高中数学等比数列知识点总结

合集下载

2024高考数学数列知识点总结与题型分析

2024高考数学数列知识点总结与题型分析

2024高考数学数列知识点总结与题型分析数列是高中数学中的重要内容,作为数学的一个分支,数列的掌握对于高考数学的考试非常关键。

在本文中,我们将对2024年高考数学数列的知识点进行总结,并分析可能出现的相关题型。

一、等差数列与等差数列的通项公式等差数列是数学中最常见的数列类型之一。

对于等差数列,首先要了解等差数列的概念:如果一个数列中任意两个相邻的项之差都相等,则称该数列为等差数列。

1.1 等差数列的通项公式等差数列的通项公式是等差数列中非常重要的一个公式,它可以用来求解等差数列中任意一项。

设等差数列的首项为$a_1$,公差为$d$,第$n$项为$a_n$,则等差数列的通项公式为:$a_n = a_1 + (n-1)d$1.2 等差数列的性质与常用公式等差数列有一些重要的性质与常用的公式,掌握这些性质与公式可以帮助我们更好地解决与等差数列相关的题目。

(1)等差数列中,任意三项可以构成一个等差数列。

(2)等差数列的前$n$项和公式为:$S_n = \frac{n}{2}(a_1 + a_n)$(3)等差数列的前$n$项和的差为:$S_n - S_m = (n-m+1)\frac{a_1 + a_{n+m}}{2}$二、等比数列与等比数列的通项公式等比数列也是数学中常见的数列类型之一。

与等差数列不同的是,等比数列中的任意两项的比值都相等。

2.1 等比数列的通项公式等比数列的通项公式可以用来求解等比数列中的任意一项。

设等比数列的首项为$a_1$,公比为$q$,第$n$项为$a_n$,则等比数列的通项公式为:$a_n = a_1 \cdot q^{(n-1)}$2.2 等比数列的性质与常用公式等比数列也有一些重要的性质与常用的公式,下面我们来了解一下:(1)等比数列中,任意三项可以构成一个等比数列。

(2)等比数列的前$n$项和公式为($q\neq1$):$S_n = \frac{a_1(1-q^n)}{1-q}$(3)当公比$q \neq 1$时,等比数列的前$n$项和与第$n$项的关系为:$S_n = \frac{a_nq - a_1}{q - 1}$三、数列题型分析与解题技巧在高考数学中,对于数列的考察主要包括以下几个方面:3.1 数列的递推关系与通项公式的应用常见的数列题目往往要求我们根据已知的递推关系或者通项公式来求解数列中的某一项或者求解前$n$项的和。

高中数列公式总结大全

高中数列公式总结大全

高中数列公式总结大全在高中数学中,数列是一个非常重要的概念,它在数学中有着广泛的应用。

数列的概念最早可以追溯到古希腊数学家毕达哥拉斯,他首次提出了等差数列的概念。

在高中阶段,学生们通常会学习到等差数列、等比数列、及数列的通项公式、数列的前n项和等相关知识。

本文将对高中数列公式进行总结,帮助读者更好地理解和掌握数列的相关知识。

一、等差数列公式等差数列是指数列中相邻两项之差都相等的数列,这个相等的差值称为公差,通常用d表示。

对于等差数列{a1, a2, a3, ...},其通项公式可以表示为an = a1 + (n-1)d。

其中,an表示等差数列的第n项,a1表示等差数列的首项,d表示等差数列的公差,n表示项数。

另外,等差数列的前n项和公式为Sn = n/2 * (a1 + an),其中Sn表示等差数列的前n项和。

二、等比数列公式等比数列是指数列中相邻两项的比值都相等的数列,这个相等的比值称为公比,通常用q表示。

对于等比数列{a1, a2, a3, ...},其通项公式可以表示为an = a1 *q^(n-1)。

其中,an表示等比数列的第n项,a1表示等比数列的首项,q表示等比数列的公比,n表示项数。

等比数列的前n项和公式为Sn = a1 * (1 - q^n) / (1 - q),其中Sn表示等比数列的前n项和。

三、斐波那契数列公式斐波那契数列是一种非常特殊的数列,它的定义是从第三项开始,每一项都等于前两项之和。

斐波那契数列的通项公式可以表示为an = (1/sqrt(5)) *((1+sqrt(5))/2)^n - (1/sqrt(5)) * ((1-sqrt(5))/2)^n。

其中,an表示斐波那契数列的第n项。

四、等差数列、等比数列的求和公式除了前面提到的等差数列和等比数列的前n项和公式外,还有一种更通用的求和公式,适用于任意一种数列。

这就是数列的通项公式与求和公式的结合。

对于任意一种数列{a1, a2, a3, ...},如果已知其通项公式为an = f(n),则其前n项和公式可以表示为Sn = f(1) + f(2) + f(3) + ... + f(n)。

