高考文科数学试题分类汇编6:不等 式
高考文科数学解析分类汇编不等式逐题详解

2012年高考文科数学解析分类汇编:不等式一、选择题1 .(2012年高考(重庆文))已知22log 3log 3a =+,22log 9log 3b =-,3log 2c =则a,b,c 的大小关系是( )A .a b c =<B .a b c =>C .a b c <<D .a b c >>2 .(2012年高考(重庆文))不等式102x x -<+ 的解集是为( ) A .(1,)+∞B .(,2)-∞-C .(-2,1)D .(,2)-∞-∪(1,)+∞3 .(2012年高考(浙江文))若正数x,y 满足x+3y=5xy,则3x+4y 的最小值是( )A .245B .285C .5D .6 4 .(2012年高考(天津文))已知 1.20.2512,(),2log 22a b c -===,则,,a b c 的大小关系为( )A .c b a <<B .c a b <<C .b a c <<D .b c a <<5 .(2012年高考(天津文))设变量,x y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数32z x y =-的最小值为( )A .5-B .4-C .2-D .36 .(2012年高考(四川文))若变量,x y 满足约束条件3,212,21200x y x y x y x y -≥-⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩,则34z x y =+的最大值是( )A .12B .26C .28D .337 .(2012年高考(陕西文))小王从甲地到乙地的时速分别为a 和b(a<b),其全程的平均时速为v,则( )A .a<v<abB .v=abC .ab <v<2a b +D .v=2a b+ 8 .(2012年高考(山东文))设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y=-的取值范围是( )A .3[,6]2-B .3[,1]2--C .[1,6]-D .3[6,]2-9 .(2012年高考(辽宁文))设变量x,y 满足10,020,015,x y x y y -≤⎧⎪≤+≤⎨⎪≤≤⎩则2x +3y 的最大值为( )A .20B .35C .45D .5510.(2012年高考(课标文))当0<x ≤12时,4log xa x <,则a 的取值范围是( )A .(0,22)B .(22,1)C .(1,2)D .(2,2) 11.(2012年高考(课标文))已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z x y =-+的取值范围是( ) A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)12.(2012年高考(湖南文))设a >b >1,0c < ,给出下列三个结论:①c a >c b;② c a <cb ; ③ log ()log ()b a ac b c ->-, 其中所有的正确结论的序号是__.[中*国教育@︿出~版网、]( ) A .①B .① ②C .② ③D .① ②③13.(2012年高考(广东文))(线性规划)已知变量x 、y 满足约束条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y=+的最小值为( ) A .3B .1C .5-D .6-14.(2012年高考(福建文))若直线2y x =上存在点(,)x y 满足约束条件30230x y x y x m+-≤⎧⎪⎪--≤⎨⎪≥⎪⎩,则实数m 的最大值为( ) A .-1B .1C .32D .215.(2012年高考(大纲文))已知ln x π=,5log 2y =,12z e-=,则( )A .x y z <<B .z x y <<C .z y x <<D .y z x <<16.(2012年高考(安徽文))若,x y 满足约束条件:02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩;则x y -的最小值是( )A .3-B .0C .32D .3二、填空题17.(2012年高考(浙江文))设z=x+2y,其中实数x,y 满足102000x y x y x y -+≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩, 则z 的取值范围是_________.18.(2012年高考(四川文))设,a b 为正实数,现有下列命题:①若221a b -=,则1a b -<; ②若111b a-=,则1a b -<; ③若1a b =,则||1a b -<; ④若33||1a b -=,则||1a b -<.其中的真命题有____________.(写出所有真命题的编号)19.(2012年高考(上海文))满足约束条件2||2||≤+y x 的目标函数x y z -=的最小值是_________ .20.(2012年高考(陕西文))观察下列不等式213122+<231151233++<,222111712344+++< 照此规律,第五个...不等式为。
各省历年高考文科数学试题及答案汇编六不等式与线性规划

