基于Matlab转差频率控制的矢量控制系统的仿真

基于Matlab转差频率控制的矢量控制系统的仿真
基于Matlab转差频率控制的矢量控制系统的仿真

1转差频率矢量控制系统...................................... - 0 -

2.1 控制原理叙述........................................ - 3 -

2.2 转差频率控制系统组成................................ - 5 -

3、转差频率矢量控制系统构建................................. - 6 -

4.2模型参数............................................ - 8 - 概述:

常用的电机变频调速控制方法有电压频率协调控制(即v/F比为常数)、转差频率控制、矢量控制以及直接转矩控制等。其中,矢量控制是目前交流电动机较先进的一种控制方式。它又有基于转差频率控制的、无速度传感器和有速度传感器等多种矢量控制方式。其中基于转差频率控制的矢量控制方式是在进行U /f恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对输出频率f进行控制的。采用这种控制方法可以使调速系统消除动态过程中转矩电流的波动,从而在一定程度上改善了系统的静态和动态性能,同时它又具有比其它矢量控制方法简便、结构简单、控制精度高等特点。

Simulink仿真系统是Matlab最重要的组件之一,系统提供了标准的模型库,能够帮助用户在此基础上创建新的模型库,描述、模拟、评价和细化系统,从而达到系统分析的目的。在此利用Matlab/Simulink软件构建了转差频率矢量控制的异步电机调速系统仿真模型,并对此仿真模型进行了实验分析。

矢量控制是目前交流电动机的先进控制方式,一般将含有矢量交换的交流电动机控制都称为矢量控制,实际上只有建立在等效直流电动机模型上,并按转子磁场准确定向地控制,电动机才能获得最优的动态性能。转差频率矢量控制系统结构简单且易于实现,控制精度高,具有良好的控制性能、因此,早起的矢量控制通用变频器上采用基于转差频率控制的矢量控制方式。基于此,本文在Mtalab/Simulink环境下对转差频率矢量控制系统进行了仿真研究。

1转差频率矢量控制系统

由于异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。转差频率矢量控制是按转子磁链定向的间接矢量控制系统,不需要进行复杂的磁

通检测和繁琐的坐标变换,只要在保证转子磁链大小不变的前提下,通过检测定子电流和旋转磁场角速度,通过两相同步旋转坐标系(M-T坐标系)上的数学模型运算就可以实现间接的磁场定向控制。其控制的基本方程式如下:

u sa R s+L s P 0L m P 0 i sa

u sb = 0 R s+L s P 0 L m P i sb

u ra L m P ωL m R r+L r P ωL r i ra

u rb -ωL m -L m -ωL r R r+L r P i rb

式中:u sa,u sb,u ra,u rb为定、转子在M-T轴上的电压分量;L s为定子自感;L r为转子自感;L m为定、转子互感;ω1为定子角频率、ωs为转差角频率;P为微分算子;R s,R r为定、转子电阻。

磁链方程为:

ψsa L s0L m0 i sa

ψsb = 0 L s 0 L m i sb

ψra L m P ωL m R r+L r P ωL r i ra

ψrb 0 L m 0L r i rb

式中:ψsa,ψra 为定、转子磁链励磁分量;ψsb,ψrb为定、转子磁链转矩分量;

采用矢量控制方式的通用变频器不仅可在调速范围上与直流电动机相匹配,而且可以控制异步电动机产生的转矩。由于矢量控制方式所依据的是准确的被控异步电动机的参数,有的通用变频器在使用时需要准确地输入异步电动机的参数,有的通用变频器需要使用速度传感器和编码器。鉴于电机参数有可能发生变化,会影响变频器对电机的控制性能,目前新型矢量控制通用变频器中已经具备异步电动机参数自动检测、自动辨识、自适应功能,带有这种功能的通用变频器在驱动异步电动机进行正常运转之前可以自动地对异步电动机的参数进行辨识,并根据辨识结果调整控制算法中的有关参数,从而对普通的异步电动机进行有效的矢量控制。

以异步电动机的矢量控制为例:

它首先通过电机的等效电路来得出一些磁链方程,包括定子磁链,气隙磁链,转子磁链,其中气息磁链是连接定子和转子的。一般的感应电机转子电流不易测量,所以通过气息来中转,把它变成定子电流。

然后,有一些坐标变换,首先通过3/2变换,变成静止的d-q坐标,然后通过前面的磁链方程产生的单位矢量来得到旋转坐标下的类似于直流机的转矩电流分量和磁场电流分量,这样就实现了解耦控制,加快了系统的响应速度。

最后再经过2/3变换,产生三相交流电去控制电机,这样就获得了良好的性能。

矢量控制(VC)方式:

矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1和Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。

综合以上:矢量控制无非就四个知识:等效电路、磁链方程、转矩方程、坐标变换(包括静止和旋转)。

矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。2转差频率控制的基本原理

调速系统的动态性能主要取决于其对转矩控制能力。由于直流电动机的转矩与电流成正比关系,控制电流即可控制转矩控制,较易实现,而交流异步电动机的转矩控制比真流电动机要复杂。转差频率矢量控制的目标就是将交流电动机复杂的转矩控制模型转化为类似直流电动机的简单转矩控制模型。从原理上说,矢量控制方式的特征是:它把交流电动机解析成与直流电动机一样,具有转矩发生机构,按照磁场和其正交的电流的积就是转矩这一最基本的原理,从理论上将电

动机的一次电流分离成建立磁场的励磁分量和与磁场正交的产生转矩的转矩分量,然后分别进行控制。

2.1 控制原理叙述

转差频率控制控制思想就是从根本上改造交流电动机,改变其产生转矩的规律,设法在普通的三相交流电动机上模拟直流电动机控制转矩的规律。

异步电动机的基本方程式为:

M L L i r

m r r ψ=1 (1) st r r m s i T L ψ=

? (2) r m

r m L P T i ψ+=11 (3) T e =n P r

r St m L i L ψ (4) r ψ=1

+p r Sm m T i L (5) 式中:r i 1、m i 1分别为转子电流的转矩分量和励磁分量;m L 、r L 分别为定、转子电感;r ψ为转子总磁链;s ω为转差角频率;r T 为转子时间常数;e T 为电磁转矩;p n 为异步电动机的磁极对数;P 为微分算子;m L 1为定子绕组漏感。