高二数学复习考点知识精讲与练习4 等比数列的前n项和公式

高二数学复习考点知识精讲与练习4 等比数列的前n项和公式

高二数学复习考点知识精讲与练习专题4 等比数列的前n项和公式【考点梳理】考点一等比数列的前n项和公式考点二等比数列前n项和的性质1.数列{a n}为公比不为-1的等比数列(或公比为-1,且n不是偶数),S n为其前n项和,则S n,S2n-S n,S3n-S2n仍构成等比数列.2.若{a n}是公比为q的等比数列,则S n+m=S n+q n S m(n,m∈N*).3.若{a n}是公比为q的等比数列,S偶,S奇分别是数列的偶数项和与奇数项和,则:①在其前2n项中,S偶S奇=q;②在其前2n+1项中,S奇-S偶=a1-a2+a3-a4+…-a2n+a2n+1=a1+a2n+1q1-(-q)=a1+a2n+21+q(q≠-1).考点三:等比数列前n项和的实际应用1.解应用问题的核心是建立数学模型.2.一般步骤:审题、抓住数量关系、建立数学模型.3.注意问题是求什么(n ,a n ,S n ). 注意:(1)解答数列应用题要注意步骤的规范性:设数列,判断数列,解题完毕要作答. (2)在归纳或求通项公式时,一定要将项数n 计算准确. (3)在数列类型不易分辨时,要注意归纳递推关系.(4)在近似计算时,要注意应用对数方法,且要看清题中对近似程度的要求.【题型归纳】题型一:等比数列前n 项和公式的基本运算1.(2022·江苏南通·高二期末)已知等比数列{}n a 的前6项和为1894,公比为12,则6a =( ) A .738B .34C .38D .242.(2022·河南商丘·高二期中(理))已知正项等比数列{}n a 中,22a =,48a =,数列{}2n n a a ++的前n 项和为n S ,则62SS =( )A .32B .21C .16D .83.(2022·全国·高二课时练习)设正项等比数列{}n a 的前n 项和为n S ,若23S =,3412a a +=,则公比q 等于( ).A .1B .2C .3D .4题型二:等比数列的判断和性质的应用4.(2022·全国·高二课时练习)设等比数列{}n a 前n 项和为S n ,若S 3=8,S 6=24,则a 10+a 11+a 12=( ) A .32B .64 C .72D .2165.(2022·广西·田东中学高二期末(理))已知数列{}n a 是等比数列,n S 为其前n 项和,若1234a a a ++=,4568a a a ++=,则12S =( ) A .40B .60C .32D .506.(2020·四川·双流中学高二期中(理))设n S 是等比数列{}n a 的前n 项和,若423S S =,则64S S =( ) A .2B .73C .310D .12或题型三:等比数列奇偶项和的性质7.(2020·河南·高二月考(理))已知等比数列{}n a 共有32项,其公比3q =,且奇数项之和比偶数项之和少60,则数列{}n a 的所有项之和是( ) A .30B .60C .90D .1208.(2022·全国·高二课时练习)已知等比数列{}n a 中,11a =,132185k a a a ++++=,24242k a a a +++=,则k =( )A .2B .3C .4D .59.(2022·全国·高二课时练习)已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,则这个数列的公比和项数分别为( ) A .8,2B .2,4C .4,10D .2,8题型四:等比数列中an 与Sn 的关系10.(2022·全国·高二课时练习)记数列{}n a 的前n 项和为n S ,21n n S a =-,则2020S =( )A .202021-B .202121-C .2020122⎛⎫- ⎪⎝⎭D .2021122⎛⎫- ⎪⎝⎭11.(2022·宁夏·六盘山高级中学高二月考(理))已知数列{}n a 的前n 项和112nn S ⎛⎫=- ⎪⎝⎭,那么数列{}n a ( ) A .是等差数列但不是等比数列 B .或者是等差数列,或者是等比数列 C .是等比数列但不是等差数列D .既不可能是等差数列,也不可能是等比数列12.(2020·江苏·高二专题练习)设数列{}n a 的前n 项和为n S ,若11a =,121n n S S +=+,则6S =( )A .63B .127C .128D .256题型五:等比数列的简单应用13.(2022·甘肃·西北师大附中高二期中(理))中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.那么请问此人前两天所走的里程为( ) A .189里B .216里C .288里D .192里14.(2022·全国·高二课时练习)为全力抗战疫情,响应政府“停课不停学”的号召,某市中小学按照教学计划,开展在线课程教学和答疑.某高一学生家长于3月5日在某购物平台采用分期付款的形式购买了一台价值m 元的平板电脑给学生进行网上学习使用,该平台规定:分12个月还清,从下个月5日即4月5日开始偿还,每月5日还款,且每个月还款钱数都相等.若购物平台的月利率为p ,则该家长每月的偿还金额是( )A .12m 元B .()()1212111mp p p ++-元C .()12112m p +元D .()()1313111mp p p ++-元 15.(2022·北京朝阳·高二期末)光圈是一个用来控制光线透过镜头,进入机身内感光面的光量的装置.表达光圈的大小我们可以用光圈的F 值表示,光圈的F 值系列如下:F 1,F 1.4,F 2,F 2.8,F 4,F 5.6,F 8,…,F 64.光圈的F 值越小,表示在同一单位时间内进光量越多,而且上一级的进光量是下一级的2倍,如光圈从F 8调整到F 5.6,进光量是原来的2倍.若光圈从F 4调整到F 1.4,则单位时间内的进光量为原来的( ) A .2倍B .4倍C .8倍D .16倍【双基达标】一、单选题16.(2022·河南·高二期中(文))n S 为等比数列{}n a 的前n 项和,且33a =,26S =,则5a 的值为( )A .34B .3或12C .3或34D .12或3417.(2022·河南商丘·高二期中(理))在正项等比数列{}n a 中,512a =,673a a +=,{}n a 的前n 项和为n S ,前n 项积为n T ,则满足1n n S a T +>的最大正整数n 的值为( ) A .11B .12 C .13D .1418.(2022·江西·九江市第三中学高二期中(理))若{}n a 是等比数列,已知对任意*n N ∈,2121n n a a a ++=-,则2222123n a a a a ++++=( )A .2(21)n -B .121(2)3n -C .41n -D .1(41)3n -19.(2022·全国·高二课时练习)等比数列{a n }中,a 1a 2a 3=1,a 4=4,则a 2+a 4+a 6+…+a 2n =( )A .2n-1B .413n -C .()143--nD .()123n--20.(2022·江西·景德镇一中高二期中(文))已知数列{}n a 满足11a =,若1114()n n nn N a a ++-=∈,则数列{}n a 的通项n a =( ) A .341n -B .431n -C .413n -D .314n -21.(2022·河南洛阳·高二期中(文))已知等比数列{}n a 的前n 项和为21nn S a b =⋅+-,则44a b +的最小值为( ) A .2B..4D .522.(2022·全国·高二课时练习)在等比数列{}n a 中,已知42S =,86S =,17181920a a a a +++=( )A .32B .16C .35D .16223.(2022·全国·高二课时练习)已知n S 是等比数列{}n a 的前n 项和,若存在*m ∈N ,满足29m mS S =,2511m m a m a m +=-,则m 的值为( )A .-2B .2C .-3D .324.(2022·全国·高二课时练习)某人于2020年6月1日去银行存款a 元,存的是一年定期储蓄,2022年6月1日将到期存款的本息一起取出再加a 元之后还存一年定期储蓄,此后每年的6月1日他都按照同样的方法在银行取款和存款.设银行定期储蓄的年利率r 不变,则到2025年6月1日他将所有的本息全部取出时,取出的钱共有( )A .()41a r +元B .()51a r +元C .()61a r +元D .()()611a r r r⎡⎤+-+⎣⎦元 25.(2022·江苏·高二单元测试)设{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列.已知数列{}n n a b +的前n 项和()2*51N n n S n n =+-∈,则d q -=( )A .3-B .1-C .2D .4【高分突破】一:单选题26.(2022·江苏省苏州第十中学校高二月考)已知等比数列{a n }的首项为1,公比为2,则a 12+a 22+⋯+a n 2=( ) A .(2n ﹣1)2B .()1213n -C .4n ﹣1D .()1413n - 27.(2022·全国·高二学业考试)已知一个项数为偶数的等比数列{}n a ,所有项之和为所有偶数项之和的4倍,前3项之积为64,则1a =( ) A .1B .4 C .12D .3628.(2022·全国·高二单元测试)设n S 为数列{}n a 的前n 项和,()112322n n n a a n ---=⋅≥,且1232a a =.记n T 为数列1nn a S ⎧⎫⎨⎬+⎩⎭的前n 项和,若对任意*n ∈N ,n T m <,则m 的最小值为( ) A .3B .13C .2D .1229.(2022·全国·高二单元测试)在正项数列{}n a 中,首项12a =,且()()22*12,,2n n a a n n -∈≥N 是直线80x y -=上的点,则数列{}n a 的前n 项和n S =( ) A .()122n--B .122n +-C .12n +D .122n-30.(2022·江苏·苏州市苏州高新区第一中学高二月考)公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面1000米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米,当阿基里斯跑完下一个100米时,乌龟领先他10米,当阿基里斯跑完下一个10米时,乌龟先他1米.所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为0.001米时,乌龟爬行的总距离为( )A .61019000-米B .410190-米C .510990-米D .5101900-米31.(2022·全国·高二课时练习)等比数列{a n }的前n 项和为S n ,已知a 2a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( ) A .29B .31C .33D .3632.(2022·全国·高二课时练习)若正项等比数列{}n a 满足13116a a =,4322a a a +=,则()1121111n n nS a a a +=-++-=( )A .()2123n ⎡⎤+-⎣⎦B .()2123n -C .()2123n +D .()2123n⎡⎤--⎣⎦33.(2022·广西·崇左高中高二月考)已知{}n a 是公比不为1的等比数列,n S 为其前n 项和,满足2021201920192020a a a a -=-,则下列等式成立的是( )A .2202020212019S S S =B .2020202120192S S S +=C .2201920212020S S S =D .2019202120202S S S +=34.(2022·全国·高二课时练习)如图,画一个边长为2的正三角形,再将这个正三角形各边的中点相连得到第二个正三角形,依此类推,一共画了5个正三角形.那么这五个正三角形的面积之和等于( )A . 3. 213. 853D . 3413二、多选题35.