各省历年高考文科数学试题及答案汇编六不等式和线规划安徽省(试题)1、11.(5分)(2008安徽)若A 为不等式组表示的平面区域,则当a 从﹣2连续变化到1时,动直线x+y=a 扫过A 中的那部分区域的面积为( )A .B .1C .D .22、3.(5分)(2009安徽)不等式组,所表示的平面区域的面积等于( )A .B .C .D .3、8.(5分)(2010安徽)设x,y 满足约束条件则目标函数z=x+y 的最大值是A3 B 4 C 6 )84、6.(5分)(2011安徽)设变量x ,y 满足,则x+2y 的最大值和最小值分别为( )A .1,﹣1B .2,﹣2C .1,﹣2D .2,﹣15、8.(5分)(2012安徽)若x ,y 满足约束条件,则z=x ﹣y 的最小值是( ) A . ﹣3 B . 0 C .D . 3 6、12.(5分)(2013安徽)若非负数变量x 、y 满足约束条件,则x+y 的最大值为 . 7、13.(5分)(2014安徽)不等式组表示的平面区域的面积为 . 8、5.(5分)(2015安徽)已知x ,y 满足约束条件,则z=﹣2x+y 的最大值是( )260,260,0,x y x y y +-≥⎧⎪+-≤⎨⎪≥⎩A . ﹣1B . ﹣2C . ﹣5D . 1北京市(试题) 1、6.(5分)(2008北京)若实数x ,y 满足则z=3x+2y 的最小值是( )A .0B .1C .D .92、8.(5分)(2009北京)设D 是正△P 1P 2P 3及其内部的点构成的集合,点P 0是△P 1P 2P 3的中心,若集合S={P|P ∈D ,|PP 0|≤|PP i |,i=1,2,3},则集合S 表示的平面区域是( )A .三角形区域B .四边形区域C .五边形区域D .六边形区域3、11.(5分)(2009北京)(文)若实数x ,y 满足则s=x+y的最大值为. 4、12.(5分)(2013北京)设D 为不等式组表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为 .5、(13)若x 、y 满足11010y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,则z y =+的最小值为 .6、13.(5分)(2015北京)如图,△ABC 及其内部的点组成的集合记为D ,P (x ,y )为D 中任意一点,则z=2x+3y 的最大值为 .7、7.(5分)(2016北京)已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x ﹣y 的最大值为( )A.﹣1 B.3 C.7 D.88、4.(5分)(2017北京)若,x y满足3,2,,xx yy x≤⎧⎪+≥⎨⎪≤⎩则2x y+的最大值为A 1B 3C 5D 9福建省(试题)1、10.(5分)(2008福建)若实数x、y满足则的取值范围是()A.(0,2)B.(0,2)C.(2,+∞)D.[,+∞)2、9.(5分)(2009福建)在平面直角坐标系中,若不等式组(a为常数)所表示的平面区域的面积等于2,则a的值为()A.﹣5 B.1 C.2 D.33、10.(5分)(2012福建)若直线y=2x上存在点(x,y)满足约束条件,则实数m的最大值为()A.﹣1 B.1C.D.24、5.(5分)(2010福建)设x,y∈R且,则z=x+2y的最小值等于()A.2 B.3 C.5 D.95、6.(5分)(2013福建)若变量x,y满足约束条件,则z=2x+y的最大值和最小值分别为()A.4和3 B.4和2 C.3和2 D.2和06、11.(5分)(2014福建)已知圆C:(x﹣a)2+(y﹣b)2=1,设平面区域Ω=,若圆心C∈Ω,且圆C与x轴相切,则a2+b2的最大值为()A.5B.29 C.37 D.497、10.(5分)(2015福建)变量x,y满足约束条件,若z=2x﹣y的最大值为2,则实数m等于()A.﹣2 B.﹣1 C.1D.2广东省(试题)1、12.(5分)(2008广东)若变量x,y满足,则z=3x+2y的最大值是.2、19.(12分)(2010广东)某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营状中至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?3、6.(5分)(2011广东)已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为,则z=•的最大值为()A.3 B.4 C.3 D.44、5.(5分)(2012广东)已知变量x,y满足约束条件,则z=x+2y的最小值为()A.3B.1C.﹣5 D.﹣65、13.(5分)(2013广东)已知变量x,y满足约束条件,则z=x+y的最大值是.6、4.(5分)(2014广东)若变量x,y满足约束条件,则z=2x+y的最大值等于()A.7B.8C.10 D.117、4.(5分)(2015广东)若变量x,y满足约束条件,则z=2x+3y的最大值为()A.2 B.5 C.8 D.10海南省(试题)1、10.(5分)(2008海南)点P(x,y)在直线4x+3y=0上,且x,y满足﹣14≤x﹣y≤7,则点P到坐标原点距离的取值范围是()A.[0,5] B.[0,10] C.[5,10] D.[5,15]2、6.(5分)(2009宁夏)设x,y满足,则z=x+y()A.