任何电气传动控制系统均服从以下基本运动方程:

dt

d n J T T p L

e ?=- (6) 式中L T 为负载转矩,J 为电动机转子和系统的转动惯量。

由式(6)可知,要提高系统的动态特性,主要是控制转速的变化率

dt d ω。显然,通过控制e T 就能控制dt

d ω,因此调速的动态特性取决于其对

e T 的控制能力。 电动机稳态运行时,转差率s 很小,因此s ω也很小,转矩的近似表达式为:

'

22

R K T s m m e ?Φ≈ (7)

式中:m K 为电动机的结构常数,m Φ为气隙磁通,'2R 为折算到定子边的转

子电阻。

只要能够保持m Φ不变,异步电动机的转速就与s ω近似成正比,即控制s ω就能控制e T ,也就能控制dt

d ω,与直流电动机通过控制电流即可控制转矩类似。 控制转差频率就代表控制转矩,这就是转差频率控制的基本概念。

把转矩特性(即机械特性):)(s e f T ω=画在下图中:

图2-1 按恒Φm 值控制的 T e =f (ωs ) 特性

可以看出:在ωs 较小的稳态运行段上,转矩 T e 基本上与ωs 成正比,当T e 达到其最大值T emax 时,ωs 达到ωsmax 值。

由相关公式可以得到:

'r

'r max s l L R =ω (8) 'r 2

m m

max e 2l L ΦK T = (9) 在转差频率控制系统中,只要给ωs 限幅,使其限幅值为:r r max s sm l L R =

<ωω , 就可以基本保持 T e 与ωs 的正比关系,也就可以用转差频率控制来代表转矩控制。这是转差频率控制的基本规律之一。

上述规律是在保持Φm 恒定的前提下才成立的,于是问题又转化为,如何能

保持Φm 恒定?我们知道,按恒 E g /ω1 控制时可保持Φm 恒定。在等效电路中可得:

11g s 1s s g s 1s s s )()(ωωωω???

? ??++=++=E L j R I E L j R I U l l (10) 由此可见,要实现恒 E g /ω1控制,须在U s /ω1 = 恒值的基础上再提高电压 U s 以补偿定子电流压降。

如果忽略电流相量相位变化的影响,不同定子电流时恒 E g /ω1 控制所需的

电压-频率特性 U s = f (ω1, I s )。

总结起来,转差频率控制的规律是:

(1)在 ωs ≤ ωsm 的范围内,转矩 T e 基本上与 ωs 成正比,条件是气隙磁

通不变。

(2)在不同的定子电流值时,按函数关系 U s = f (ω1 , I s ) 控制定子电压

和频率,就能保持气隙磁通Φm 恒定。

2.2 转差频率控制系统组成

频率控制——转速调节器ASR 的输出信号是转差频率给定 ωs * ,与实测转速信

号ω 相加,即得定子频率给定信号 ω1*

,即*1*s ωωω=+ 电压控制——由 ω1和定子电流反馈信号 I s 从微机存储的 U s = f (ω1 , I s ) 函数中查得定子电压给定信号 U s * ,用 U s * 和 ω1* 控制PWM 电压型逆变器,即得

异步电机调速所需的变压变频电源。

公式*1*s ωωω=+所示的转差角频率 ωs *与实测转速信号ω 相加后得到定子

频率输入信号 ω1* 这一关系是转差频率控制系统突出的特点或优点。它表明,在

调速过程中,定子频率ω1随着转子转速 ω 同步地上升或下降,有如水涨而船高,

因此加、减速平滑而且稳定。同时,由于在动态过程中转速调节器ASR 饱和,系统能用对应于 ωsm 的限幅转矩T em 进行控制,保证了在允许条件下的快速性。

由此可见,转速闭环转差频率控制的交流变压变频调速系统能够像直流电机双闭环控制系统那样具有较好的静、动态性能,是一个比较优越的控制策略,结构也不算复杂。然而,它的静、动态性能还不能完全达到直流双闭环系统的水平,存在差距的原因有以下几个方面:

(1)在分析转差频率控制规律时,是从异步电机稳态等效电路和稳态转矩

公式出发的,所谓的“保持磁通 Φm 恒定”的结论也只在稳态情况下才能成立。

在动态中 Φm 如何变化还没有深入研究,但肯定不会恒定,这不得不影响系统的

实际动态性能。

(2)U s = f (ω1 , I s ) 函数关系中只抓住了定子电流的幅值,没有控制到

电流的相位,而在动态中电流的相位也是影响转矩变化的因素。

(3)在频率控制环节中,取*1*s ωωω=+,使频率得以与转速同步升降,这

本是转差频率控制的优点。然而,如果转速检测信号不准确或存在干扰,也就会直接给频率造成误差,因为所有这些偏差和干扰都以正反馈的形式毫无衰减地传递到频率控制信号上来了。

3、转差频率矢量控制系统构建

转差频率控制的异步电动机矢量控制调速系统的原理图如图3-1所示。该系统主电路采用了SPWM 电压型逆变器,这是通用变频器常用的方案。转速采用了转差频率控制,即异步机定子角频率ω1由转子角频率ω和转差角频率ωs 组成(ω1=ω+ω),这样在转速变化过程中,电动机的定子电流频率始终能随转子的实际转速同步升降,使转速的调节更为平滑。

图3-1转差频率控制的矢量控制系统原理框图

系统的控制部分由给定、PI 调节器、函数运算、二相/三相坐标变换、PWM 脉冲发生器等环节组成。其中给定环节有定子电流励磁分量im*和转子速度n*。

放大器G1、G2和积分器组成了带限幅的转速调节器ASR 。电流电压模型转换由函数Um*、Ut*模块实现。函数运算模块ws*根据定子电流的励磁分量和转矩分量计算转差ωs ,并与转子频率ω想加得到定子频率ω1,再经积分器得到定子电压

矢量转角θ。模块sin 、cos 、dq0/abc 实现了二相旋转坐标系至三相静止坐标系的变换。dq0/abc 是输出是PMW 发生器的三相调制信号,因为调制信号幅度不能大于1,在dq0/abc 输出后插入衰减环节G4。在模型调试时,可以先在此处断输出和PMW 发生器的三相调制输入信号幅值小于1的要求,计算G4的衰减系数。

该系统的主要特点:

(1)主电路SPWM 电压型逆变器,开关器件采用IGBT,这是通用变频器常用的方案;