(2022·江苏苏州·高二期中)已知等比数列{}n a 的各项均为正数,其前n 项和为n S ,若5432a a a +=,且存在两项m a ,n a ,使得14m n a a a =,则( ) A .12n n a a +=B .12n n S a a =-C .5mn =D .6m n +=36.(2022·全国·高二课时练习)n S 是数列{}n a 的前n 项的和,且满足11a =,12n n a S +=,则下列说法正确的是( ) A .{}n a 是等比数列 B .1123n n a -+=⨯C .{}n a 中能找到三项p a ,q a ,r a 使得p q r a a a =D .1n a ⎧⎫⎨⎬⎩⎭的前n 项的和74n T <37.(2022·江苏·高二单元测试)已知等比数列{}n a 的公比为q ,前n 项和0n S >,设2132n n n b a a ++=-,记{}n b 的前n 项和为n T ,则下列判断正确的是( )A .若2q ,则n n T S =B .若2q >,则n n T S >C .若14q =-,则n n T S >D .若34q =-,则n n T S <38.(2022·全国·高二单元测试)已知等比数列{}n a 的前n 项和为n S ,且214S a =,2a 是11a +与312a 的等差中项,数列{}n b 满足1n n n n a b S S+=⋅,数列{}n b 的前n 项和为n T ,则下列命题正确的是( )A .数列{}n a 的通项公式为13-=n n aB .31n n S =-C .数列{}n b 的通项公式为()()1233131nn nn b +⨯=--D .n T 的取值范围是11,86⎡⎫⎪⎢⎣⎭39.(2022·全国·高二课时练习)记数列{}n a 的前n 项和为n S ,若存在实数H ,使得对任意的*n ∈N ,都有n S H <,则称数列{}n a 为“和有界数列”.下列说法正确的是( ) A .若数列{}n a 是等差数列,且公差0d =,则数列{}n a 是“和有界数列” B .若数列{}n a 是等差数列,且数列{}n a 是“和有界数列”,则公差0d = C .若数列{}n a 是等比数列,且公比q 满足1q <,则数列{}n a 是“和有界数列” D .若数列{}n a 是等比数列,且数列{}n a 是“和有界数列”,则公比q 满足1q <40.(2022·全国·高二单元测试)已知数列{}n a 满足11a =,()*1N 23n n naa n a +=∈+,则下列结论正确的是( )A .13n a ⎧⎫+⎨⎬⎩⎭为等比数列B .{}n a 的通项公式为1123n n a -=- C .{}n a 为递增数列D .1n a ⎧⎫⎨⎬⎩⎭的前n 项和2234n n T n +=--三、填空题41.(2022·全国·高二课时练习)数列a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公比为2的等比数列,那么a n =________.42.(2022·全国·高二课时练习)设正项等比数列{a n }的首项a 1=12,前n 项和为S n ,且210S 30-(210+1)S 20+S 10=0,则公比q =________.43.(2022·全国·高二课时练习)已知等比数列{a n }的公比为12-,则135246a a a a a a ++++的值是________.44.(2022·江西·景德镇一中高二期中)在数列{}n a 及{}n b中,1n n n a a b +=+1n n n b a b +=+11a =,11b =.设11n n nc a b =+,则数列{}n c 的前2022项和为__________.45.(2022·全国·高二课时练习)等比数列{a n }的各项均为实数,其前n 项的和为S n ,已知S 3=74,S 6=634,则a 8=______.四、解答题46.(2022·河南商丘·高二期中(文))已知正项数列{}n a 满足19a =,()12n n n a a a +=+,设()lg 1n n b a =+.(1)求数列{}n b 的通项公式;(2)设1n n c a =+,数列{}n c 的前n 项积为n S ,若lg n n S b λ<恒成立,求实数λ的取值范围.47.(2022·河南商丘·高二期中(文))设公差不为0的等差数列{}n a 的前n 项和为n S ,已知636S =,且2a 是1a ,5a 的等比中项. (1)求{}n a 的通项公式;(2)设2nn n b a =⨯,求数列{}n b 的前n 项和n T .48.(2022·陕西·延安市宝塔区第四中学高二月考)已知数列{}n a 的前n 项和S n =2n +1+A ,若{}n a 为等比数列.(1)求实数A 及{}n a 的通项公式;(2)设b n =log 2a n ,求数列{a n b n }的前n 项和T n .49.(2022·河南洛阳·高二期中(理))已知正项数列{}n a 的前n 项和为n S ,且11a =,211n n n S S a +++=,数列{}n b 满足12b =,2112na n nb b ++⋅=. (1)求证{}n a 为等差数列;(2)求证:12122n na a ab bb ++⋅⋅⋅+<.50.(2022·甘肃省民乐县第一中学高二期中(文))已知数列{}n a 的前n 项和为n S ,111,1(*)n n a a S n N +==+∈,数列{}n b 满足11b =,12n n n b a b +=+.(1)求数列{}n a 、{}n b 的通项公式;(2)若数列{}n c 满足1nn n n ac b b +=,求证:1212n c c c +++<.【答案详解】1.B解:根据题意,等比数列{}n a 的前6项和为1894,公比为12,则有616(1)18914a q S q -==-,解可得124a =,则56134a a q ==; 故选:B . 2.B 【详解】设正项等比数列{}n a 的公比为q,则2q ==, 所以,()()()()()()()66111263486421234112412635121221151212a a a a a a a a SS a a a a a --++++++++⨯--====+++--. 故选:B. 3.B解:由题意,正项等比数列{}n a 中, 因为23S =,3412a a +=,所以()121221234331212a a a a q a a a a +=+=⎧⎧⇒⎨⎨+=+=⎩⎩,解得24q =. 因为0q >,所以2q .故选:B 4.B【详解】由于S 3、S 6-S 3、S 9-S 6,S 12-S 9成等比数列,S 3=8,S 6-S 3=16,故其比为2, 所以S 9-S 6=32,a 10+a 11+a 12=S 12-S 9=64. 故选:B . 5.B 【详解】由等比数列的性质可知,数列36396129,,,S S S S S S S ---是等比数列,即数列4,8,96129,S S S S --是等比数列,因此9661291216,12,32,32161260S S S S S S -==-==++=.故选:B. 6.B 【详解】设24,3S k S k ==,由数列{}n a 为等比数列(易知数列{}n a 的公比1q ≠-),得24264,,S S S S S --为等比数列又242,2S k S S k =-=644S S k ∴-= 67,S k ∴=647733S k S k ∴== 故选:B . 7.D 【详解】设等比数列{}n a 的奇数项之和为1S ,偶数项之和为2,S则311531a a S a a =++++,()2463213531123a a a a q a a a a S S ++++=++++==又1260S S +=,则11603S S +=,解得1230,90S S ==, 故数列{}n a 的所有项之和是3090120+=. 故选:D 8.B 【详解】设等比数列{}n a 的公比为q , 则132112285k k a a a a a a q q +++++++==,即()2285184k q a a ++=-=,因为24242k a a a +++=,所以2q,则()21123221112854212712k k k a a a a a ++⨯-+++++=+==-,即211282k +=,解得3k =, 故选:B. 9.D解:设等比数列项数为2n 项,所有奇数项之和为S 奇,所有偶数项之和为S 偶, 根据题意得:S 奇=85,S 偶=170, ∴q S S ==偶奇2,又a 1=1,∴S 奇()21211na q q -==-85,整理得:1﹣4n =﹣3×85,即4n =256,解得:n =4,则这个等比数列的项数为8.故选D . 10.A 【详解】依题意21n n S a =-,当n=1时,a 1=2a 1-1,解得a 1=1; 当2n ≥时,由21n n S a =-得1121n n S a --=-,两式相减,得1122n n n n S S a a ---=-,即12n n a a -=,所以12nn a a -=()2n ≥, 所以数列{}n a 是首项为1,公比为2的等比数列, 所以12n na ,202020202020122112S -==--. 故选:A . 11.C解:数列{}n a 的前n 项和112nn S ⎛⎫=- ⎪⎝⎭,∴当2n 时,1111112212nn nn n n a S S -- ⎡⎤=-=--=-⎢⎥⎢⎭⎛⎫⎛⎫⎛⎫- ⎪⎪⎪⎝⎝⎭⎝⎣⎭⎥⎦,当1n =时,1111122a S ==-=-,上式也成立.∴12nn a ⎛⎫=- ⎪⎝⎭可得112n n a a -=,∴数列{}n a 是首项为12-,公比为12的等比数列,但不是等差数列. 故选:C .12.A在121n n S S +=+中,令1n =,得23S =,所以22a =. 由121n n S S +=+得2121n n S S ++=+,两式相减得212n n a a ++=,即212n n a a ++=,又11a =,212a a =,所以数列{}n a 是以1为首项,2为公比的等比数列,所以66126312S -==-. 故选:A . 13.C 【详解】由题意,记每天走的路程为{}n a 是公比为12的等比数列,又由6161[1()]2378112-==-a S ,解得1192a =, 所以11192()2-=⨯n n a ,则21192()962a =⨯= 故前两天所走的路程为:192+96=288 故选:C 14.B 【详解】设每月的偿还金额都是a 元, 则()()()()122111111m p a a p a p a p +=+++++++,即()()()121211111a p m p p ⎡⎤-+⎣⎦+=-+,解得()()1212111mp p a p +=+-.故选:B 15.C 【详解】由题可得单位时间内的进光量形成公比为12的等比数列{}n a ,则F 4对应单位时间内的进光量为5a ,F 1.4对应单位时间内的进光量为2a ,从F 4调整到F 1.4,则单位时间内的进光量为原来的258a a =倍.故选:C. 16.C 【详解】设公比为q ,则211136a q a a q ⎧=⎨+=⎩解得12q =-或1q =,故25334a a q ==或53a =.故选:C. 17.B 【详解】设正项等比数列{}n a 的公比为q ,则()25267556a q q a a q qa a ++==+=,即260q q +-=,0q >,则2q,514132a a q ∴==, 所以,()11221321232n n nS --==-,()()211112122121122232nn n n n n n n n T a a a a --+++-⎛⎫=⋅⋅⋅=⋅=⋅= ⎪⎝⎭,因为1n n S a T +>,即211221123232n nn--+>,即2115222n n n -->,即213100n n -+<,n <,因为1112<,则25122<<, 因此,满足条件的正整数n 的最大值为12. 故选:B. 18.D 【详解】因为对任意*n N ∈,2121n n a a a ++=-①,当1n =时,11a =, 当2n ≥时,211121n n a a a --++=-②,①-②得11222n n n n a ---==,满足11a =,则()221124n n n a --==,即{}2n a 是首项为1,公比为4的等比数列,所以()22221231141(41)143n n n a a a a ⨯-++++==--. 