有最小值2,最大值3 B.有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值3、11.(5分)(2010新课标)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)湖北省(试题)1、8.(5分)(2009湖北)在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为()A.2000元B.2200元C.2400元D.2800元2、12.(5分)(2010湖北)已知z=2x﹣y,式中变量x,y满足约束条件,则z 的最大值为.3、8.(5分)(2011湖北)直线2x+y﹣10=0与不等式组表示的平面区域的公共点有()A.0个B.1个C.2个D.无数个4、14.(5分)(2012湖北)若变量x,y满足约束条件则目标函数z=2x+3y的最小值是.5、9.某旅行社租用A、B两种型号的客车安排900名客人旅行,A、B两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆.则租金最少为()A.31200元B.36000元C.36800元D.38400元6、4.(5分)(2014湖北)若变量x,y满足约束条件,则2x+y的最大值是()A.2B.4C.7D.87、12.(3分)(2015湖北)设变量x,y满足约束条件,则3x+y的最大值为.湖南省(试题)1、3.(5分)(2008湖南)已条变量x,y满足,则x+y的最小值是()A.4 B.3 C.2 D.12、14.(5分)(2011湖南)设m>1,在约束条件下,目标函数z=x+5y的最大值为4,则m的值为.3、13.(5分)(2014湖南)若变量x,y满足约束条件,则z=2x+y的最大值为.4、4.(5分)(2015湖南)若变量x,y满足约束条件,则z=2x﹣y的最小值为()A.﹣1 B.0 C.1 D.2辽宁省(试题)1、9.(5分)(2008辽宁)已知变量x,y满足约束条件则z=2x+y的最大值为()A.4 B.2 C.1 D.﹣42、15.(5分)(2010•辽宁)已知﹣1<x+y<4且2<x﹣y<3,则z=2x﹣3y的取值范围是.(答案用区间表示)3、9.(5分)(2012辽宁)设变量x,y满足,则2x+3y的最大值为()A.20 B.35 C.45 D.554、14.(5分)(2014辽宁)已知x,y满足约束条件,则目标函数z=3x+4y的最大值为.山东省(试题)(2008山东)设x,y满足约束条件则z=2x+y的最大值为.(4分)1、16.2、16.(4分)(2009山东)某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为元.3、7.(5分)(2011山东)设变量x,y满足约束条件,则目标函数z=2x+3y+1的最大值为()A.11 B.10 C.9 D.8.54、6.(5分)(2012山东)设变量x,y满足约束条件,则目标函数z=3x﹣y 的取值范围是()A.B.C.[﹣1,6] D.5、14.(4分)(2013山东)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线|OM|的最小值为.6、10.(5分)(2014山东)已知x,y满足约束条件,当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5B.4C.D.27、12.(5分)(2015山东)若x,y满足约束条件,则z=x+3y的最大值为.8、4.(5分)(2016山东)若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.129、3.(5分)(2017山东)已知x,y满足约束条件则z=x+2y的最大值是()A.﹣3 B.﹣1 C.1 D.310、陕西省(试题)1、14.(4分)(2009陕西)设x,y满足约束条件,则x+2y的最小值是,最大值是.2、14.(5分)(2010陕西)设x,y满足约束条件件,则目标函数z=x﹣y的最小值为.3、12.(5分)(2011陕西)如图,点(x,y)在四边形ABCD内部和边界上运动,那么2x ﹣y的最小值为.4、7. (5分)(2013陕西)若点()x,y 位于曲线y x =与2y =所围成的封闭区域,则2x y -的最小值为 ( ).A. -6B. -2C. 0D. 2 5、11.(5分)(2015陕西)某企业生产甲、乙两种产品均需用A 、B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 乙 原料限额A (吨) 3 2 12B (吨) 1 2 8A . 12万元B . 16万元C . 17万元D . 18万元上海市(试题)1、11.(4分)(2008上海)在平面直角坐标系中,点A ,B ,C 的坐标分别为(0,1),(4,2),(2,6).如果P (x ,y )是△ABC 围成的区域(含边界)上的点,那么当ω=xy 取到最大值时,点P 的坐标是 .2、7.(4分)(2009上海)已知实数x 、y 满足则目标函数z=x ﹣2y 的最小值是 .3、15.(5分)(2010上海)满足线性约束条件,的目标函数z=x+y 的最大值是( )A .1B .C .2D .34、9.(4分)(2011上海)若变量x ,y 满足条件,则z=x+y 得最大值为 .5、10.