5月全面启动,计划到2020年建成我国自主的陆地、大气与海洋观测系统。尽管该“专项”主要就是民用卫星,但外国专家认为,由于分辨率较高,也具备相当价值的军事用途,识别飞机、坦克已经不成问题。 GF-1卫星搭载了两台2m分辨率全色/8m分辨率多光谱相机,四台16m分辨率多光谱相机。卫星工程突破了高空间分辨率、多光谱与高时间分辨率结合的光学遥感技术,多载荷图像拼接融合技术,高精度高稳定度姿态控制技术,5年至8年寿命高可靠卫星技术,高分辨率数据处理与应用等关键技术,对于推动我国卫星工程水平的提升,提高我国高分辨率数据自给率,具有重大战略意义。 “高分一号”的全色分辨率就是2米,多光谱分辨率为8米。它的特点就是增加了高分辨率多光谱相机,该相机的性能在国内投入运行的对地观测卫星中最强。此外,“高分一号”的宽幅多光谱相机幅宽达到了800公里,而法国发射的SPOT6卫星幅宽仅有60公里。“高分一号”在具有类似空间分辨率的同时,可以在更短的时间内对一个地区重复拍照,其重复周期只有4天,而世界上同类卫星的重复周期大多为10余天。可以说,“高分一号”实现了高空间分辨率与高时间分辨率的完美结合。 实际上,“高分专项”就是一个非常庞大的遥感技术项目,包含至少7颗卫星与其她观测平台,分别编号为“高分一号”到“高分七号”,它们都将在2020年前发射并投入使用。“高分一号”为光学成像遥感卫星;“高分二号”也就是光学遥感卫星,但全色与多光谱分辨率都提高一倍,分别达到了1米全色与4米多光谱;“高分三号”为1米分辨率;“高分四号”为地球同步轨道上的光学卫星,全色分辨率为50米;“高分五号”不仅装有高光谱相机,而且拥有多

高速铁路轨道结构(1)

高速铁路轨道结构 殷明呈刘桢和 铁道部第二勘测设计院线路处 【摘要】本文在概述了目前高速铁路轨道结构的常见的几种轨道型式,对无碴轨道的板式轨道、长枕埋入式轨道及弹性支承块式轨道进行了比较。并针对高速铁路的特点提出无碴轨道与有碴轨道的过渡段的重要性和设计要求。 【关键词】高速铁路有碴轨道无碴轨道过渡段轨道 随着高速铁路的发展,对铁路轨道结掏提出了新的要求。为了修建高速铁路.我国几年前就展开了高速铁路轨道的研究工作。本文就高速铁路轨道的有碴轨道和无碴轨道作出了比较讨论。 ●有碴轨道 高速铁路有碴轨道是指高速铁路的轨下基础为石质散粒道床的轨道。类似于传统的有碴轨道结构。但高速铁路有碴轨道必须在高平顺性、高可靠性长寿命、以及高稳定性三方藏满足一定的要求。现有研究成果中推荐高速铁路有碴轨道横断面及有关参数如下: 注l、道床2、碴下胶垫3、防水层4、水泥砂浆层