故选:D. 19.B 【详解】由a 1a 2a 3=1得321,a =∴a 2=1,又a 4=4,故q 2=4,所以a 2+a 4+a 6+…+a 2n =1414n--=413n -. 故选:B20.A 【详解】根据题意,由1114n n n aa +-=, 得12121321111111444n nn a a a a a a --⎛⎫⎛⎫⎛⎫-+-++-=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,化简得()114141144143n n n a a -⨯---==-,因11a =,所以1413n n a -=,即341n n a =-.故选:A. 21.C 【详解】当1n =时,1121a S a b ==+-,当2n ≥时,11121221n n n n n n a S S a b a a b ---==⋅+--⋅⋅--+=从而22a a =,34a a = 因为{}n a 是等比数列所以公比322a q a ==,且212a a a ==,即21ab a +-=,即1a b += 所以444a b ≥==+,当且仅当44a b =,即12a b ==时,等号成立所以44a b +的最小值为4 故选:C 22.A 【详解】解:由等比数列前n 项和的性质知,当数列依次每k 项和不为0时,则依次每k 项和仍成等比数列,所以4S ,84S S -,128S S -,1612S S -,2016S S -成等比数列,且公比为4q .又441232S a a a a =+++=,484567844S S a a a a S q -=+++==,所以42q =,所以16201617181920432S S a a a a S q -=+++==.故选:A 23.D 【详解】设等比数列{}n a 的公比为q . 当1q =时,21122m m S ma S ma ==与29m m S S =矛盾,不合乎题意;当1q ≠时,()()2122111119111m m m m m m m a q S q q q S qa q q---===+=---,则8mq =, 又2511m mma m q a m +==-,即5181m m +=-,解得3m =. 故选:D. 24.D设此人2020年6月1日存入银行的钱为1a 元,2022年6月1日存入银行的钱为2a 元,以此类推,则2025年6月1日存入银行的钱为6a 元,那么此人2025年6月1日从银行取出的钱有()6a a -元.由题意,得1a a =,()21a a r a =++,()()2311a a r a r a =++++,……,()()()()()5432611111a a r a r a r a r a r a =++++++++++,所以()()()256111a a a r r r ⎡⎤-=++++++⎣⎦()()()()()561111111r r a r r r a r ⎡⎤+-+⎣⎦⎡⎤=+-++⋅⎣-=⎦. 故选:D . 25.A 【详解】设数列{}n a 和{}n b 的前n 项和分别为,n n A B ,则()()1211111,222111n n n n b q n n db d d q A a n a n n B q q q --⎛⎫=+=-+==-⎪---⎝⎭(1q ≠), 若1q =,则1n B nb =,则2211()5122n n n n dd S A n B a n n nb =+==+++--,显然没有出现5n ,所以1q ≠,所以21121221511n n b n b q d d a n n q q ⎛⎫-++-+= ⎪--⎝-⎭, 由两边的对应项相等可得110,1,5,1221bd d a q q -====--,解得111,2,5,4a d q b ====, 所以3d q -=-. 故选:A 26.D 【详解】由等比数列的定义,11122n n n a --=⋅=故222124n n n n b a --===由于112144,104n n n n b b b ---===≠ 故{}n b 是以1为首项,4为公比的等比数列a 12+a 22+⋯+a n 2=1(14)41143nn ⋅--=-故选:D 27.C 【详解】由题意可得所有项之和S S +奇偶是所有偶数项之和S 偶的4倍,所以,4S S S +=奇偶偶,故13S S =奇偶设等比数列{}n a 的公比为q ,设该等比数列共有()2k k N *∈项,则()242132113k k S a a a q a a a qS S -=+++=+++==奇奇偶,所以,13q =,因为3212364a a a a ==,可得24a =,因此,2112aa q ==.故选:C. 28.B解:由()112322n n n a a n ---=⋅≥,得()111322424n n n n a a n --=⋅+≥,∴()111112242n n n n a a n --⎛⎫-=-≥ ⎪⎝⎭. 又由()112322n n n a a n ---=⋅≥,得2126a a -=,又1232a a =,∴13a =.所以111122a -=, ∴数列12n n a ⎧⎫-⎨⎬⎩⎭是以12为首项,14为公比的等比数列,则12111112242n n n n a --⎛⎫⎛⎫-=⋅= ⎪ ⎪⎝⎭⎝⎭,∴()12122122n n n nn a --=+=+,∴()()231111212112122222221221212nn nn n n n S --⎛⎫- ⎪-⎛⎫⎝⎭=++⋅⋅⋅+++++⋅⋅⋅+=+=⋅- ⎪-⎝⎭-,∴111112222232n n n n n n na S --==+++⋅-⋅.∴+12111111111122113222332312n n n n T ⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=++⋅⋅⋅+=⨯=-< ⎪ ⎪⎝⎭⎝⎭-. ∵对任意*n ∈N ,n T m <,∴m 的最小值为13. 故选:B. 29.B 【详解】在正项数列{}n a 中,12a =,且()2212,n n a a -是直线80x y -=上的点,可得22128n n a a -=,所以12n n a a -=,可得数列{}n a 是首项为2,公比为2的等比数列, 则{}n a 的前n 项和()12122212n n n S +-==--.故选:B 30.A由题意,乌龟每次爬行的距离构成等比数列{}n a , 其中11100,10a q ==,且30.00110n a -==, 所以乌龟爬行的总距离为3611110010(1)101101119000110nn n a a qa q S q q---⨯---====---. 故选:A. 31.B 【详解】由题意,231136112522a q a a q a q ⎧=⎪⎨+=⎪⎩,则3161214a q a q ⎧=⎪⎨=⎪⎩,可得q 3=18, ∴q =12,a 1=16,∴S 5=551116[1()](1)231112a q q--==-. 故选:B 32.D 【详解】由题意,2132116a a a ==,得214a =.令{}n a 的公比为0q >,由4322a a a +=,得2210q q +-=,得12q =,∴112a =,∴12n na =,令()111n n n b a +=-,则()2nn b =--,∴()()()12212212123nn n n S b b b ⎡⎤--⎣⎦⎡⎤=++⋅⋅⋅+==--⎣⎦--, 故选:D. 33.B 【详解】设等比数列{}n a 的公比为q (q ≠1),又2021201920192020a a a a -=-,即201920129290120a a q a q -=+,而20190a ≠,则220q q +-=,解得2q =-,则201911201923a a S +⋅=,2019112020223a a S -⋅=,2019112021423a a S +⋅=,10a ≠,20192019201922111111202020212019(22)(42)(2)99a a a a a a S S S -⋅⋅+⋅+⋅=≠=,A 不正确;20192020202120192019201911111122422223323a a a a S a S a S -⋅+⋅+⋅=+==+,B 正确;20192019201922111111201920212020(2)(42)(22)99a a a a a a S S S +⋅⋅+⋅-⋅=≠=,C 不正确;2019201920191111201920212020112422523323a a a a a a S S S +⋅+⋅+⋅=+=+≠,D 不正确.故选:B 34.D 【详解】根据三角形中位线的性质可知:这五个正三角形的边长形成等比数列{}n a :前5项分别为:2,1,12,14,18, 所以这五个正三角形的面积之和为22222222461111112121248222⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++++=++++⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦51414114⎛⎫⨯- ⎪⎝⎭==-,故选:D . 35.BD 【详解】解:设等比数列{}n a 的公比为q ,且0q >因为5432a a a +=,即4321112a q a q a q +=化简得:221q q +=解得:12q =或1q =-(舍去)对A ,因为12q =,所以112n n a a +=,故A 错误;对B ,1111112211112nn n n n a a a a q a a q S a a q q ---====----,故B 正确; 对C,因为1a,即1a =,化简得:2214m n q+-=,又12q =解得6m n +=,当2m =,4n =时,8mn =,故C 错误; 对D ,由C 知,6m n +=,故D 正确. 故选:BD. 36.BD 【详解】当1n =时,211222a S a ===;当2n ≥时,由12n n a S +=可得12n n a S -=, 两式相减得12n n n a a a +=-,所以13n n a a +=,且2123aa =≠, 则数列{}n a 从第二项开始成以3为公比的等比数列,则222323n n n a a --=⋅=⨯,所以21,1,23,2,n n n a n -=⎧=⎨⨯≥⎩则1123n n a -+=⨯,所以A 选项错误,B 选项正确. 由题意可知,数列{}n a 为单调递增数列,设p q <,若在数列{}n a 中能找到三项p a ,q a ,r a ,使得p q r a a a =, 则r q p >>且p ,q ,*r ∈N ,若1p =,则p r a a =,这与数列{}n a 单调递增矛盾, 若2p ≥,则224323292p q p q p q a a --+-=⨯⨯⨯=⨯,232r r a -=⨯,由p q r a a a =,可得42322p q r +--⨯=,由于432b q +-⨯能被3整除,22r -不能被3整除,故C 选项错误;因为21,1,11,2,23n n n a n -=⎧⎪=⎨≥⎪⨯⎩所以11T =;当2n ≥时,122111111113137231111112232323434413n n n n T ---⎛⎫- ⎪⎛⎫⎝⎭=++++⋅⋅⋅+=+=+-<+= ⎪⨯⨯⨯⎝⎭-,故选项D 正确. 故选:BD 37.AB 【详解】由于{}n a 是等比数列,0n S >,所以110a S =>,0q ≠, 当1q =时,10n S na =>,符合题意; 当1q ≠时,()1101n n a q S q-=>-,即101nq q->-, 等价于1010n q q ⎧->⎨->⎩或1010n q q ⎧-<⎨-<⎩,对于1010n q q ⎧->⎨->⎩,由于n 可能是奇数,也可能是偶数,所以(1,0)(0,1)q ∈-⋃,对于1010n q q ⎧-<⎨-<⎩可得:1q >.