(2)转速采用转差频率矢量控制,即*1*s ωωω=+,在转速变换过程中,异

步电动机的定子电流频率始终跟随转子的实际转速而同步升降,从而使转速 调 节吏加平滑。

图中:*ω、ω-分别为转子角频率给定和转子角频率负反馈;m i 1、t i 1分别为定子电流的转矩分量和励磁分量;θ为转差角;s ω为转差角频率;1ω、ω+分别为定子角频率和转子角频率正反馈;m u 1、s u 1分别为定子电压的转矩分量和励磁分量。

根据式(1)-(4)和图3-1可知,在保持磁通恒定的条件下,电动机的Te 由Ile 计算,磁通也可以通过Ilm 计算。转速可以通过PI 调节器调节,输出Iit 然后计算得到s ω,即: m

r t s i T i 11=

ω (7)

4 转差频率矢量控制调速系统仿真和分析

4.1电动机转差频率矢量控制系统的仿真模型

图4-4 电动机转差频率矢量控制系统的仿真模型

4.2模型参数

转子磁链模型的计算参数设置:异步电动机为3*746KW,220V ,50HZ 二对极(2=p n ),定子绕组电阻Ω=435.0m R ,mH L m 004.0=,转子绕组电阻Ω=816.0r R ,转子绕组漏感mH L m 004.0=,mH L m 069.0=,J=2.19.0m Kg ,逆变器直流电源为510V ,定子绕组电感为,071.0mH L L L s m S =+=mH L R 071.0=,漏磁系数为0.056,087.0=r T 。其中,G1、G2、G3、G4、G5、G6的放大倍数分别为35、0.15.、0076、2、9.55、1/9.55。根据相关公式计算得到:

321***071.0*056.0*435.0u u u U m -=

3241**071.0*056.0*435.0**071.0u u u u U t ++=

)*087.0/(12*u u W s =

仿真定转速为1400r/min 时的空载启动过程,在启动后0.45s 时加载T1=65N*M 。该系统较复杂,容易出现收敛问题,经试用各种计算方法,最终选用步长算法ode5,步长取e-5。

4.2仿真结果:

0123

456x 1040200

400

600

800

1000

1200

1400

1600

t/s n /(r /m i n )

(a )

0123

456x 104-200

20

40

60

80

100

120

t/s T e T l /N ·m

(b )

控制系统MATLAB仿真基础

系统仿真 § 4.1控制系统的数学模型 1、传递函数模型(tranfer function) 2、零极点增益模型(zero-pole-gain) 3、状态空间模型(state-space) 4、动态结构图(Simulink结构图) 一、传递函数模型(transfer fcn-----tf) 1、传递函数模型的形式 传函定义:在零初始条件下,系统输出量的拉氏变换C(S)与输入量的拉氏变换R(S)之比。 C(S) b1S m+b2S m-1+…+b m G(S)=----------- =- -------------------------------- R(S) a1S n + a2S n-1 +…+ a n num(S) = ------------ den(S) 2、在MATLAB命令中的输入形式 在MATLAB环境中,可直接用分子分母多项式系数构成的两个向量num、den表示系统: num = [b1, b2, ..., b m]; den = [a1, a2, ..., a n]; 注:1)将系统的分子分母多项式的系数按降幂的方式以向量的形式输入两个变量,中间缺项的用0补齐,不能遗漏。 2)num、den是任意两个变量名,用户可以用其他任意的变量名来输入系数向量。 3)当系统种含有几个传函时,输入MATLAB命令状态下可用n1,d1;n2,d2…….。 4)给变量num,den赋值时用的是方括号;方括号内每个系数分隔开用空格或逗号;num,den方括号间用的是分号。 3、函数命令tf( ) 在MATLAB中,用函数命令tf( )来建立控制系统的传函模型,或者将零极点增益模型、状态空间模型转换为传函模型。 tf( )函数命令的调用格式为: 圆括号中的逗号不能用空格来代替 sys = tf ( num, den ) [G= tf ( num, den )]

异步电动机矢量控制系统的仿真

异步电动机矢量控制系统仿真 1.异步电机矢量控制系统的原理及其仿真 1.1 异步电动机矢量控制原理 异步电机矢量变换控制系统和直接转矩控制系统都是目前已经获得使用的高性能异步电机调速系统,对比直接转矩控制系统,矢量变换系统有可以连续控制,调速范围宽的优点,因此矢量变换控制系统为现代交流调速的重要方向之一。 本文采用的是转子磁场间接定向电流控制型交流异步电机矢量控制系统[1],如图1所示。 图1矢量变换控制系统仿真原理图 如果把转子磁链方向按空间旋转坐标系的M轴方向定向,则可得到按转子磁场方式定向下的三相鼠笼式异步电动机的矢量控制方程。 (1) (2) (3) (4)

(5) 上列各式中,是转子励磁电流参考值;是转差角频率给定值;是定子电流的励磁分量;是定子电流的转矩分量;是定子频率输入角频率; 是转子速度;是转子磁场定向角度;是转子时间常数;和分别是电机互感和转子自感。 图4所示控制系统中给定转速和实际电机转速相比较,误差信号送入转速调节器,经转速调节器作用产生给定转矩信号,电机的激磁电流给定信号根据电机实际转速由弱磁控制单元产生,再利用式(1)产生定子电流激磁分量给定信号,定子电流转矩分量给定信号则根据式(2)所示的电机电磁转矩表达式生成。、和转子时间常数Lr一起产生转差频率信号,和ωr相加生成转子磁场频率给定信号,对积分则得到转子磁场空间角度给定信号。和经坐标旋转和2/3相变换产生定子三相电流给定信号、和,和定子三相电流实测信号、和相比较,由滞环控制器产生逆变器所需的三相PWM信号。 1.2 异步电机转差型矢量控制系统建模 在MATLAB/SIMULINK环境下利用电气系统模块库中的元件搭建交流异步电机转差型矢量控制系统[2],电流控制变频模型如图2所示。 图2 电流控制变频模型图 整个仿真图由电气系统模块库中的元件搭建组成,元件的直观连接和实际的主电路相像似,其中主要包括:速度给定环节,PI速度调节器、坐标变换模块、