(4分)(2012上海)满足约束条件|x|+2|y|≤2的目标函数z=y ﹣x 的最小值是 .6、9. (4分)(2015上海)若x、y满足0,2,0,x yx yy-⎧⎪+⎨⎪⎩则目标函数2z x y=+的最大值为____.7、7.(4分)(2016上海)若x,y满足,则x﹣2y 的最大值为.四川省(试题)1、10.(5分)(2009四川)某企业生产甲、乙两种产品.已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨、B原料不超过18吨,那么该企业可获得最大利润是()A.12万元B.20万元C.25万元D.27万元2、8.(5分)(2010四川)某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B 产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A产品,每千克A产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天共能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为()A.甲车间加工原料10箱,乙车间加工原料60箱B.甲车间加工原料15箱,乙车间加工原料55箱C.甲车间加工原料18箱,乙车间加工原料50箱D.甲车间加工原料40箱,乙车间加工原料30箱3、10.(5分)(2011四川)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车,某天需送往A地至少72吨的货物,派用的每辆车需载满且只能送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡需配1名工人;每送一次可得利润350元,该公司合理计划当天派用甲乙卡车的车辆数,可得最大利润z=()A.4650元B.4700元C.4900元D.5000元4、8.(5分)(2012四川)若变量x,y满足约束条件,则z=3x+4y的最大值是()A.12 B.26 C.28 D.335、8.(5分)(2013四川)若变量x,y满足约束条件且z=5y﹣x的最大值为a,最小值为b,则a﹣b的值是()A.48 B.30 C.24 D.166、9.(5分)(2015四川)设实数x,y满足,则xy的最大值为()A.B.C.12 D.16天津市(试题)1、2.(5分)(2008天津)设变量x,y满足约束条件,则目标函数z=5x+y的最大值为()A.2 B.3 C.4 D.52、2.(5分)(2009天津)设变量x,y满足约束条件:,则目标函数z=2x+3y的最小值为()A.6 B.7 C.8 D.233、2.(5分)(2010天津)设变量x,y满足约束条件,则目标函数z=4x+2y的最大值为()A.12 B.10 C.8 D.24、2.(5分)(2011天津)设变量x,y满足约束条件则目标函数z=3x﹣y的最大值为()A.﹣4 B.0 C.D.45、2.(5分)(2012天津)设变量x,y满足约束条件,则目标函数z=3x﹣2y的最小值为()A.﹣5 B.﹣4 C.﹣2 D.36、2.(5分)(2013天津)设变量x,y满足约束条件,则目标函数z=y﹣2x的最小值为()A.﹣7 B.﹣4 C.1D.27、2.(5分)(2014天津)设变量x,y满足约束条件,则目标函数z=x+2y的最小值为()A.2B.3C.4D.58、2.(5分)(2015天津)设变量x,y满足约束条件则目标函数z=3x+y的最大值为()A.7 B.8 C.9 D.14浙江省(试题)1、10.(5分)(2008浙江)若a≥0,b≥0,且当时,恒有ax+by≤1,则以a,b为坐标的点P(a,b)所形成的平面区域的面积是()A.B.C.1 D.2、13.(4分)(2009浙江)若实数x,y满足不等式组,则2x+3y的最小值是.3、7.(5分)(2010浙江)若实数x,y满足不等式组合,则x+y的最大值为()A.9 B.C.1 D.4、3.(5分)(2011浙江)若实数x,y满足不等式组,则3x+4y的最小值是()A.13 B.15 C.20 D.285、14.(4分)(2012浙江)设z=x+2y,其中实数x,y满足则z的取值范围是.6、15.(4分)(2013浙江)设z=kx+y,其中实数x、y满足若z的最大值为12,则实数k= .7、12.(4分)(2014浙江)若实数x,y满足,则x+y的取值范围是.8、14.(4分)(2015浙江)已知实数x,y满足x2+y2≤1,则|2x+y﹣4|+|6﹣x﹣3y|的最大值是.9、4.(4分)(2016浙江)若平面区域,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是()A.B.C.D.重庆市(试题)1、7.(5分)(2010重庆)设变量x,y满足约束条件则z=3x﹣2y的最大值为()A.0 B.2 C.4 D.32、10.(5分)(2015重庆)若不等式组,表示的平面区域为三角形,且其面积等于,则m的值为()A.﹣3 B.1 C.D.3安徽省(答案)1、解:作出可行域,如图,则直线扫过的面积为故选C.2、解:不等式组表示的平面区域如图所示,由得交点A的坐标为(1,1).又B、C两点的坐标为(0,4),(0,).故S△ABC=(4﹣)×1=.故选C.