综上所述,q 的取值范围是(1,0)(0,)-+∞;因为2213322n n n n b a a a q q ++⎛⎫=-=- ⎪⎝⎭,所以232n n T q q S ⎛⎫=- ⎪⎝⎭,所以2311(2)22n n n n T S S q q S q q ⎛⎫⎛⎫-=⋅--=⋅+⋅- ⎪ ⎪⎝⎭⎝⎭,因为0n S >,且(1,0)(0,)q ∈-⋃+∞,所以,当12q =-或2q 时,0n n T S -=,即n n T S =,故A选项正确.当112q -<<-或2q >时,0n n T S ->,即n n T S >,故B 选项正确,D 选项错误. 当12(0)2q q -<<≠时,0n n T S -<,即n n T S <,故C 选项错误; 故选:AB. 38.BD 【详解】A :由214S a =可得213a a =,所以等比数列{}n a 的公比3q =,所以113n n a a -=⨯. 由2a 是11a +与312a 的等差中项,可得2131212a a a =++,即()2111123132a a a ⨯=++⨯,解得12a =,所以123n n a -=⨯,所以A 不正确; B :()()1121331113nnnn a q S q-⨯-===---,所以B 正确;C :()()111123111331313131n n n n n n n n n a b S S -+++⨯⎛⎫===- ⎪⋅----⎝⎭,所以C 不正确;D :12n n T b b b =++⋅⋅⋅+1223111111111111113333231313131313131n n n ++⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-=- ⎪ ⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭⎝⎭所以数列{}n T 是递增数列,得11110326n T T ⎛⎫≤<⨯-= ⎪⎝⎭,所以1186n T ≤<,所以D 正确.故选:BD. 39.BC【详解】若数列{}n a 是公差为d 的等差数列,则211(1)()222n n n d d dS na n a n -=+=+-, 当0d =时,若10a ≠,则1n S a n =⋅,n S 是n 的一次函数,不存在符合题意的H ,A 错误; 数列{}n a 是“和有界数列”,当0d ≠时,n S 是n 的二次函数,不存在符合题意的H ,当0d =,10a =时,存在符合题意的H ,B 正确;若数列{}n a 是公比为(1)≠q q 的等比数列,则1(1)1-=-n n a q S q,因q 满足1q <,则||1n q <,即|1|2nq -<,11|||||1|2||11n n a a S q qq=⋅-<--,则存在符合题意的实数H ,即数列{}n a 是“和有界数列”,C 正确;若等比数列{}n a 是“和有界数列”,当1q =-时,若n 为偶数,则0n S =,若n 为奇数,则1n S a =,即1=n S a ,从而存在符合题意的实数H ,D 错误. 故选:BC 40.AD 【详解】因为123nn n a a a +=+,所以112323n nn n a a a a ++==+, 所以111323n n a a +⎛⎫+=+ ⎪⎝⎭,且11340a +=≠, 所以13n a ⎧⎫+⎨⎬⎩⎭是以4为首项,2为公比的等比数列,即11342n na -+=⨯,所以1231n na +=-,可得1123n n a +=-,故选项A 正确,选项B 不正确;因为1231n na +=-单调递增,所以1123n n a +=-单调递减,即{}n a 为递减数列,故选项C 不正确;1n a ⎧⎫⎨⎬⎩⎭的前n 项和()()()()2312132323232223n n n T n ++=-+-+⋅⋅⋅+-=++⋅⋅⋅+- 22122323412nn n n +-=⨯-=---.故选项D 正确;故选:AD . 41.2n -1(n ∈N *) 【详解】a n -a n -1=a 1q n -1=2n -1,即21232112,2,2n n n a a a a a a ---=⎧⎪-=⎪⎨⎪⎪-=⎩ 各式相加得a n -a 1=2+22+…+2n -1=2n -2, 故a n =a 1+2n -2=2n -1(n ∈N *). 又1n =时,11a =符合a n =2n -1 故答案为:2n -1(n ∈N *). 42.12 【详解】由210S 30-(210+1)S 20+S 10=0, 得210(S 30-S 20)=S 20-S 10.∴302010201012S S S S -=-,∵数列{a n }是等比数列∴10302021222330201011121320S S a a a a q S S a a a a -++++==-++++ 故101012q =,解得:12q =± 因为等比数列{a n }为正项数列,所以0q >,故12q = 故答案为:12 43.2- 【分析】由等比数列的通项公式与性质求解即可 【详解】∵等比数列{a n }的公比为12-,则()1351352461352a a a a aa a a a q a a a ++++==-++++.故答案为:2-44.4042. 【详解】由1n n n a a b +=+1n n n b a b +=+ 两式相加可得:()112n n n n a b a b +++=+,故数列{}n n a b +是以2为首项,2为公比的等比数列, 所以2nn n a b +=;两式相乘可得:()()222112n n n n n n n n a b a b a b a b ++⋅=+-+=⋅,故数列{}n n a b ⋅是以1为首项,2为公比的等比数列, 所以12n n n a b -⋅=, 故112n nn nn n n a b c a b a b ⎛⎫+=+==⎪⋅⎝⎭, 故数列{}n c 的前2022项和为2021202124042S =⨯=, 故答案为:4042 45.32 【详解】当q =1时,显然不符合题意;当q ≠1时,3161(1)714(1)6314a q q a q q ⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,∴a 8=14×27=32. 故答案为:32 46.(1)12n n b -=(2)[)2,+∞ (1)由已知可得()2111++=+n n a a ,所以()()1lg 12lg 1++=+n n a a ,即12n n b b +=, 又()()11lg 1lg 191b a =+=+=,所以{}n b 是首项为1,公比为2的等比数列,所以12n n b -=.(2)由(1)可知()1lg 12n n n a b -=+=,所以12101n n a -=-,12110n n n c a -=+=.所以021112222122212122101011010100n nn n n S c c c --+++⋅⋅⋅+-⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅==⋅=⋅.lg n n S b λ<即1212n n λ--<,即1122n λ->-, 因为1122n --关于n 单调递增,而11222n --<且无限接近于2, 所以实数λ的取值范围是[)2,+∞. 47.(1)21n a n =-(2)()12326n n T n +=-⨯+(1)设{}n a 的公差为d (0d ≠).由题可知()()1211165636,24,a d a d a a d ⨯⎧+=⎪⎨⎪+=+⎩解得11,2,a d =⎧⎨=⎩所以{}n a 的通项公式为()12121n a n n =+-=-. (2)由(1)可知()212nn b n =-⨯,所以()()231123252232212n nn T n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯…①()()23412123252232212n n n T n n +=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯…②①-②得()()23122222212n n n T n +-=+⨯++⋅⋅⋅+--⨯()()()211121222212322612n n n n n -++⨯-=+⨯--⨯=-⨯--,所以()12326n n T n +=-⨯+.48.(1)A =-2,2nn a =.(2)()1122n n T n ++=-(1)根据题意,数列{}n a 的前n 项和S n =2n +1+A , 则a 1=S 1=22+A =4+A ,a 2=S 2-S 1=(23+A )-(22+A )=4, a 3=S 3-S 2=(24+A )-(23+A )=8,又由{}n a 为等比数列,则a 1×a 3=(a 2)2,即(4+A )×8=42=16, 解可得A =-2,则a 1=4-2=2,即数列{}n a 是首项为2,公比为2的等比数列, 则2nn a =, (2)设2n n b log a =,则设222nn n b log a log n ===, 则2nn n a b n ⨯=,故231222322nn T n ⨯⨯⨯⋯⋯⨯=++++,①则有()23121222122n n n T n n ⨯+⨯+⋯⋯+⨯⨯+=-+,② ①-②可得:()231122222122n n n n T n n +++++⋯⋯+⨯-=-=--,变形可得:()1122n n T n ++=-,故()1122n n T n ++=-.49. (1)证明:由题意有22111,(2)n n n n n n S S a S S a n ++-+=+=≥,两式相减得2211n n n n a a a a +++=-,即()22110n n n n a a a a ++--+=,所以()()1110n n n n a a a a ++--+=,因为数列{}n a 为正项数列,所以10n n a a ++>, 所以11(2)n n a a n +-=≥,又因为2212S S a +=,即22122a a a +=,解得22a =,且11a =, 所以211a a -=也满足上式,所以*11()n n a a n N +-=∈,所以数列{}n a 为以1为首项1为公差的等差数列; (2)证明:由(1)有()111n a n n =+-⨯=,又2112na n nb b ++⋅=,所以2112n n n b b ++⋅=,()21122n n n b b n --⋅=≥,两式相除有()2112112422n n n n b n b ++--==≥,又12b =,24b =, 所以135721,,,,,n b b b b b -是以12b =为首项,公比为4的等比数列,24682,,,,,n b b b b b 是以24b =为首项,公比为4的等比数列,所以数列{}n b 是以12b =为首项,公比为2的等比数列,所以2nn b =,所以2n n na nb =,令1212n n na a a Tb b b =++⋅⋅⋅+, 则()2111111212222n n nT n n -=⨯+⨯+⋅⋅⋅+-⨯+⨯, ()2311111112122222n n n T n n +=⨯+⨯+⋅⋅⋅+-⨯+⨯, 两式相减可得231111111111111222112222222212nn n n n n n T n n +++⎛⎫- ⎪+⎝⎭=++++-⨯=-⨯=--,所以222n nn T +=-, 因为n N ∈,所以2222n nn T +=-<,从而得证原不等式成立. 50. (1)解:由11n n a S +=+,得11(2)n n a S n -=+≥, 所以11(2)2(2)n n n n n a a a n a a n ++-=≥=≥,即 又由11a =,得22a =,满足12n n a a +=,所以12n n a ,而122n n n n b b a +-==,所以1211222n n n b b ---=++⋯+,所以()1211212221=2121n n n nn b --⨯-=++++=--…;(2) 证明:因为11+12111()2(21)(21)2121n nn n n n c -+==-----, 所以121223111111111111()=(1)22221212121212121n n n n c c c ++++=-+-+--<-------.。