转差频率控制的异步电动机

转差频率控制的异步电 动机 Revised as of 23 November 2020

转差频率控制的异步电动机 矢量控制系统仿真实训报告 二级学院 专业电气工程及其自动化 班级 指导教师 2014年6月 摘要 矢量变换控制技术的诞生和发展奠定了现代交流调速系统高性能化的基础。交流电动机是个多变量、非线性、强耦合的被控对象,采用参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程,使交流调速系统的动态性能得到了显着的改善和提高,从而使交流调速取代直流调速成为可能。目前对调速性能要求较高的生产工艺已较多地采用了矢量控制型的变频调速装置。实践证明,采用矢量控制的交流调速系统的优越性高于直流调速系统。 本文基于MATLAB?对异步电动机转差频率控制调速系统进行仿真研究。首先分析了异步电动机转差频率控制技术的主要控制方

法、基本组成与工作原理。之后对异步电机的动态模型做了分析,进一步介绍了异步电机的坐标变换,对异步电机转差频率矢量控制系统的基本原理进行了阐述,通过仿真工作,证明了其可行性。最后,通过对仿真结果进行分析,归纳出如下结论:单纯的转差频率控制带载能力差,应用转差频率矢量控制可增强电机对转矩的调节能力且无需电压补偿。 关键词:异步电动机矢量控制转差角频率 MATLAB 目录

一、转差频率控制的异步电动机矢量控制调速系统 1.矢量控制概述 矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 矢量控制(VC)方式:矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1和Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。

控制系统的MATLAB仿真与设计课后答案

控制系统的MATLAB仿真与设计课后答案

>>z=-4*sqrt(2)*sin(t); >>plot3(x,y,z,'p'); >>title('Line in 3-D Space'); >>text(0,0,0,'origin'); >>xlabel('X'),ylable('Y'),zlable('Z');grid; 4>>theta=0:0.01:2*pi; >>rho=sin(2*theta).*cos(2*theta); >>polar(theta,rho,'k'); 5>>[x,y,z]=sphere(20); >>z1=z; >>z1(:,1:4)=NaN; >>c1=ones(size(z1)); >>surf(3*x,3*y,3*z1,c1); >>hold on >>z2=z; >>c2=2*ones(size(z2)); >>c2(:,1:4)=3*ones(size(c2(:,1:4))); >>surf(1.5*x,1.5*y,1.5*z2,c2); >>colormap([0,1,0;0.5,0,0;1,0,0]); >>grid on >>hold off 第四章 1>>for m=100:999 m1=fix(m/100); m2=rem(fix(m/10),10); m3=rem(m,10); if m==m1*m1*m1+m2*m2*m2+m3*m3*m3 disp(m) end end 2M文件:function[s,p]=fcircle(r) s=pi*r*r; p=2*pi*r; 主程序: [s,p]=fcircle(10) 3>>y=0;n=100; for i=1:n y=y+1/i/i; end >>y

感应电动机转差型矢量控制系统的设计

感应电动机转差型矢量控制系统的设计 1 引言 感应电动机具有结构简单、坚固耐用、转速高、容量大、运行可靠等优点。但是,由于感应电动机是一个高阶、非线性、强耦合的多变量系统,磁通和转矩耦合在一起,不能像直流电动机那样,磁通和转矩可以分别控制。所以,一直到20世纪80年代都没有获得高性能的感应电动机调速系统。近年来,随着电力电子技术、现代控制理论等相关技术的发展,使得感应电动机在可调传动中获得了越来越广泛的应用。矢量控制策略的提出,更是实现了磁通和转矩的解耦控制,其控制效果可媲美直流电动机。本文在分析感应电动机矢量控制原理的基础上,基于matlab/simulink建立了感应电动机转差型矢量控制系统仿真模型,仿真结果证明了该模型的合理性。并在此基础上进行系统的软、硬件设计,通过实验验证控制策略的正确性。 2 矢量控制的基本原理 长期以来,直流电动机具有很好的运行特性和控制特性,通过调节励磁电流和电枢电流可以很容易的实现对转矩的控制。因为它的转矩在主磁极励磁磁通保持恒定的情况下与电枢电流成线性关系,所以通过电枢电流环作用就可以快速而准确地实现转矩控制,不仅使系统具有良好稳态性能,又具有良好的动态性能。但是,由于换向器和电刷的原因,直流电动机有它固有的缺点,如制造复杂,成本高,需要定期维修,运行速度受到限制,难以在有防腐防暴特殊要求的场合下应用等等。矢量控制的设计思想是模拟直流电动机的控制特点进行交流电动机控制。基于交流电动机动态模型,通过矢量坐标变换和转子磁链定向,得到等效直流电动机的数学模型,使交流电动机的动态模型简化,并实现磁链和转矩的解耦。然后按照直流电动机模型设计控制系统,可以实现优良的静、动态性能。 转子磁链ψr仅由定子电流励磁电流ism产生,与定子电流转矩分量ist无关,而电磁转矩te正比于转子磁链和定子电流转矩分量的乘积,这充分说明了感应电动机矢量控制系统按转子磁链定向可以实现磁通和转矩的完全解耦。按转子磁链定向的矢量控制系统的关键是准确定向。但是,转子磁链的直接检测非常困难,而利用磁链模型间接估算磁链的

转差频率控制的异步电动机矢量控制系统的仿真建模

转差频率控制的异步电动机矢量控制系统 的仿真建模 *** (江南大学物联网工程学院,江苏无锡214122) 摘要:矢量控制是目前交流电动机的先进控制方式,本文对异步电动机的动态数学模型、转差频率矢量控制的基本原理和概念做了简要介绍,并结合Matlab/Simulink软件包构建了异步电动机转差频率矢量控制调速系统的仿真模型,并进行了试验验证和仿真结果显示,同时对不同参数下的仿真结果进行了对比分析。该方法简单、控制精度高,能较好地分析交流异步电动机调速系统的各项性能。 关键词:转差频率;交流异步电动机;矢量控制;Matlab Modeling and Simulation of induction motor vector control system Based on Frequency control Luxiao (School of Communication and Control, Jiangnan University, Wuxi, Jiangsu 214036,China) Abstract: Vector control is an advanced AC motor control, this paper dynamic mathematical model of induction motor, slip frequency vector control of the basic principles and concepts are briefly introduced, and combined with Matlab / Simulink software package ,give the slip frequency vector Control System of the simulation model of the induction motor .Showed the simulation results, and simulation results under different parameters were compared. The method is simple, high control precision, can better analyze the AC induction motor drive system of the performance. Keywords: AC asynchronism motor; vector control; modeling and simulation; Matlab; 引言: 由于交流异步电动机属于一个高阶、非线性、多变量、强耦合系统。数学模型比较复杂,将其简化成单变量线性系统进行控制,达不到理想性能。为了实现高动态性能,提出了矢量控制的方法。所谓矢量控制就是采用坐标变换的方法,以产生相同的旋转磁势和变换后功率不变为准则,建立三相交流绕组、两相交流绕组和旋转的直流绕组三者之间的等效关系,从而求出异步电动机绕组等效的直流电机模型,以便按照对直流电机的控制方法对异步电动机进行控制。因此,它可以实现对电机电磁转矩的动态控制,优化调速系统的性能。 Matlab是一种面向工程计算的高级语言,其Simulink环境是一种优秀的系统仿真工具软件,使用它可以大大提高系统仿真的效率和可靠性。本文在此基础上构造了一个矢量控制的交流电机矢量控制调速系统,包含了给定、PI调节器、函数运算、二相/三相坐标变换、PWM脉冲发生器等环节,并给出了仿真结果。 1.异步电动机的动态数学模型 异步电动机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。在研究异步电动机的多变量非线性数学模型时,常作如下的假设: 1)忽略空间谐波,设三相绕组对称,在空间中互差120°电角度,所产生的磁动势沿