=+ 3、解:不等式表示的区域是一个三角形,3个顶点是(3,0),(6,0),(2,2),目标函数z x y 在(6,0)取最大值6,故选C4、解:满足的平面区域如下图所示:由图可知当x=0,y=1时x+2y取最大值2当x=0,y=﹣1时x+2y取最小值﹣2故选B5、解:约束条件,表示的可行域如图,解得A(0,3),解得B(0,)、解得C(1,1);由A(0,3)、B(0,)、C(1,1);所以t=x﹣y的最大值是1﹣1=0,最小值是0﹣3=﹣3;故选A.6、解:画出可行域如图阴影部分,其中,可得A(4,0)目标函数z=x+y可以变形为y=﹣x+z,可看做斜率为﹣1的动直线,其纵截距越大z越大,由图数形结合可得当动直线过点A时,z最大=4+0=4故答案为:47、解:由不等式组作平面区域如图,由图可知A(2,0),C(0,2),联立,解得:B(8,﹣2).∴|BC|=.点A到直线x+2y﹣4=0的距离为d=.∴.故答案为:4.8、解:由已知不等式组表示的平面区域如图阴影部分,当直线y=2x+z经过A时使得z最大,由得到A(1,1),所以z的最大值为﹣2×1+1=﹣1;故选:A.北京市(答案)1、解:约束条件对应的平面区域如图示:由图可知当x=0,y=0时,目标函数Z有最小值,Z min=3x+2y=30=1故选B2、解:如图,A、B、C、D、E、F为各边三等分点,若|PP0|=|PP i|当i=1时,P点落在P1P0的垂直平分线上,又由P∈D,故P点的轨迹为ED;当i=2时,P点落在P2P0的垂直平分线上,又由P∈D,故P点的轨迹为AF;当i=3时,P点落在P3P0的垂直平分线上,又由P∈D,故P点的轨迹为BC;故满足条件集合S={P|P∈D,|PP0|≤|PP i|,i=1,2,3},则集合S表示的平面区域是六边形ABCDEF,故选D3、解:满足约束条件的可行域,如图中阴影所示,由图易得:当x=4,y=5时,s=x+y=4+5=9为最大值.故答案为:9.4、解:如图可行域为阴影部分,由其几何意义为点A(1,0)到直线2x﹣y=0距离,即为所求,由点到直线的距离公式得:d==,则区域D上的点与点(1,0)之间的距离的最小值等于.故答案为:.5、解:画出不等式组表示的平面区域,可知区域为三角形,平移直线y x z +=3可得,当直线经过两条直线1=y 与01=-+y x 的交点(0,1)时,z 取得最小值1.6、解:由z=2x+3y ,得y=,平移直线y=,由图象可知当直线y=经过点A 时,直线y=的截距最大,此时z 最大. 即A (2,1).此时z 的最大值为z=2×2+3×1=7, 故答案为:7.7、解:如图A (2,5),B (4,1).若点P (x ,y )在线段AB 上, 令z=2x ﹣y ,则平行y=2x ﹣z 当直线经过B 时截距最小,Z 取得最大值, 可得2x ﹣y 的最大值为:2×4﹣1=7. 故选:C .8、解:如图,画出可行域,2z x y=+表示斜率为12-的一组平行线,当过点()3,3C时,目标函数取得最大值max 3239z=+⨯=,故选D.福建省(答案)1、解:不等式组,当取得点(2,3)时,取得最小值为,所以答案为[,+∞),故选D.2、解:不等式组所围成的区域如图所示.∵其面积为2,∴|AC|=4,∴C的坐标为(1,4),代入ax﹣y+1=0,得a=3.故选D.3、解:由题意,,可求得交点坐标为(1,2)要使直线y=2x上存在点(x,y)满足约束条件,如图所示.可得m≤1∴实数m的最大值为1故选B.4、解:约束条件,对应的平面区域如下图示:当直线Z=x+2y过点(1,1)时,z=x+2y取最小值3,故选B.5、解:满足约束条件的可行域如下图所示在坐标系中画出可行域平移直线2x+y=0,经过点N(1,0)时,2x+y最小,最小值为:2,则目标函数z=2x+y的最小值为2.经过点M(2,0)时,2x+y最大,最大值为:4,则目标函数z=2x+y的最大值为:4.故选B.6、解:作出不等式组对应的平面区域如图:圆心为(a,b),半径为1∵圆心C∈Ω,且圆C与x轴相切,∴b=1,则a2+b2=a2+1,∴要使a2+b2的取得最大值,则只需a最大即可,由图象可知当圆心C位于B点时,a取值最大,由,解得,即B(6,1),∴当a=6,b=1时,a2+b2=36+1=37,即最大值为37,故选:C7、解:由约束条件作出可行域如图,联立,解得A(),化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线过A时,直线在y轴上的截距最小,z有最大值为,解得:m=1.故选:C.广东省(答案)1、解:画出可行域,如图所示解得B(10,20)则直线z=3x+2y过点B时z最大,所以z max=3×10+2×20=70.故答案为70.2、解:设为该儿童分别预订x个单位的午餐和y个单位的晚餐,设费用为F,则F=2.5x+4y,由题意知约束条件为:画出可行域如图:变换目标函数:当目标函数过点A,即直线6x+6y=42与6x+10y=54的交点(4,3)时,F取得最小值.即要满足营养要求,并且花费最少,应当为儿童分别预订4个单位的午餐和3个单位的晚餐.3、解:首先做出可行域,如图所示:z=•=,即y=﹣x+z做出l0:y=﹣x,将此直线平行移动,当直线y=﹣x+z经过点B时,直线在y轴上截距最大时,z有最大值.因为B(,2),所以z的最大值为4故选:B4、解:作出不等式组对应的平面区域如图:(阴影部分).由z=x+2y得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点B时,直线y=﹣的截距最小,此时z最小.