等差数列与等比数列的应用知识点总结

等差数列与等比数列的应用知识点总结

等差数列与等比数列的应用知识点总结等差数列和等比数列是高中数学中常见的两种数列。

它们具有很多重要的应用,在不同的数学问题中发挥着重要的作用。

本文将对等差数列与等比数列的应用进行知识点总结,并探讨它们在实际生活和其他学科中的具体应用。

一、等差数列的应用等差数列是指一个数列中,从第二项起每一项与前一项之差都相等的数列。

其常用的应用有:1. 数列求和公式对于等差数列的前n项和Sn,有求和公式Sn = (n/2)(a1 + an),其中a1为首项,an为末项,n为项数。

这个公式的应用非常广泛,可以用于求解各种数学问题,比如求等差数列的和、计算时间、距离、速度等问题。

2. 平均数的应用对于等差数列,它的各项的平均数与首末两项的平均数是相等的。

这个特性可以用来解决一些平均数相关的问题,比如求取某一连续数列的平均值等。

3. 等差数列的推广等差数列可以推广到高阶等差数列,即每一项与前一项之差的差值也相等。

这种推广常用于解决一些复杂的数学问题,比如等差数列的前n项和Sm,可以通过差分公式Sm = (m/2)(2a1 + (m-1)d)来求解。

4. 几何问题等差数列在几何问题中也有重要应用,比如解决一些等边三角形、等腰梯形等形状相关的问题时,常常需要利用等差数列的性质进行计算。

二、等比数列的应用等比数列是指一个数列中,从第二项起每一项与前一项的比值都相等的数列。

其常用的应用有:1. 数列求和公式对于等比数列的前n项和Sn,有求和公式Sn = a1(1-q^n)/(1-q),其中a1为首项,q为公比,n为项数。

这个公式的应用也非常广泛,可以用于求解各种数学问题,比如计算财务中的复利问题、人口增长问题等。

2. 指数问题等比数列可以与指数问题进行关联。

比如在计算家庭用电量、金融中的复利计算、物理中的指数增长问题等方面,常常需要利用等比数列的特性进行计算。

3. 几何问题等比数列在几何问题中同样有重要应用,比如解决一些等比序列相关的问题,如等比数列构造的等边五角星等。

高中数学专题 等比数列,等比数列前n项和公式

高中数学专题  等比数列,等比数列前n项和公式

一. 专题内容:等比数列,等比数列前n项和公式二. 知识点:1. 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫{a n}叫做等比数列。