矢量控制学习心得体会

矢量控制学习心得体会 这学期跟着严老师学习了运动控制这门课程,加深了对电机拖动在实例中的运用,而矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 异步电动机的动态数学模型是一个高阶、非线性、强耦合的多变量系统,虽然通过坐标变换可以使之降阶并简化,但并没有改变其非线性、多变量的本质。因此,需要异步电动机调速系统具有高动态性能时,必须面向这样一个动态模型。按转子磁链定向的矢量控制系统便是其中一种。异步电动机经过坐标变换可以等效成直流电动机,那么,模仿直流电动机的控制策略,得到直流电动机的控制量,经过相应的坐标反变换,就能够控制异步电动机了。由于进行坐标变换的是电流的空间矢量,所以这样通过坐标变换实现的控制系统就叫作矢量控制系统,简称VC系统。在设计矢量控制系统时,可以认为,在控制器后面引入的反旋转变换器VR-1与电机内部的旋转变换环节VR抵消,2/3变换器与电机内部的3/2变换环节抵消,如果再忽略变频器中可能产生的滞后,则图6-53中虚线框内的部分可以完全删去,剩下的就是直流调速系统了。可以想象,这样的矢量控制交流变压变频调速系统在静、动态性能上完全能够与直流调速系统相媲美。 矢量变换包括三相/两相变换和同步旋转变换。在进行两相同步旋转坐标变换时,只规定了d,q两轴的相互垂直关系和与定子频率同步的旋转速度,并未规定两轴与电机旋转磁场的相对位置,对此是有选择余地的。按照图6-53的矢量控制系统原理结构图模仿直流调速系统进行控制时,可设置磁链调节器AψR 和转速调节器ASR分别控制ψr和ω,如图6-55所示。为了使两个子系统完全解耦,除了坐标变换以外,还应设法抵消转子磁链ψr对电磁转矩T e的影响。比较直观的办法是,把ASR的输出信号除以ψr,当控制器的坐标反变换与电机中的坐标变换对消,且变频器的滞后作用可以忽略时,此处的(÷ψr)便可与电

基于稳态模型的转差频率控制的交流调速系统的仿真与设计

运动控制系统课程设计 题目: 基于稳态模型的转差频率控制的交流调速系统 的仿真与设计 信息与电气工程学院 08级电气三班

一设计目的: 应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 在原理设计与仿真研究的基础上,应用PROTEL进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础 二设计参数: 额定输出功率17KW; 定子绕组额定线电压380V; 定子绕组额定相电流25A; 定子绕组每相电阻0.1欧姆; 定子绕组接线形式Y; 转子额定转速1430rpm; 转子形式:鼠笼式; 转子每相折算电阻:1欧姆; 转子折算后额定电流50A; 额定功率因数:0.75; 电机机电时间常数1S; 电枢允许过载系数1.5; 环境条件: 电网额定电压:380/220V; 电网电压波动10%; 环境温度:-40~+40摄氏度; 环境相对湿度:10~90%.

控制系统性能指标: 转差率:3%; 调速范围:D =20; 电流超调量小于等于5%; 空载起动到额定转速时的转速超调量小于等于30%; 稳速精度:0.03. 三 设计原理: 1 转差频率控制的基本概念 本文主要介绍异步电动机的转差频率控制方式,在该基础上进一步介绍转差频率间接矢量控制方式。 由电力拖动的基本方程式: e L p J d T T n dt ω-= (1-1) 根据基本运动方程式,控制电磁转矩e T 就能控制d dt ω 。因此,归根结底,控制调速系统的动态性能就是控制转矩的能力。 图1.1异步电动机稳态等效电路和感应电动势 电磁转矩关系式:

MATLAB控制系统与仿真设计

MATLAB控制系统与仿真 课 程 设 计 报 告 院(系):电气与控制工程学院 专业班级:测控技术与仪器1301班 姓名:吴凯 学号:1306070127

指导教师:杨洁昝宏洋 基于MATLAB的PID恒温控制器 本论文以温度控制系统为研究对象设计一个PID控制器。PID控制是迄今为止最通用的控制方法,大多数反馈回路用该方法或其较小的变形来控制。PID控制器(亦称调节器)及其改进型因此成为工业过程控制中最常见的控制器(至今在全世界过程控制中用的84%仍是纯PID调节器,若改进型包含在内则超过90%)。在PID控制器的设计中,参数整定是最为重要的,随着计算机技术的迅速发展,对PID参数的整定大多借助于一些先进的软件,例如目前得到广泛应用的MATLAB仿真系统。本设计就是借助此软件主要运用Relay-feedback法,线上综合法和系统辨识法来研究PID控制器的设计方法,设计一个温控系统的PID控制器,并通过MATLAB中的虚拟示波器观察系统完善后在阶跃信号下的输出波形。 关键词:PID参数整定;PID控制器;MATLAB仿真。 Design of PID Controller based on MATLAB Abstract This paper regards temperature control system as the research object to design a pid controller. Pid control is the most common control method up until now; the great majority feedback loop is controlled by this method or its small deformation. Pid controller (claim regulator also) and its second generation so become the most common controllers in the industry process control (so far, about 84% of the controller being used is the pure pid controller, it’ll exceed 90% if the second generation included). Pid parameter setting is most important in pid controller designing, and with the rapid development of the computer technology, it mostly recurs to some advanced software, for example, mat lab simulation software widely used now. this design is to apply that soft mainly use Relay feedback law and synthetic method on the line to study pid