由,解得,即B(﹣1,﹣2),代入目标函数z=x+2y得z=﹣1+2×(﹣2)=﹣5.即目标函数z=x+2y的最小值为﹣5.故选:C.5、解:画出可行域如图阴影部分,由得A(1,4)目标函数z=x+y可看做斜率为﹣1的动直线,其纵截距越大z越大,由图数形结合可得当动直线过点A(1,4)时,z最大=1+4=5.故答案为:5.6、解:作出不等式组对应的平面区域如图:由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B(4,2)时,直线y=﹣2x+z的截距最大,此时z最大,此时z=2×4+2=10,故选:C7、解:作出不等式对应的平面区域(阴影部分),由z=2x+3y,得y=,平移直线y=,由图象可知当直线y=经过点B时,直线y=的截距最大,此时z最大.由,解得,即B(4,﹣1).此时z的最大值为z=2×4+3×(﹣1)=8﹣3=5,故选:B.海南省答案)1、解析:因x,y满足﹣14≤x﹣y≤7,则点P(x,y)在所确定的区域内,且原点也在这个区域内.又点P(x,y)在直线4x+3y=0上,,解得A(﹣6,8).,解得B(3,﹣4).P到坐标原点的距离的最小值为0,又|AO|=10,|BO|=5,故最大值为10.∴其取值范围是[0,10].故选B.2、解析:如图作出不等式组表示的可行域,如下图所示:由于z=x+y的斜率大于2x+y=4的斜率,因此当z=x+y过点(2,0)时,z有最小值,但z没有最大值.故选B3、解:由已知条件得⇒D(0,﹣4),由z=2x﹣5y得y=,平移直线当直线经过点B(3,4)时,﹣最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,﹣最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.湖北省(答案)1、解:设需使用甲型货车x辆,乙型货车y辆,运输费用z元,根据题意,得线性约束条件求线性目标函数z=400x+300y的最小值.解得当时,z min=2200.故选B.2、解:依题意,画出可行域(如图示),则对于目标函数y=2x﹣z,当直线经过A(2,﹣1)时,z取到最大值,Z max=5.故答案为:5.3、解:画出不等式组表示的平面区域如下作出直线2x+y﹣10=0,由图得到2x+y﹣10=0与可行域只有一个公共点(5,0)故选B4、解:作出不等式组表示的平面区域,如图所示作直线L:2x+3y=0,由于z=2x+3y,则可得y=,则表示直线2x+3y﹣z=0在y轴上的截距,当z最小时,截距最小结合图形可知,当直线2x+3y﹣z=0平移到点B时,z最小由可得B(1,0),此时Z=2故答案为:25、解;先根据题意列出约束条件和目标函数,通过平移目标函数加以解决.设租用A 型车x 辆,B 型车y 辆,目标函数为z =1600x +2400y ,则约束条件为3660900,21,7,,,x y x y y x x y +⎧⎪+⎪⎨-⎪⎪∈⎩N 作出可行域,如图中阴影部分所示,可知目标函数过点(5,12)时,有最小值()min 36800.z =元 故选C6、解:满足约束条件的可行域如下图中阴影部分所示:∵目标函数Z=2x+y , ∴Z O =0,Z A =4,Z B =7,Z C =4, 故2x+y 的最大值是7, 故选:C7、解:作出不等式对应的平面区域如图, 由z=3x+y ,得y=﹣3x+z ,平移直线y=﹣3x+z ,由图象可知当直线y=﹣3x+z ,经过点C 时,直线y=﹣3x+z 的截距最大,此时z最大.由得.即C(3,1),此时z的最大值为z=3×3+1=10,故答案为:10.湖南省(答案)1、解析:如图得可行域为一个三角形,其三个顶点分别为(1,1),(1,2),(2,2),代入验证知在点(1,1)时,x+y最小值是1+1=2.故选C.2、解:满足约束条件的平面区域如下图所示:目标函数z=x+5y可看做斜率为﹣的动直线,其纵截距越大z越大,由可得A点(,)当x=,y=时,目标函数z=x+5y取最大值为4,即;解得m=3.故答案为:3.3、解:作出不等式组对应的平面区域如图:由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C,直线y=﹣2x+z的截距最大,此时z最大,由,解得,即C(3,1),此时z=2×3+1=7,故答案为:7.4、解:由约束条件作出可行域如图,由图可知,最优解为A,联立,解得A(0,1).∴z=2x﹣y的最小值为2×0﹣1=﹣1.故选:A.辽宁省(答案)1、解:作图易知可行域为一个三角形,其三个顶点为(0,1),(1,0),(﹣1,﹣2),验证知在点(1,0)时取得最大值2当直线z=2x+y过点A(1,0)时,z最大是2,故选B.2、解:画出不等式组表示的可行域如下图示:在可行域内平移直线z=2x﹣3y,当直线经过x﹣y=2与x+y=4的交点A(3,1)时,目标函数有最小值z=2×3﹣3×1=3;当直线经过x+y=﹣1与x﹣y=3的交点B(1,﹣2)时,目标函数有最大值z=2×1+3×2=8.z=2x﹣3y的取值范围是(3,8).故答案为:(3,8).3、解:满足约束条件的平面区域如下图所示:令z=2x+3y可得y=,则为直线2x+3y﹣z=0在y轴上的截距,截距越大,z越大作直线l:2x+3y=0把直线向上平移可得过点D时2x+3y最大,由可得x=5,y=15,此时z=55故选D4、解:由约束条件作出可行域如图,联立,解得,∴C(2,3).