具体组成为: ◆中国601辔,/m钢轨及相应的成套技术参数 ◆跨区间无缝线路 ◆Ⅲ型混凝土,2.6m长.1680根/公里 ◆弹条Ⅲ型扣件,60一lO一17型破垫,其静刚度为55~80kN/rrm ◆碎石道床厚350mm,特级道碴 ◆基床表层厚≥2Nkrm,高速铁路基床表层材料 O钢轨 铁科院铁道建筑研究所在“九五”国家重点科技攻关专题<高速铁路有碴轨道结构设计参数的研究)报告中建议使用IJIC60自然硬度钢轨。我国60199/m铺轨断面与UIC60钢轨断面相似.特别是轨顶面均为R=13—80~300~80—13五段式弧线,经过轮轨仿真计算,在轮轨几何接触、轮轨动力性能、轮轨磨耗以及现场使用效果等方面两者没有明显的差异。从铁路理场对锕轨的使用、管理、轨道部件配套考虑,建议中国高速铁路使用中国60kg/m钢轨。由于高速铁路曲线半径太、轴重轻,在一般铁路上严重发生的曲线外轨侧面磨耗、内轨压渍等现象相对减缓,而由于钢轨内部杂质所引发的疲劳伤损成为了控制钢轨安全使用的主要因素。因此,从钢轨材质上考虑,提高其强度、轨头表面硬化已处于相对次要的地位,而提高钢轨的纯净度已成为高速铁路钢轨的主要追求。世界各国高速铁路广泛采用高纯净度、非淬火的普通碳素钢轨:采用这种锕轨还有利于钢轨的打磨以保持轨面的高平顺性。为了降低高速列车的轮轨动力效应,讨高速铁路钢轨的尺寸公差及平直度提出了更严格的要求.这是高速铁路钢轨区别于普通铁路钢轨的显著特点之~。 o轨枕 中国高速铁路推荐使用Ⅲ型混凝土枕,其尺寸形式及承载能力如下表 长度轨下截面(ITITI)中间截面(mm)枕底面积轨抚重轨下截面中间截面型号 (m)高度底宽高度底宽(册2)(培)M(kN-m)M(kN?m)Ⅲ260023030018528077如32019.05—17.16中国的Ⅲ型混凝土枕与日本的3H、4H相比,在断面尺寸、轨底支承面积、重量等方面基本相似,轨忧的设计荷载也大体一致。 o扣件 中国高速铁路采用弹条Ⅲ型扣件.60一10—17翌轨下胶垫,其主要性能: ◆初始扣压力≥10kN ◆弹性件弹程≥10m'n ◆胶垫静剐度≤80kWrrlrn ◆每公里线路两股钢轨同的电阻≥412 o高速铁路有碴轨道的道床 高速铁路采用的碎石道碴材料的物理力学性能标准及颗粒级配要求较高,属于特级遭碴。道碴颗粒的针状指数不应大于50%,片状指数下大于50%,粘土团及其它杂质的质量百分比不大于0.5%,粒径0.hn'n以下的粉末颗粒含量的质量百舒比不大于1%,从图1中,高速铁路的有碴轨道结}匈的道床有300rrrn|早的道碴屡和200rrtn厚的基睐表层构成.在普通铁路中称为底碴层,但普通铁路轨遭上底碴层位于 ?153?

常见遥感卫星的基本参数大全

常见遥感卫星的基本参数大全 1. BERS-1 中巴资源卫星 CBERS-1 中巴资源卫星由中国与巴西于1999年10月14日合作发射,是我国的第一颗数字传输型资源卫星。 卫星参数: 太阳同步轨道轨道高度:778公里,倾角:98.5o 重复周期:26天,平均降交点地方时为上午10:30 相邻轨道间隔时间为 4 天扫描带宽度:185公里星上搭载了CCD传感器、IRMSS红外扫描仪、广角成像仪,由于提供了从20米-256米分辨率的11个波段不同幅宽的遥感数据,成为资源卫星系列中有特色的一员。 红外多光谱扫描仪:波段数: 4波谱范围:B6:0.50 –1.10(um)B7:1.55 –1.75(um)B8:2.08 – 2.35(um)B9:10.4 – 12.5(um)覆盖宽度:119.50公里空间分辨率:B6 – B8:77.8米B9:156米 CCD相机:波段数: 5波谱范围: B1:0.45 –0.52(um)B2:0.52 – 0.59(um)B3:0.63 – 0.69(um)B4:0.77 – 0.89(um)B5:0.51 – 0.73(um)覆盖宽度:113公里空间分辨率:19.5米(天底点)侧视能力:-32 士32 广角成像仪:波段数: 2波谱范围:B10:0.63 – 0.69(um)B11:0.77 – 0.89(um)覆盖宽度:890公里空间分辨率:256米 CBERS- 1卫星于1999年10月14日发射成功后,截止到2001年10月14日为止,它在太空中己运行2年,围绕地球旋转10475圈,向地面发送了大量的遥感图像数据,已存档218201景0级数据产品。 CBERS-1卫星的设计寿命是2年,但据航天专家测定CBERS-1卫星在轨道上运行正常。有效载荷除巴西研制的宽视场成像仪于2000年5月9日因电源系统故障失效外,其余均工作正常,而且目前星上的所有设备均工作在主份状态,备份设备还未启用,星上燃料绰绰有余。因此,虽然卫星设计寿命是2年,但航天专家设计时对各个器件都打有超期服役的余量,从CBERS-1卫星目前的运行情况来,其寿命肯定要远远大于2年。所以欢迎用户继续踊跃使用CBERS- 1的数据。 2002年我国将发射CBERS-2卫星,用户期望的中巴地球资源卫星在太空中双星运行的壮观将会实现。 2、法国SPOT卫星 法国SPOT-4卫星轨道参数: 轨道高度:832公里 轨道倾角:98.721o 轨道周期:101.469分/圈