转差频率控制地异步电动机

转差频率控制的异步电动机矢量控制系统仿真实训报告二级学院 专业电气工程及其自动化 班级 指导教师 2014年6月

摘要 矢量变换控制技术的诞生和发展奠定了现代交流调速系统高性能化的基础。交流电动机是个多变量、非线性、强耦合的被控对象,采用参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程,使交流调速系统的动态性能得到了显著的改善和提高,从而使交流调速取代直流调速成为可能。目前对调速性能要求较高的生产工艺已较多地采用了矢量控制型的变频调速装置。实践证明,采用矢量控制的交流调速系统的优越性高于直流调速系统。 本文基于MATLAB 对异步电动机转差频率控制调速系统进行仿真研究。首先分析了异步电动机转差频率控制技术的主要控制方法、基本组成与工作原理。之后对异步电机的动态模型做了分析,进一步介绍了异步电机的坐标变换,对异步电机转差频率矢量控制系统的基本原理进行了阐述,通过仿真工作,证明了其可行性。最后,通过对仿真结果进行分析,归纳出如下结论:单纯的转差频率控制带载能力差,应用转差频率矢量控制可增强电机对转矩的调节能力且无需电压补偿。 关键词:异步电动机矢量控制转差角频率 MATLAB

目录 一、转差频率控制的异步电动机矢量控制调速系统 (4) 1.矢量控制概述 (4) 2.转差频率控制 (4) 3.转差频率矢量控制系统组成 (5) 4.转差频率矢量控制系统工作原理 (5) 二、基于Simulink的转差频率矢量控制系统仿真 (7) 1.仿真模型的建立 (7) 2.主电路模块 (7) 3.转速调节器(ASR)模块 (7) 4.函数运算模块 (8) 5.坐标变换模块2r/3s (9) 6.转差频率矢量控制系统仿真参数设置 (9) 7. 转差频率矢量控制系统仿真模型图 (10) 三、仿真结果及分析 (11) 1.仿真波形图 (11) 2.仿真结果分析 (14) 四、总结 (15) 五、参考文献 (16)

转差频率控制的异步电动机矢量控制系统仿真

目录 转差频率控制的异步电动机矢量控制系统仿真 (1) 引言 (1) 1 转差频率矢量控制概述 (1) 2 转差频率控制的基本原理 (3) 2.1 控制原理叙述 (3) 2.2 转差频率控制系统组成 (6) 3转差频率矢量控制系统构建 (7) 4 转差频率矢量控制调速系统仿真和分析 (8) 4.1 仿真模型的建立 (8) 4.1.1转速调节器模块 (8) 4.1.2 函数运算模块 (9) 4.1.3 坐标变换模块 (9) 4.1.4电动机转差频率矢量控制系统的仿真模型 (10) 4.2仿真条件 (11) 4.3仿真结果 (11) 5结语 (14) 参考文献 (15)

转差频率控制的异步电动机矢量控 制系统仿真 引言 电动机调速是电动机应用系统的关键环节。在19世纪,高性能的可调速传动控制大多采用直流电动机。但直流电动机在结构上存在难以克服的缺点,即存在电刷和机械换向器,使得直流电动机事故率高,维修工作量大,容量受到换向条件的制约,而交流电动机结构简单,造价小,坚固耐用,事故率低,容易维护,因此20世纪80年代以后,,交流调速技术开始迅速发展,并陆续出现了一些先进可靠的交流调速技术,首先是变压变频调速系统(VVVF),后来出现了转差频率矢量控制,无速度传感中矢量控制和直接转矩控制(DTC)等。其中,转差频率矢量控制系统结构简单且易于实现,控制精度高,具在良好的控制性能,因此,早期的矢量控制通用变频器上采用基于转差频率控制的矢量控制方式。基于此,本文在Matlab/Simulink环境下对转差频率矢量控制系统进行了仿真研究。 1转差频率矢量控制概述 由于异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。上世纪70年代西门子工程师F.Blaschke首先提出异步电机矢量控制理论来解决交流电机转矩控制问题。矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。简单的说,矢量控制就是将磁链与转矩解耦,

matlab控制系统仿真课程设计

课程设计报告 题目PID控制器应用 课程名称控制系统仿真院部名称机电工程学院专业 班级 学生姓名 学号 课程设计地点 课程设计学时 指导教师 金陵科技学院教务处制成绩

一、课程设计应达到的目的 应用所学的自动控制基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB软件上建立控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 二、课程设计题目及要求 1.单回路控制系统的设计及仿真。 2.串级控制系统的设计及仿真。 3.反馈前馈控制系统的设计及仿真。 4.采用Smith 补偿器克服纯滞后的控制系统的设计及仿真。 三、课程设计的内容与步骤 (1).单回路控制系统的设计及仿真。 (a)已知被控对象传函W(s) = 1 / (s2 +20s + 1)。 (b)画出单回路控制系统的方框图。 (c)用MatLab的Simulink画出该系统。 (d)选PID调节器的参数使系统的控制性能较好,并画出相应的单位阶约响应

曲线。注明所用PID调节器公式。PID调节器公式Wc(s)=50(5s+1)/(3s+1) 给定值为单位阶跃响应幅值为3。 有积分作用单回路控制系统 无积分作用单回路控制系统

大比例作用单回路控制系统 (e)修改调节器的参数,观察系统的稳定性或单位阶约响应曲线,理解控制器参数对系统的稳定性及控制性能的影响? 答:由上图分别可以看出无积分作用和大比例积分作用下的系数响应曲线,这两个PID调节的响应曲线均不如前面的理想。增大比例系数将加快系统的响应,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏;增大积分时间有利于减小超调,减小振荡,使系统的稳定性增加,但是系统静差消除时间变长,加入微分环节,有利于加快系统的响应速度,使系统超调量减小,稳定性增加。 (2).串级控制系统的设计及仿真。 (a)已知主被控对象传函W 01(s) = 1 / (100s + 1),副被控对象传函W 02 (s) = 1 / (10s + 1),副环干扰通道传函W d (s) = 1/(s2 +20s + 1)。 (b)画出串级控制系统方框图及相同控制对象下的单回路控制系统的方框图。(c)用MatLab的Simulink画出上述两系统。