化目标函数z=3x+4y为直线方程的斜截式,得:.由图可知,当直线过点C时,直线在y轴上的截距最大,即z最大.∴z max=3×2+4×3=18.故答案为:18.山东省(答案)1、解:先根据约束条件画出可行域,易知可行域为一个四角形,其四个顶点分别为(0,0),(0,2),(2,0),(3,5),设z=2x+y,将最大值转化为y轴上的截距,当直线z=2x+y经过直线x﹣y+2=0与直线5x﹣y﹣10=0的交点A(3,5)时,z最大,故填:11.2、解:设需租赁甲种设备x天,乙种设备y天,则目标函数为z=200x+300y.作出其可行域,易知当x=4,y=5时,z=200x+300y有最小值2300元.3、解:做出可行域如图所示:将目标函数转化为,欲求z的最大值,只需求直线l:在y轴上的截距的最大值即可.作出直线l0:,将直线l0平行移动,得到一系列的平行直线当直线经过点A时在y 轴上的截距最大,此时z最大.由可求得A(3,1),将A点坐标代入z=2x+3y+1解得z的最大值为2×3+3×1+1=10故选B4、解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z为直线y=3x﹣z在y轴上的截距,截距越大,z越小结合图形可知,当直线y=3x﹣z平移到B时,z最小,平移到C时z最大由可得B(,3),由可得C(2,0),z max=6∴故选A5、解:如图可行域为阴影部分,由其几何意义为点O(0,0)到直线x+y﹣2=0距离,即为所求,由点到直线的距离公式得:d==,则|OM|的最小值等于.故答案为:.6、解:由约束条件作可行域如图,联立,解得:A(2,1).化目标函数为直线方程得:(b>0).由图可知,当直线过A点时,直线在y轴上的截距最小,z最小.∴2a+b=2.即2a+b﹣2=0.则a2+b2的最小值为.故选:B.7、解:作出不等式组表示的平面区域,得到如图的三角形及其内部,由可得A(1,2),z=x+3y,将直线进行平移,当l经过点A时,目标函数z达到最大值∴z最大值=1+2×3=7.故答案为:78、解:由约束条件作出可行域如图,∵A(0,﹣3),C(0,2),∴|OA|>|OC|,联立,解得B(3,﹣1).∵,∴x2+y2的最大值是10.故选:C.9、解:x,y满足约束条件的可行域如图:目标函数z=x+2y经过可行域的A 时,目标函数取得最大值,由:解得A(﹣1,2),目标函数的最大值为:﹣1+2×2=3.故选:D.陕西省(答案)1、解:设z=x+2y,z为该直线纵截距2倍,可行域如图三角形ABC,令Z=0得直线l:x+2y=0,平移l过点C(1,0)时z有最小值1,过点A(3,4)点时有最大值11,故答案为最小值1,最大值11.2、解:根据题意,不等式组表示的平面区域如图所示,当直线z=x﹣y过点A(﹣2,0)时,在y轴上截距最小,此时z取得最小值﹣1.故填﹣1.3、解:结合已知的四边形ABCD的图形,我们将四边形的各个顶点坐标依次代入可得:当x=1,y=1时,2x﹣y=1当x=,y=时,2x﹣y=当x=,y=1时,2x﹣y=2﹣1>1当x=1,y=0时,2x﹣y=2>1故2x﹣y的最小值为 1故答案为:14、答案:A解:曲线2y x ,y ==所围成的封闭区域如图阴影部分所示, 当直线l :2y x =向左平移时,()2x y -的值在逐渐变小, 当l 通过点A (-2,2)时,min (2) 6.x y -=-5、解:设每天生产甲乙两种产品分别为x ,y 顿,利润为z 元,则,目标函数为 z=3x+4y .作出二元一次不等式组所表示的平面区域(阴影部分)即可行域. 由z=3x+4y 得y=﹣x+,平移直线y=﹣x+由图象可知当直线y=﹣x+经过点B 时,直线y=﹣x+的截距最大, 此时z 最大, 解方程组,解得,即B 的坐标为x=2,y=3, ∴z max =3x+4y=6+12=18.即每天生产甲乙两种产品分别为2,3顿,能够产生最大的利润,最大的利润是18万元, 故选:D .上海市(答案)1、解:∵点A,B,C的坐标分别为(0,1),(4,2),(2,6).∴△ABC围成的区域(含边界)如下图示:由图可知:当ω=xy取到最大值时,点P在线段BC上,由线段BC上的点满足:y=﹣2x+10,x∈[2,4],∴ω=xy=x(﹣2x+10),故当时,ω取到最大值.故答案为:2、解:如图作出阴影部分即为满足约束条件的可行域,由z=x﹣2y,得y=x﹣z,平移直线y=x﹣z,由图象可知当直线y=x﹣z经过点A,直线y=x﹣z的截距最大,此时z最小,由得点A(3,6),当x=3,y=6时,z=x﹣2y取最小值,为﹣9.故答案为:﹣93、解:先根据约束条件画出可行域,当直线z=x+y过点B(1,1)时,z最大值为2.故选C.4、解:满足约束条件的平面区域如下图所示:由图分析,当x=,y=时,z=x+y取最大值,故答案为.5、解:作出约束条件对应的平面区域,如图所示由于z=y ﹣x 可得y=x+z ,则z 为直线在y 轴上的截距,截距越小,z 越小 结合图形可知,当直线y=x+z 过C 时z 最小,由可得C (2,0),此时Z=﹣2最小故答案为:﹣26、答案:3解:由题意约束条件所形成的线性区域的三个交点为(0,0),(2,0),(1,1);且目标函数可转化为22x zy =-+,可见在点(1,1)时函数的截距最大,此时z 取得最大值即23z x y =+=.7、解:画出可行域(如图),设z=x ﹣2y ⇒y=x ﹣z , 由图可知,当直线l 经过点A (0,1)时,z 最大,且最大值为z max =0﹣2×1=﹣2. 