3. 等比中项的定义:如果a、G、b成等比数列,那么G叫做a与b的等比中项。

(3)若{a n}为等比数列,公比为q(q≠-1),则{a2n-1+a2n}也是等比数列,公比为q2.(4)若{a n}、{b n}是等比数列,则{a n b n}也是等比数列。

二. 例题选讲例1. 已知数列{a n}为等比数列,解:小结:首项a1和公比q是确定等比数列{a n}最基本的量,而已知条件可转为关于a1与q 的方程。

例2. 已知数列{a n}满足:lga n=3n+5,试用定义证明{a n}是等比数列。

证明:小结:若{a n}是等差数列,b n=a n可以证明数列{b n}为等比数列,反之若{a n}为等比数列且a n>0,则可证明{lga n}为等差数列。

例3. 若a、b、c成等比数列,试证:a2+b2,ac+bc,b2+c2也成等比数列。

证明:由a、b、c成等比数列,则小结:证明数列成等比数列,可利用等比数列的定义,而证明三个数a,b,c成等比,可证明b2=ac,要注意说明a、b、c全不为零。

例4. 已知四个数前3个成等差,后三个成等比,中间两数之积为16,前后两数之积为-128,求这四个数。

解:因此所求的四个数为-4,2,8,32或4,-2,-8,-32。

小结:根据四个数前3个成等差,后三个成等比,列方程可利用a 、q 表示四个数,时解方程也较为方便。

例 5.求n 及公比q 。

解:。

或,公比的值为综上所述,2126 q n小结:等比数列中五个基本量a 1、q 、a n 、n 、S n ,知三可求二,列方程组是求解的常用方法。

解本题的关键是利用a 1·a n =a 2·a n-1,进而求出a 1、a n ,要注意a 1、a n 是两组解。

高中数学《等比数列的概念及通项公式》知识点讲解及重点练习

高中数学《等比数列的概念及通项公式》知识点讲解及重点练习

§4.3等比数列4.3.1等比数列的概念第1课时等比数列的概念及通项公式学习目标 1.通过实例,理解等比数列的概念.2.掌握等比中项的概念并会应用.3.掌握等比数列的通项公式并了解其推导过程.4.灵活应用等比数列通项公式的推广形式及变形.知识点一等比数列的概念1.定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0).2.递推公式形式的定义:a na n-1=q(n∈N *且n>1)⎝⎛⎭⎫或a n+1a n=q,n∈N*.思考为什么等比数列的各项和公比q均不能为0?答案由于等比数列的每一项都可能作分母,故每一项均不能为0,因此q也不能为0.知识点二等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项,此时,G2=ab.思考当G2=ab时,G一定是a,b的等比中项吗?答案不一定,如数列0,0,5就不是等比数列.知识点三等比数列的通项公式若等比数列{a n}的首项为a1,公比为q,则a n=a1q n-1(n∈N*).知识点四等比数列通项公式的推广和变形等比数列{a n}的公比为q,则a n=a1q n-1①=a m q n-m②=a1 q·qn.③其中当②中m=1时,即化为①.当③中q>0且q≠1时,y=a1q·qx为指数型函数.1.数列1,-1,1,-1,…是等比数列.( √ )2.若一个数列从第2项起每一项与前一项的比为常数,则该数列为等比数列.( × )3.等比数列的首项不能为零,但公比可以为零.( × )4.常数列一定为等比数列.( × )一、等比数列中的基本运算例1 在等比数列{a n }中:(1)a 1=1,a 4=8,求a n ;(2)a n =625,n =4,q =5,求a 1;(3)a 2+a 5=18,a 3+a 6=9,a n =1,求n .解 (1)因为a 4=a 1q 3,所以8=q 3,所以q =2,所以a n =a 1q n -1=2n -1.(2)a 1=a n q n -1=62554-1=5, 故a 1=5.(3) 因为⎩⎪⎨⎪⎧a 2+a 5=a 1q +a 1q 4=18, ①a 3+a 6=a 1q 2+a 1q 5=9, ② 由②①,得q =12,从而a 1=32. 又a n =1,所以32×⎝⎛⎭⎫12n -1=1,即26-n =20,故n =6.反思感悟 等比数列的通项公式涉及4个量a 1,a n ,n ,q ,只要知道其中任意三个就能求出另外一个,在这四个量中,a 1和q 是等比数列的基本量,只要求出这两个基本量,问题便迎刃而解.跟踪训练1 在等比数列{a n }中:(1)若它的前三项分别为5,-15,45,求a 5;(2)若a 4=2,a 7=8,求a n .解 (1)因为a 5=a 1q 4,而a 1=5,q =a 2a 1=-3, 所以a 5=405.(2)因为⎩⎪⎨⎪⎧ a 4=a 1q 3,a 7=a 1q 6, 所以⎩⎪⎨⎪⎧a 1q 3=2, ①a 1q 6=8, ② 由②①得q 3=4, 从而q =34,而a 1q 3=2,于是a 1=2q 3=12, 所以a n =a 1q n -1=2532n -.二、等比中项的应用例2 如果-1,a ,b ,c ,-9成等比数列,那么b =__________,ac =___________. 答案 -3 9解析 因为b 是-1,-9的等比中项,所以b 2=9,b =±3.又等比数列奇数项符号相同,得b <0,故b =-3,而b 又是a ,c 的等比中项,故b 2=ac ,即ac =9.反思感悟 (1)由等比中项的定义可知G a =b G⇒G 2=ab ⇒G =±ab ,所以只有a ,b 同号时,a ,b 的等比中项有两个,异号时,没有等比中项.(2)在一个等比数列中,从第二项起,每一项(有穷数列的末项除外)都是它的前一项和后一项的等比中项.(3)a ,G ,b 成等比数列等价于G 2=ab (ab >0).跟踪训练2 在等比数列{a n }中,a 1=-16,a 4=8,则a 7等于( )A .-4B .±4C .-2D .±2答案 A解析 因为a 4是a 1与a 7的等比中项,所以a 24=a 1a 7,即64=-16a 7,故a 7=-4.三、等比数列通项公式的推广及应用例3 在等比数列{a n }中.(1)已知a 3=4,a 7=16,且q >0,求a n ;(2)若{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,求通项公式a n .解 (1)∵a 7a 3=q 7-3=q 4=4, ∴q 2=2,又q >0,∴q =2,∴a n =a 3·q n -3=4·(2)n -3=122n +(n ∈N *).(2)由a 25=a 10=a 5·q 10-5,且a 5≠0, 得a 5=q 5,即a 1q 4=q 5,又q ≠0,∴a 1=q .由2(a n +a n +2)=5a n +1得,2a n (1+q 2)=5qa n ,∵a n ≠0,∴2(1+q 2)=5q ,解得q =12或q =2. ∵a 1=q ,且{a n }为递增数列,∴⎩⎪⎨⎪⎧a 1=2,q =2. ∴a n =2·2n -1=2n (n ∈N *).反思感悟 (1)应用a n =a m q n -m ,可以凭借任意已知项和公比直接写出通项公式,不必再求a 1.(2)等比数列的单调性由a 1,q 共同确定,但只要单调,必有q >0.跟踪训练3 已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7等于( )A .21B .42C .63D .84答案 B解析 设等比数列{a n }的公比为q ,则由a 1=3,a 1+a 3+a 5=21得3(1+q 2+q 4)=21,解得q 2=-3(舍去)或q 2=2,于是a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42.四、灵活设元求解等比数列问题例4 (1)有四个数成等比数列,将这四个数分别减去1,1,4,13成等差数列,则这四个数的和是________.答案 45解析 (1)设这四个数分别为a ,aq ,aq 2,aq 3,则a -1,aq -1,aq 2-4,aq 3-13成等差数列.即⎩⎪⎨⎪⎧ 2(aq -1)=(a -1)+(aq 2-4),2(aq 2-4)=(aq -1)+(aq 3-13),整理得⎩⎪⎨⎪⎧a (q -1)2=3,aq (q -1)2=6, 解得a =3,q =2.因此这四个数分别是3,6,12,24,其和为45.(2)有四个实数,前三个数成等比数列,且它们的乘积为216,后三个数成等差数列,且它们的和为12,求这四个数.解 方法一 设前三个数分别为a q,a ,aq , 则a q·a ·aq =216, 所以a 3=216.所以a =6.因此前三个数为6q,6,6q . 由题意知第4个数为12q -6.所以6+6q +12q -6=12,解得q =23. 故所求的四个数为9,6,4,2.方法二 设后三个数为4-d,4,4+d ,则第一个数为14(4-d )2, 由题意知14(4-d )2×(4-d )×4=216, 解得4-d =6.所以d =-2.故所求得的四个数为9,6,4,2.反思感悟 几个数成等比数列的设法(1)三个数成等比数列设为a q,a ,aq . 推广到一般:奇数个数成等比数列设为…,a q 2,a q,a ,aq ,aq 2,… (2)四个符号相同的数成等比数列设为a q 3,a q,aq ,aq 3. 推广到一般:偶数个符号相同的数成等比数列设为…,a q 5,a q 3,a q,aq ,aq 3,aq 5,… (3)四个数成等比数列,不能确定它们的符号是否相同时,可设为a ,aq ,aq 2,aq 3.跟踪训练4 在2和20之间插入两个数,使前三个数成等比数列,后三个数成等差数列,则插入的两个数的和为( )A .-4或352B .4或352C .4D.352答案 B解析 设插入的第一个数为a ,则插入的另一个数为a 22. 由a ,a 22,20成等差数列得2×a 22=a +20. ∴a 2-a -20=0,解得a =-4或a =5.当a =-4时,插入的两个数的和为a +a 22=4.当a =5时,插入的两个数的和为a +a 22=352.1.在等比数列{a n }中,若a 2=4,a 5=-32,则公比q 应为( )A .±12B .±2 C.12D .-2 答案 D解析 因为a 5a 2=q 3=-8,故q =-2. 2.(多选)已知a 是1,2的等差中项,b 是-1,-16的等比中项,则ab 等于( )A .6B .-6C .-12D .12答案 AB解析 ∵a =1+22=32,b 2=(-1)×(-16)=16,b =±4, ∴ab =±6.3.若等比数列的首项为4,末项为128,公比为2,则这个数列的项数为( )A .4B .8C .6D .32答案 C解析 由等比数列的通项公式得,128=4×2n -1,2n -1=32,所以n =6.4.等比数列{a n }中,|a 1|=1,a 5=-8a 2,a 5>a 2,则a n 等于( )A .(-2)n -1B .-(-2n -1) C .(-2)nD .-(-2)n 答案 A解析 设公比为q ,则a 1q 4=-8a 1q ,又a 1≠0,q ≠0,所以q 3=-8,q =-2,又a 5>a 2,所以a 2<0,a 5>0,从而a 1>0,即a 1=1,故a n =(-2)n -1.5.在等比数列{a n }中,a 1=-2,a 3=-8,则数列{a n }的公比为________,通项公式为a n =______________.答案 ±2 (-2)n 或-2n解析 ∵a 3a 1=q 2, ∴q 2=-8-2=4,即q =±2. 当q =-2时,a n =a 1q n -1=-2×(-2)n -1=(-2)n ;当q =2时,a n =a 1q n -1=-2×2n -1=-2n .1.知识清单:(1)等比数列的概念.(2)等比数列的通项公式.(3)等比中项的概念.(4)等比数列的通项公式推广.2.方法归纳:方程(组)思想、构造法、等比数列的设法.3.常见误区:(1)x ,G ,y 成等比数列⇒G 2=xy ,但G 2=xy ⇏x ,G ,y 成等比数列.(2)四个数成等比数列时设成a q 3,a q,aq ,aq 3,未考虑公比为负的情况. (3)忽视了等比数列中所有奇数项符号相同,所有偶数项符号相同而出错.1.在数列{a n }中,若a n +1=3a n ,a 1=2,则a 4为( )A .108B .54C .36D .18答案 B解析 因为a n +1=3a n ,所以数列{a n }是公比为3的等比数列,则a 4=33a 1=54.2.(多选)在等比数列{a n }中,a 1=18,q =2,则a 4与a 8的等比中项为( ) A .-4 B .4 C .-14 D.14答案 AB解析 由题意得a 26=a 4a 8,因为a 1=18,q =2, 所以a 4与a 8的等比中项为±a 6=±4.3.在等比数列{a n }中,a n >0,且a 1+a 2=1,a 3+a 4=9,则a 4+a 5的值为( )A .16B .27C .36D .81答案 B解析 ∵a 1+a 2=1,a 3+a 4=9,∴q 2=9.∴q =3(q =-3舍去),∴a 4+a 5=(a 3+a 4)q =27.4.数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }的连续三项,则数列{b n }的公比为( ) A. 2 B .4 C .2 D.12答案 C解析 因为a 1,a 3,a 7为等比数列{b n }中的连续三项,所以a 23=a 1a 7,设数列{a n }的公差为d ,则d ≠0,所以(a 1+2d )2=a 1(a 1+6d ),所以a 1=2d ,所以公比q =a 3a 1=4d 2d=2. 5.若正项数列{a n }满足a 1=2,a 2n +1-3a n +1a n -4a 2n =0,则数列{a n }的通项公式a n 等于( )A .22n -1B .2nC .22n +1D .22n -3答案 A解析 由a 2n +1-3a n +1a n -4a 2n =0, 得(a n +1-4a n )·(a n +1+a n )=0.又{a n }是正项数列,所以a n +1-4a n =0,a n +1a n=4. 由等比数列的定义知数列{a n }是以2为首项,4为公比的等比数列.由等比数列的通项公式,得a n =2×4n -1=22n -1.6.若{a n }为等比数列,且a 3+a 4=4,a 2=2,则公比q =________.答案 1或-2解析 根据题意,⎩⎪⎨⎪⎧a 1q 2+a 1q 3=4,a 1q =2, 解得⎩⎪⎨⎪⎧ a 1=2,q =1或⎩⎪⎨⎪⎧ a 1=-1,q =-2.7.已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,且a 1=________,d =________.答案 23-1 解析 ∵a 2,a 3,a 7成等比数列,∴a 23=a 2a 7,∴(a 1+2d )2=(a 1+d )(a 1+6d ),即2d +3a 1=0.①又∵2a 1+a 2=1,∴3a 1+d =1.②由①②解得a 1=23,d =-1. 8.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =________.答案 4×⎝⎛⎭⎫32n -1解析 由已知可得(a +1)2=(a -1)(a +4),解得a =5,所以a 1=4,a 2=6,所以q =a 2a 1=64=32, 所以a n =4×⎝⎛⎭⎫32n -1.9.在等比数列{a n }中,a 3=32,a 5=8.(1)求数列{a n }的通项公式a n ;(2)若a n =12,求n . 解 (1)因为a 5=a 3q 2,所以q 2=a 5a 3=14.所以q =±12.当q =12时,a n =a 3q n -3=32×⎝⎛⎭⎫12n -3=28-n ;当q =-12时,a n =a 3q n -3=32×⎝⎛⎭⎫-12n -3.所以a n =28-n 或a n =32×⎝⎛⎭⎫-12n -3.(2)当a n =12时,即28-n =12或32×⎝⎛⎭⎫-12n -3=12,解得n =9.10.在等比数列{a n }中:(1)已知a 3=2,a 5=8,求a 7;(2)已知a 3+a 1=5,a 5-a 1=15,求通项公式a n .解 (1)因为a 5a 3=q 2=82,所以q 2=4,所以a 7=a 5q 2=8×4=32.(2)a 3+a 1=a 1(q 2+1)=5,a 5-a 1=a 1(q 4-1)=15,所以q 2-1=3,所以q 2=4,所以a 1=1,q =±2,所以a n =a 1q n -1=(±2)n -1.11.已知a ,b ,c ,d 成等比数列,且曲线y =x 2-2x +3的顶点是(b ,c ),则ad 等于()A .3B .2C .1D .-2答案 B解析 ∵y =(x -1)2+2,∴b =1,c =2.又∵a ,b ,c ,d 成等比数列,∴ad =bc =2.12.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2等于( )A .2B .1 C.12 D.18答案 C解析 方法一 ∵a 3,a 5的等比中项为±a 4,∴a 3a 5=a 24,a 3a 5=4(a 4-1),∴a 24=4(a 4-1),∴a 24-4a 4+4=0,∴a 4=2.又∵q 3=a 4a 1=214=8,∴q =2,∴a 2=a 1q =14×2=12.方法二 ∵a 3a 5=4(a 4-1),∴a 1q 2·a 1q 4=4(a 1q 3-1),将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,∴a 2=a 1q =12.13.(多选)已知等差数列a ,b ,c 三项之和为12,且a ,b ,c +2成等比数列,则a 等于() A .-2 B .2 C .-8 D. 8答案 BD解析 由已知得⎩⎪⎨⎪⎧ a +c =2b ,a +b +c =12,a (c +2)=b 2,解得⎩⎪⎨⎪⎧a =2,b =4,c =6或⎩⎪⎨⎪⎧a =8,b =4,c =0.故a =2或a =8.14.若数列{a n}的前n项和为S n,且a n=2S n-3,则{a n}的通项公式是________.答案a n=3·(-1)n-1解析由a n=2S n-3得a n-1=2S n-1-3(n≥2),两式相减得a n-a n-1=2a n(n≥2),∴a n=-a n-1(n≥2),又a1=3,故{a n}是首项为3,公比为-1的等比数列,∴a n=3·(-1)n-1.15.已知在等差数列{a n}中,a2+a4=16,a1+1,a2+1,a4+1成等比数列,把各项按如图所示排列.则从上到下第10行,从左到右的第11个数值为________.答案275或8解析设公差为d,由a2+a4=16,得a1+2d=8,①由a1+1,a2+1,a4+1成等比数列,得(a2+1)2=(a1+1)(a4+1),化简得a1-d=-1或d=0,②当d=3时,a n=3n-1.由题图可得第10行第11个数为数列{a n}中的第92项,a92=3×92-1=275.当d=0时,a n=8,a92=8.16.设数列{a n}是公比小于1的正项等比数列,已知a1=8,且a1+13,4a2,a3+9成等差数列.(1)求数列{a n}的通项公式;(2)若b n=a n(n+2-λ),且数列{b n}是单调递减数列,求实数λ的取值范围.解(1)设数列{a n}的公比为q.由题意,可得a n=8q n-1,且0<q<1.由a1+13,4a2,a3+9成等差数列,知8a2=30+a3,所以64q=30+8q2,解得q=12或152(舍去),所以a n=8×⎝⎛⎭⎫12n-1=24-n,n∈N*.(2)b n=a n(n+2-λ)=(n+2-λ)·24-n,由b n>b n+1,得(n+2-λ)·24-n>(n+3-λ)·23-n,即λ<n+1,所以λ<(n+1)min=2,故实数λ的取值范围为(-∞,2).。