轨道结构设计

4.7.3嵌入的轨道类型 根据第二章车轮对铁路的压力条文,轨道必须承受车辆和由于一些影响和振动引起的荷载和传递的反作用力给车轮,最初车辆的减震装置是用橡胶做成有弹性的车轮。接着主要的减震系统(人字形弹簧),然后二次减震系统(空气包),最初影响减震装置的是火车轨道,特别是铁路转运点,接着是固定或支撑系统作为轨道的基础,然后剩下的火车构造,火车构造弹性度的确定,总计荷载分布到轨道和火车构造,然后压力反馈给车辆和车轮。 4.7.3.1无回弹力的嵌入轨道 轨道在一个坚硬的平板上,嵌入一种固化的材料,例如没有周围弹性材料的混凝土,有一个高的伸缩能力模数,并且支撑车辆重量和缓冲整个轮子的影响和振动,一个主要影响道路将被反馈给车辆传递给车轮,无弹力轨道可能被考虑作为一个持续支撑的柱子和小数目的轨道纵枕木表面转导。 无弹力轨道已经混合成功,最后弄碎周围的嵌入材料和表面上的是普遍的麻烦。这个发生的明显的是在一些冰冻或解冻的气候对轨道的材料有破坏的作用,混凝土嵌入不单独提供在弹性轨道上。它在轨道下产生过多的压力,它创造了一个严格的火车构造,造成潜在的混凝土磨损,这样的设计高度依赖于对混凝土的能力评估,无回弹力嵌入火车平板也趋向共振,也是重大的举措关于噪音,他们也趋向于轨道起皱变化,噪音状况,野外品质控制,当混凝土放置并且振动是非常重要的,严格的火车通常成功的比轻型的电车,有轨电车,但也有不成熟的地方,在大的轮子荷载下,关于通用的发生在轻轨经过车辆。 大量的这种型号的平板,混凝土板的型号为12—24英尺(300—600mm)厚,通过车辆有一些防震的作用,这导致减少并且通常小的传输振动对于周围的结构,更多有关火车平板噪音和振动的衰减参考第9章。 几种运输系统特征嵌入轨道悬浮在弹性聚氨酯。这相当于简单的被嵌入的完全封装了铁路,它有弹性地保持在其位置上提供电气隔离和完整的铁路和成键槽排除水侵入,这个电气隔离很成功,没有可见的缺陷由经验可以得出聚氨酯会慢慢硬化,过期会失去弹性。这个硬化的结果导致从车轮接触的地方开始老化。但这个磨损对周围的结构是不利的另外由于公众考虑欠缺。像所有的工程结构这些装置由于年岁的增加会慢慢损坏,最后是被要求替换。一些零件由它们的优点组合完成,轨道设计者是鼓励去仔细的搜索备用材料并且去比较卖主的产品信息,

卫星数据参数介绍

ASTER数据简介 TERRA卫星于1999年12月从范登堡空军基地发射升空,与太阳同步,从北向南每天上午(AM)飞经赤道上空。所以TERRA之前也有人称之为上午星(AM-1)。其设计寿命为5年。 ASTER是美国NASA(宇航局)与日本METI(经贸及工业部)合作并有两国的科学界、工业界积极参与的项目。它是Terra卫星上的一种高级光学传感器,包括了从可见光到热红外共14个光谱通道,可以为多个相关的地球环境资源研究领域提供科学、实用的卫星数据。其主要情况介绍如下: 一、Terra卫星的主要参数 ●轨道:太阳同步,降交点时刻:10:30 am; ●卫星高度:705公里; ●轨道倾角:98.2±0.15°; ●重复周期:16天(绕地球233圈/16天); ●在赤道上相邻轨道之间的距离:172公里; 二、ASTER传感器 Ⅰ.ASTER传感器有3个谱段: 可见光近红外(VNIR): ●波长:3个波段向星下,及一个后视单波段(可用于立体象对观测) 波段范围量化等级 Band 1 0.52~0.60m 8bits Band 2 0.63~0.69m 8bits Band 3 0.76~0.86m 8bits 立体后视波段0.76~0.86m 8bits ●空间分辨率:15米 ●辐射分辨率: NE≤0.5% ●绝对辐射精度:±4% ●立体成像后视角:27.6° ●侧视角:±24°(垂直轨道方向) ●瞬时视场:21.3μrad(天底方向)