基于Matlab转差频率控制的矢量控制系统的仿真

1转差频率矢量控制系统...................................... - 0 - 2.1 控制原理叙述........................................ - 3 - 2.2 转差频率控制系统组成................................ - 5 - 3、转差频率矢量控制系统构建................................. - 6 - 4.2模型参数............................................ - 8 - 概述: 常用的电机变频调速控制方法有电压频率协调控制(即v/F比为常数)、转差频率控制、矢量控制以及直接转矩控制等。其中,矢量控制是目前交流电动机较先进的一种控制方式。它又有基于转差频率控制的、无速度传感器和有速度传感器等多种矢量控制方式。其中基于转差频率控制的矢量控制方式是在进行U /f恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对输出频率f进行控制的。采用这种控制方法可以使调速系统消除动态过程中转矩电流的波动,从而在一定程度上改善了系统的静态和动态性能,同时它又具有比其它矢量控制方法简便、结构简单、控制精度高等特点。 Simulink仿真系统是Matlab最重要的组件之一,系统提供了标准的模型库,能够帮助用户在此基础上创建新的模型库,描述、模拟、评价和细化系统,从而达到系统分析的目的。在此利用Matlab/Simulink软件构建了转差频率矢量控制的异步电机调速系统仿真模型,并对此仿真模型进行了实验分析。 矢量控制是目前交流电动机的先进控制方式,一般将含有矢量交换的交流电动机控制都称为矢量控制,实际上只有建立在等效直流电动机模型上,并按转子磁场准确定向地控制,电动机才能获得最优的动态性能。转差频率矢量控制系统结构简单且易于实现,控制精度高,具有良好的控制性能、因此,早起的矢量控制通用变频器上采用基于转差频率控制的矢量控制方式。基于此,本文在Mtalab/Simulink环境下对转差频率矢量控制系统进行了仿真研究。 1转差频率矢量控制系统 由于异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。转差频率矢量控制是按转子磁链定向的间接矢量控制系统,不需要进行复杂的磁

《控制系统MATLAB仿真》实验讲义88

《自动控制原理实验》 目录 第一部分实验箱的使用 第二部分经典控制实验 第一章基本实验 实验一典型环节及其阶跃响应 实验二二阶系统阶跃响应 实验三控制系统的稳定性分析 实验四控制系统的频率特性 实验五连续控制系统的串联校正 实验六数字PID控制实验 第二章综合实验 第三部现代控制理论实验 第一章基本实验 第二章综合实验

实验一 典型环节及其阶跃响应 预习要求: 1、复习运算放大器的工作原理;了解采用A μ741运算放大器构成各种运算电路的方法; 2、了解比例控制、微分控制、积分控制的物理意义。 一、实验目的 1、学习自动控制系统典型环节的电模拟方法,了解电路参数对环节特性的影响。 2、学习典型环节阶跃响应的测量方法; 3、学会根据阶跃响应曲线计算确定典型环节的传递函数。 二、实验内容 1、比例环节 电路模拟: 图1-1 传递函数: 2211 ()()()U s R G s U s R ==- 2、惯性环节 电路模拟: 图1-2 传递函数: 22112()/()()11 U s R R K G s U s Ts R Cs = =-=- ++ 3、积分环节 电路模拟: A/D1 D/A1 A/D1

图1-3 传递函数: 21()11 ()()U s G s U s Ts RCs = =-=- 4、微分环节 电路模拟: 图1-4 传递函数: 211() ()() U s G s s RC s U s τ= =-=- 5、比例微分 电路模拟: 图1-5 传递函数: 222111 ()()(1)(1)()U s R G s K s R C s U s R τ= =-+=-+ 6、比例积分 电路模拟: 图1-6 A/D1 2 R D/A1 A/D1 A/D1 A/D1 C

基于单片机转差频率的交流调速系统

运动控制系统 课程设计 题 目:基于单片机转差频率的交流调速系统 专业班级: 姓 名: 学 号: 指导教师:

目录 1引言 (3) 2设计方案 (4) 2.1调速系统总体方案设计 (4) 2.2转差频率控制转速的基本原理 (5) 3硬件设计 (6) 3.1硬件清单列表 (6) 3.2重要元件的功能 (7) 3.2.1单片机AT89C51 (7) 3.2.2译码器 (8) 3.2.3可编程计数/定时芯片8253 (8) 3.2.4大规模专用集成电路HEF4752 (9) 3.2.5可编程的并行I/O接口芯片8255 (10) 3.2.6 A/D转换器ADC0809 (11) 3.2.7通用可编程键盘8279 (11) 3.3系统主电路图 (12) 3.4 转差调节器的设计 (12) 3.5 PWM控制信号的产生及变换器的设计 (14) 3.6 光电隔离及驱动电路设计 (14) 3.7 电动机的转速测量电路的设计 (15) 3.8 电动机的电流、电压测量电路的设计 (16) 3.9 键盘显示电路的设计 (17) 3.10 故障检测及保护电路设计 (18) 3.11参数计算 (19) 3.11.1大功率开关管 (19) 3.11.2三相整流桥 (19) 3.11.3 LC滤波器 (20) 3.11.4 直流侧阻容吸收电路 (20) 3.11.5 大功率晶体管阻容吸收电路 (21) 4软件设计 (21) 4.1 程序框图及其介绍 (21) 4.1.1系统主程序 (21) 4.1.2 转速调节程序 (23) 4.2 部分子程序 (24) 4.2.1 0809的编程 (24) 4.2.2 8253编程 (24) 4.2.3 8255编程 (25) 心得体会 (26) 参考文献 (27)