高中数学必修五 等比数列的前n项和

高中数学必修五 等比数列的前n项和

等比数列的通项公式
定义:等比数列 中任意一项与首 项的比值是常数
通项公式: n=1*q^(n-1)其 中1是首项q是公 比
性质:当q=1时 通项公式变为推导得出
等比数列的前n项和公式
第三章
公式推导过程
等比数列求和公式的推导过 程
等比数列的定义和性质
举例说明等比数列求和公式 的应用
等比数列前n项和公式的应 用
第四章
在数学题目中的应用
计算等比数列的和 解决等比数列的求和问题 证明等比数列前n项和公式 利用等比数列前n项和公式解决实际问题
在实际生活中的应用
计算复利:在金融领域等比数列前n项和公式可用于计算复利评估投资回报。
资产评估:在资产评估领域等比数列前n项和公式可用于计算累积收益或损失评估资产价 值。
总结等比数列求和公式的推 导方法和应用
公式应用示例
求解等比数列的通项公式
计算等比数列的前n项和
利用等比数列的前n项和公 式求极限
证明等比数列前n项和公式 的正确性
公式记忆方法
公式推导:通过等比数列的性质和求和公式推导得到 公式特点:首项与公比的乘积等于末项与公比的乘积 公式变形:根据等比数列的性质公式可以变形为其他形式 记忆技巧:结合等比数列的定义和性质采用联想记忆法进行记忆
等比数列前n项和公式的推广形式
公式推导:通过等比数列的性质和求和公式推导出更一般的公式形式 应用范围:适用于任意正整数n不仅限于特定的n值 扩展形式:等比数列前n项和公式可以表示为无限项的和适用于研究无穷级数 实际应用:等比数列前n项和公式的推广形式在数学、物理、工程等领域有广泛的应用
等比数列前n项和公式的近似解法
定义:等比数列前n项和公式的近似解法是指通过近似计算来求解等比数 列前n项和的方法。 适用范围:适用于等比数列的公比接近1或者第一项接近0的情况。

数学高中 等比数列的定义(一)

数学高中 等比数列的定义(一)

等比数列的定义(一)一.知识梳理1.等比数列的定义(1)一般地,如果一个数列从第二项起,每一项都与它的前一项的_____都等于________.那么这个数列就叫做等比数列,这个_______叫做等差数列的_______,公比用字母_____表示.(2)等比数列的符号语言:在等比数列{}n a 中,如果_______________(*∈N n )(或者q a a n n =-1,*∈≥N n n ,2) 2.等比数列的通项公式如果等比数列{}n a 的首项1a ,公比为q ,那么它的通项公式是________________.3.等比中项(1) 如果三个数b G a ,,成等比数列,那么_____叫做a 与b 的等比中项.且=G _________.(2)若11,,+-n n n a a a 成等比数列,则=⋅+-11n n a a _________.4.等比数列的性质:若数列{}{}n n b a ,分别是以21,q q 为公比的等比数列:(1)数列{}n a c ⋅是以公比为______的等比数列..(2)数列{}n a 2是以公比为______的等比数列.(3)数列{}n n b a ⋅是以公比为______的等比数列.二.预习自测1.下面四个数列:(1);64,32,16,8,4,2,1,1 (2)在数列{}n a 中,已知;2,22312==a a a a (3)常数列;,,,,,⋅⋅⋅⋅⋅⋅a a a a (4)在数列{}n a 中,)0(1≠=+q q a a nn 其中一定是等比数列的是________.2.等比数列{}n a 满足0852=+a a ,则公比=q _________. A.2 B.2- C.2± D.33.已知等比数列{}n a 的公比为0>n a 2且,若16113=⋅a a ,则=5a _________.A.1B.2C.8D.44.在等比数列⋅⋅⋅++,66,33,x x x 的第四项为__________.A.24-B.0C.12D.245.已知等差数列{}n a 的公差为2,若842,,a a a 成等比数列,则数列{}n a 的前n 项和=n S ____.A.)1(+n nB.)1(-n nC.2)1(+n nD.2)1(-n n 6.82是等比数列⋅⋅⋅,22,4,24的第_____项 A.10 B.11 C.12 D.137.在等比数列{}n a 中,.8,3253==a a(1)求n a ; (2)若,21=n a 求n .三.典例解析例一:在等差数列{}n a 中,公差0≠d ,且931,,a a a 成等比数列,求1042931a a a a a a ++++的值.例二:若数列{}n a 为等比数列:(1)求证:),(*-∈=N m n q a a m n m n ; (2),1,9,186352==+=+n a a a a a 求.n例三:有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数和第四个数的和为16,第二个数和第三个数和为12,求这四个数.例四:已知数列{}n a 的前n 项和为).1(31,-=n n n a S S 求证:数列{}n a 是等比数列并求.n a例五:已知数列{}n a 中,).2(12,111≥+==-n a a a n n(1)证明:数列{}1+n a 是等比数列; (2)求.n a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学等比数列知识点总结
高中数学等比数列知识点总结
上学期间,说到知识点,大家是不是都习惯性的重视?知识点有时候特指教科书上或考试的知识。

为了帮助大家掌握重要知识点,以下是小编帮大家整理的高中数学等比数列知识点总结,欢迎阅读与收藏。

高中数学等比数列知识点总结篇1
1.等比数列的有关概念
(1)定义:
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈N_,q 为非零常数).
(2)等比中项:
如果a、G、b成等比数列,那么G叫做a与b的等比中项.即:G 是a与b的等比中项a,G,b成等比数列G2=ab.
2.等比数列的有关公式
(1)通项公式:an=a1qn-1.
3.等比数列{an}的常用性质
(1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),则am·an=ap·aq=a.
特别地,a1an=a2an-1=a3an-2=….
(2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列Sm,S2m-Sm,S3m-S2m,…仍是等比数列(此时q≠-1);an=amqn-m.
4.等比数列的'特征
(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q 也是非零常数.
(2)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验
证a1≠0.
5.等比数列的前n项和Sn
(1)等比数列的前n项和Sn是用错位相减法求得的,注意这种思想方法在数列求和中的运用.
(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.
高中数学等比数列知识点总结篇2
1.等比中项
如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。

有关系:
注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。

2.等比数列通项公式
an=a1_q’(n-1)(其中首项是a1,公比是q)
an=Sn-S(n-1)(n≥2)
前n项和
当q≠1时,等比数列的前n项和的公式为
Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)
当q=1时,等比数列的前n项和的公式为
Sn=na1
3.等比数列前n项和与通项的关系
an=a1=s1(n=1)
an=sn-s(n-1)(n≥2)
4.等比数列性质
(1)若m、n、p、q∈N_,且m+n=p+q,则am·an=ap·aq;
(2)在等比数列中,依次每k项之和仍成等比数列。

(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:q、r、p成等比数列,则aq·ap=ar2,ar则为ap,
aq等比中项。

记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。

在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

(5)等比数列前n项之和Sn=a1(1-q’n)/(1-q)
(6)任意两项am,an的关系为an=am·q’(n-m)
(7)在等比数列中,首项a1与公比q都不为零。

注意:上述公式中a’n表示a的n次方。

高中数学等比数列知识点总结篇3
等比数列求和公式
q≠1时,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)
q=1时,Sn=na1
(a1为首项,an为第n项,d为公差,q为等比)
这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。

注:q=1时,{an}为常数列。

利用等比数列求和公式可以快速的计算出该数列的和。

等比数列求和公式推导
Sn=a1+a2+a3+...+an(公比为q)
qSn=a1q + a2q + a3q +...+ anq = a2+ a3+ a4+...+ an+ a(n+1) Sn-qSn=(1-q)Sn=a1-a(n+1)
a(n+1)=a1qn
Sn=a1(1-qn)/(1-q)(q≠1)。

相关文档
最新文档