18.6μrad(后视方向) ●立体成像基高比:0.6 ●探测器:5000象元(任意时刻实际使用为4100象元) ●扫描周期:2.2msce ● MTF:〉0.25(横轨方向) 〉0.25(沿轨方向) 短波红外(SWIR) ●波长:6个波段,1.60-2.43μm 波段范围辐射分辨率量化等级 Band 4 1.600~1.700m 0.5% NE8bits Band 5 2.145~2.185m 1.3% NE8bits Band 6 2.185~2.225m 1.3% NE8bits Band 7 2.235~2.285m 1.3% NE8bits Band 8 2.295~2.365m 1.0% NE8bits Band 9 2.360~2.430m 1.3% NE8bits ●空间分辨率:30米 ●辐射分辨率:NE≤0.5%-1.5% ●绝对辐射精度:±4% ●侧视角:±8.55°(垂直轨道方向) ●瞬时视场:42.6μrad ●探测器:2048象元/band ●扫描周期:4.398msec ● MTF:〉0.25(横轨方向) 〉0.20(沿轨方向) 热红外(TIR) ●波长:5波段,8.125∽11.65μm 波段范围量化等级 Band 10 8.125~8.475m 12bits Band 11 8.475~8.825m 12bits Band 12 8.925~9.275m 12bits Band 13 10.25~10.95m 12bits Band 14 10.95~11.65m 12bits

STK实验报告-卫星轨道参数对比仿真

《航天器轨道》 实验报告 学院: 专业: 姓名:张彬年 学号: E222013010 成绩: 评阅教员: 时间: 2013年11月6日

实验一卫星轨道参数仿真 一、实验目的 1、了解STK的基本功能; 2、掌握六个轨道参数的几何意义; 3、掌握极地轨道、太阳同步轨道、地球同步轨道等典型轨道的特点。 二、实验环境 实验地点:202楼南203教室 硬件环境:acer aspirs4738G Intel(R) Core(TM) i5 CPU M480 @2.67GHz 2.00GB RAM 软件环境:Windos 7 旗舰版32位操作系统 STK 8.0 三、实验原理 (1)卫星轨道参数 六个轨道参数中,两个轨道参数确定轨道大小和形状,两个轨道参数确定轨道平面在空间中的位置,一个轨道参数确定轨道在轨道平面内的指向,一个参数确定卫星在轨道上的位置。 ? 轨道大小和形状参数: 这两个参数是相互关联的,第一个参数定义之后第二个参数也被确定。 第一个参数第二个参数 semimajor axis 半长轴Eccentricity 偏心率 apogee radius 远地点半径perigee radius 近地点半径 apogee altitude 远地点高度perigee altitude 近地点高度 Period 轨道周期Eccentricity 偏心率 mean motion平动Eccentricity 偏心率

图1 决定轨道大小和形状的参数 ?轨道位置参数: 轨道倾角(Inclination)轨道平面与赤道平面夹角 升交点赤经(RAAN)赤道平面春分点向右与升交点夹角 近地点幅角(argument of perigee)升交点与近地点夹角 ?卫星位置参数: 表1 卫星位置参数 (2)星下点轨迹 在不考虑地球自转时,航天器的星下点轨迹直接用赤经α、赤纬δ表示(如图2)。直接由轨道根数求得航天器的赤经赤纬。