转差频率矢量控制的电机调速系统设计与研究

转差频率矢量控制的电机调速系统设计与研 究 时间:2010-12-24 13:52:37来源:现代电子技术作者:朱军,郝润科,黄少瑞,高渊炯,朱 政 摘要:鉴于直接转子磁场定向矢量控制系统较为复杂、磁链反馈信号不易获取等缺点,而转差频率矢量控制方法是按转子磁链定向的间接矢量控制系统,不需要进行磁通检测和坐标变换,并具有控制简单、控制精度高、具有良好的动、静态性能等特点。在分析其控制原理的基础上,应用Matlab/Simulink软件构建了转差频率矢量控制的异步电机调速系统仿真模型,并通过各模块闽的参数配合调节与优化,对其进行了仿真分析。仿真结果验证了,采用转差频率矢量控制的调速系统具有良好的控制性能。 关键词:转差频率;矢量控制;Matlab/Simulink;调速系统 0 引言 常用的电机变频调速控制方法有电压频率协调控制(即v/F比为常数)、转差频率控制、矢量控制以及直接转矩控制等。其中,矢量控制是目前交流电动机较先进的一种控制方式。它又有基于转差频率控制的、无速度传感器和有速度传感器等多种矢量控制方式。其中基于转差频率控制的矢量控制方式是在进行U/f恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对输出频率f进行控制的。采用这种控制方法可以使调速系统消除动态过程中转矩电流的波动,从而在一定程度上改善了系统的静态和动态性能,同时它又具有比其它矢量控制方法简便、结构简单、控制精度高等特点。 Simulink仿真系统是Matlab最重要的组件之一,系统提供了标准的模型库,能够帮助用户在此基础上创建新的模型库,描述、模拟、评价和细化系统,从而达到系统分析的目的。在此利用Matlab/Simulink软件构建了转差频率矢量控制的异步电机调速系统仿真模型,并对此仿真模型进行了实验分析。 1 转差频率矢量控制系统 1.1 数学模型 转差频率矢量控制是按转子磁链定向的间接矢量控制系统,不需要进行复杂的磁通检测和繁琐的坐标变换,只要在保证转子磁链大小不变的前提下,通过检测定子电流和旋转磁场角速度,通过两相同步旋转坐标系(M-T坐标系)上的数学模型运算就可以实现间接的磁场定向控制。其控制的基本方程式如下: 电压方程:

转差频率控制的变频调速系统设计

《控制系统》课程设计课题:转差频率控制的变频调速系统 系别:电气与电子工程系 专业:电气工程及其自动化 姓名:黄敬荣、李涛、王洪远 学号:1214061(06、13、26) 指导教师:李晓辉、王明杰、刑广成 河南城建学院 2010年1月15日

成绩评定· 一、指导教师评语(根据学生设计报告质量、答辩情况及其平时表现综合评定)。 二、评分(按下表要求评定) 课程设计成绩评定

一、设计目的: 通过对一个使用控制系统的设计,综合运用科学理论知识,提高工程意识和实践技能,使学生获得控制技术工程的基本训练,培养学生理论联系实际、分析解决实际问题的初步应用能力。 二、设计要求: 设计一个转差频率控制的变频调速系统,确定系统设计方案,画出系统框图,完成元器件的选择和调节器参数整定。 三、总体设计: 变频调速技术的出现使频率成交流电动机采用变频起动更能显著改善交流电动机的起动性能,大幅降低电动机的起动电流。增加起动转矩,转差频率控制异步电动机变频调速是公认的一项性能较优越的控制策略。目本文通过分析转差频率控制调速系统原理,将调速系统模块化,达到调速要求。 1.转差频率控制原理: 当稳态气隙磁通恒定时.异步电机的机械特性参数表达式为: 当实际转差额定空载转速相比很小时(),,可以从式中约去,这样式(1)可以简化为:

从式(2)中可得,当转差频率较小且磁通恒定时,电机的电磁转矩T与成正比。这时只要控制转差频率就能控制转矩T,从而实现对 转速的控制。 若要使转差频率较小,只要有提供异步电动机的实际转速反馈即可实现。若要保持为恒值,即保持励磁电流恒定,而励磁电流与定子电流 有如下关系, 因此若,按照上述规律变化,则恒定,即恒定。f 转差频率控制策略是:利用测速环节得到转速与转速给定、比较,限制输出频率,使转差率 (即)不太大;控制定子电流,使得励磁电流保持恒定;这时控制实现调速。系统原理图如图l所示。 图l 转差频率控制变频调速系统原理图

MATLAB控制系统仿真作业1

一、 控制系统的模型与转换 1. 请将下面的传递函数模型输入到matlab 环境。 ]52)1)[(2(24)(322 33++++++=s s s s s s s G ) 99.02.0)(1(568 .0)(22+--+=z z z z z H ,T=0.1s >> s=tf('s'); G=(s^3+4*s+2)/(s^3*(s^2+2)*((s^2+1)^3+2*s+5)); G Transfer function: s^3 + 4 s + 2 ------------------------------------------------------ s^11 + 5 s^9 + 9 s^7 + 2 s^6 + 12 s^5 + 4 s^4 + 12 s^3 >> num=[1 0 0.56]; den=conv([1 -1],[1 -0.2 0.99]); H=tf(num,den,'Ts',0.1) Transfer function: z^2 + 0.56 ----------------------------- z^3 - 1.2 z^2 + 1.19 z - 0.99 2. 请将下面的零极点模型输入到matlab 环境。请求出上述模型的零极点,并绘制其位置。 )1)(6)(5()1)(1(8)(22 +++-+++=s s s s j s j s s G ) 2.8() 6.2)(2.3()(1 511-++=----z z z z z H ,T=0.05s >>z=[-1-j -1+j]; p=[0 0 -5 -6 -j j]; G=zpk(z,p,8) Zero/pole/gain: 8 (s^2 + 2s + 2) -------------------------- s^2 (s+5) (s+6) (s^2 + 1) >>pzmap(G)

基于MATLAB的自动控制系统仿真

摘要 自动控制原理理论性强,现实模型在实验室较难建立,因此利用SIMULINK进行仿真实验,可以加深我们学生对课程的理解,调动我们学习的积极性,同时大大提高了我们深入思考问题的能力和创新能力。本文针对自动控制系统的设计很大程度上还依赖于实际系统的反复实验、调整的普遍现象,结合具体的设计实例,介绍了利用较先进的MATLAB软件中的SIMULINK仿真工具来实现对自动控制系统建模、分析与设计、仿真的方法。它能够直观、快速地分析系统的动态性能、和稳态性能。并且能够灵活的改变系统的结构和参数,通过快速、直观的仿真达到系统的优化设计。关键词:MATLAB;自动控制;系统仿真

Abstract Strong theory of automatic control theory, the reality is more difficult to establish in the laboratory model, thus using the SIMULINK simulation experiment, students can deepen our understanding of the course, to mobilize the enthusiasm of our study, while greatly increasing our ability to think deeply and Innovationcapacity.In this paper, the design of automatic control system is still largely dependent on the actual system of repeated experiments, adjustment of the universal phenomenon, with specific design example, introduced the use of more advanced software in the MATLAB SIMULINK simulation tools to achieve the automatic control systemModeling, Analysis and design, simulation methods.It can intuitively and quickly analyze the dynamic performance, and steady-state performance. Keywords:MATLAB; Automatic control; System simulation

相关文档
最新文档