最新常见遥感卫星的基本参数大全

常见遥感卫星的基本 参数大全

常见遥感卫星的基本参数大全 1. BERS-1 中巴资源卫星 CBERS-1 中巴资源卫星由中国与巴西于1999年10月14日合作发射,是我国的第一颗数字传输型资源卫星。 卫星参数: 太阳同步轨道轨道高度:778公里,倾角:98.5o 重复周期:26天,平均降交点地方时为上午10:30 相邻轨道间隔时间为 4 天扫描带宽度:185公里星上搭载了CCD传感器、IRMSS红外扫描仪、广角成像仪,由于提供了从20米-256米分辨率的11个波段不同幅宽的遥感数据,成为资源卫星系列中有特色的一员。 红外多光谱扫描仪:波段数: 4波谱范围:B6:0.50 –1.10(um)B7:1.55 – 1.75(um)B8: 2.08 – 2.35(um)B9:10.4 – 12.5(um)覆盖宽度:119.50公里空间分辨率:B6 – B8:77.8米B9:156米 CCD相机:波段数: 5波谱范围: B1:0.45 –0.52(um)B2:0.52 – 0.59(um)B3:0.63 – 0.69(um)B4:0.77 – 0.89(um)B5:0.51 – 0.73(um)覆盖宽度:113公里空间分辨率:19.5米(天底点)侧视能力:-32 士32 广角成像仪:波段数: 2波谱范围:B10:0.63 – 0.69(um)B11:0.77 – 0.89(um)覆盖宽度:890公里空间分辨率:256米 CBERS- 1卫星于1999年10月14日发射成功后,截止到2001年10月14日为止,它在太空中己运行2年,围绕地球旋转10475圈,向地面发送了大量的遥感图像数据,已存档218201景0级数据产品。 CBERS-1卫星的设计寿命是2年,但据航天专家测定CBERS-1卫星在轨道上运行正常。有效载荷除巴西研制的宽视场成像仪于2000年5月9日因电源系统故障失效外,其余均工作正常,而且目前星上的所有设

卫星轨道和TLE数据(精编文档).doc

【最新整理,下载后即可编辑】 卫星轨道和TLE数据 转自虚幻天空 最近由于Sino-2和北斗的关系,很多网友贴了表示卫星运行轨道的TLE数据。这里想对卫星轨道参数和TLE的格式做一个简单介绍。虽然实际上没有人直接读TLE数据,而都是借助软件来获得卫星轨道和位置信息,但是希望这些介绍可以对于理解卫星轨道的概念有所帮助。由于匆匆写成,可能有一些错误,如果看到还请指出。 前面关于轨道一部分写得较早,后来发现和杂志上关于我国反卫的一篇文章里的相应部分类似。估计都参考类似的资料,这个东西本身也是成熟的理论了。 首先来看一下卫星轨道。太空中的卫星在地球引力等各种力的作用下做周期运动,一阶近似就是一个开普勒椭圆轨道。由于其他力的存在(比如地球的形状,大气阻力,其他星球的引力等等),实际的轨道和理想的开普勒轨道有偏离,这个在航天里称为“轨道摄动”。这里我们暂时不看摄动,就先说说理想开普勒轨道时的情况。 为了唯一的确定一个卫星的运行轨道,我们需要6个参数,参见下面的示意图:

1. 轨道半长轴,是椭圆长轴的一半。对于圆,也就是半径 2. 轨道偏心率,也就是椭圆两焦点的距离和长轴比值。对于圆,它就是0. 这两个要素决定了轨道的形状 3. 轨道倾角,这个是轨道平面和地球赤道平面的夹角。对于位于赤道上空的同步静止卫星来说,倾角就是0。 4. 升交点赤经:卫星从南半球运行到北半球时穿过赤道的那一点叫升交点。这个点和春分点对于地心的张角称为升交点赤经。这两个量决定了卫星轨道平面在空间的位置。 5. 近地点幅角:这是近地点和升交点对地心的张角。 前面虽然决定了轨道平面在空间的位置,但是轨道本身在轨道平面里还可以转动。而这个值则确定了轨道在轨道平面里的位置。 6. 过近地点时刻,这个的意义很显然了。卫星位置随时间的变化需要一个初值。 有一点要指出的是,上面的6个参数并不是唯一的一组可以描述卫星轨道情况的参数,完全也可以选取其他参数,比如轨道周期。

相关文档
最新文档