故答案为:﹣2.四川省(答案)1、解:设该企业生产甲产品为x吨,乙产品为y吨,则该企业可获得利润为z=5x+3y,且联立解得由图可知,最优解为P(3,4),∴z的最大值为z=5×3+3×4=27(万元).故选D.2、解:设甲车间加工原料x箱,乙车间加工原料y箱,则目标函数z=280x+200y结合图象可得:当x=15,y=55时z最大.故选B.3、解:设派x辆甲卡车,y辆乙卡车,利润为z,由题意得:z=450x+350y由题意得x,y满足下列条件:上述条件作出可行域,如图所示:由图可知,当x=7,y=5时,450x+350y有最大值4900故选C4、解:作出约束条件,所示的平面区域,作直线3x+4y=0,然后把直线L向可行域平移,结合图形可知,平移到点C时z最大由可得C(4,4),此时z=28故选C。
高三文科数学不等式专题- 附参考答案

高三文科数学第二轮复习资料——《不等式》专题1.有一批DVD 机原销售价为每台800元,在甲、乙两家商场均有销售.甲商场用如下的方法促销:买一台单价为780元,买两台每台单价都为760元,依此类推,每多买一台则所买各台单价均再减少20元,但每台最低不能低于440元;乙商场一律都按原价的75%销售.某单位需购买一批此类DVD 机,问去哪家商场购买花费较少?2.某商场预计全年分批购入每台价值为2000元的电视机共3600台,每批都购入x 台(x 是自然数),且每批均需付运费400元,贮存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比,若每批购入400台,则全年需用去运输和保管总费用43600元,现在全年只有24000元资金可以用于支付这笔费用,请问:能否恰当安排每批进货的数量使资金够用?写出你的结论,并说明理由.3. 某公司承担了每天至少搬运280吨水泥的任务,已知该公司有6辆A 型卡车和4辆B 型卡车,又知A 型卡车每天每辆的运输量为30吨,成本费为0.9千元,B 型卡车每天每辆的运输量为40吨,成本费为1千元.设每天派出A 型卡车x 辆,B 型卡车y 辆,公司每天所花成本费z 千元,求z 的最小值,并求此时y x ,的值.4. 已知函数bax x x f +=2)((a ,b 为常数)且方程f (x )-x +12=0有两个实根为x 1=3, x 2=4. (1)求函数f (x )的解析式;(2)设k>1,解关于x 的不等式;xk x k x f --+<2)1()(.5.已知32()31f x ax x x =+-+,R a ∈.(Ⅰ)当3-=a 时,求证:()f x 在R 上是减函数;(Ⅱ)如果对R x ∈∀不等式()4f x x '≤恒成立,求实数a 的取值范围6.已知)(x f 是奇函数,且在定义域(-1,1)内可导,并满足0)(<'x f ,解关于m 的不等式0)1()1(2>-+-m f m f .7.设32()f x ax bx cx =++的极小值为8-,其导函数()y f x '=的图像经过点(2,0)-,2(,0)3,如图所示.(Ⅰ)求)(x f 的解析式;(Ⅱ)若对[-3,3]x ∈都有2()14f x m m ≥-恒成立,求实数m 的取值范围.8.已知定义在R 上的函数d c b a d cx bx ax x f ,,,,)(23其中+++=是实数.(Ⅰ)若函数)(x f 在区间),3()1,(+∞--∞和上都是增函数,在区间(-1,3)上是减函数,并且,18)0(,7)0(-='-=f f 求函数)(x f 的表达式;(Ⅱ)若03,,2<-ac b c b a 满足,求证:函数)(x f 是单调函数.9.命题p :方程0622=-+-a a x x 有一正根和一负根. 命题q :函数 轴有公共点.若命题“ ”为真命题,而命题“ ”为假命题,求实数 的取值范围10.已知二次函数)(x f 满足0)1(=-f ,且)1(4)(82+≤≤x x f x 对于R x ∈恒成立.(Ⅰ)求)1(f 的值;(Ⅱ)求)(x f 的解析式;(Ⅲ)设)(1)(2x f x x g -=,定义域D x ∈,现给出一个数字运算程序: →=→→=→=→-)()()(123121n n x g x x g x x g x x ,若D x x x x n ∈、、、、 321,运算继续下去;若D x n ∉,则停止运算.现给出371=x ,请写出满足上述条件的集合},,,,{321n x x x x D =.x x a x y 的图象与1)3(2+-+=a q p ∧q p ∨参考答案1. 解:设某单位购买x 台DVD 机,甲、乙两商场的购货款的差价为y 元,则去甲商场购买总花费x x )20800(-,据题意,44020800≥-x ,∴181≤≤x ,去乙商场购买总花费x 600,*N x ∈, ∴)(18,600440181,600)20800(*N x x x x x x x x y ∈⎩⎨⎧>-≤≤--= )(18,160181,20200*2N x x x x x x ∈⎩⎨⎧>-≤≤-=得)(10,010,0101,0*N x x y x y x y ∈⎪⎩⎪⎨⎧><==≤≤>∴买少于10台,去乙商场花费较少;若买10台,去甲、乙商场花费一样;若买超过10台,去甲商场花费较少.2. 解:设每批购入x 台,需进货x3600次,每批进货总价值x 2000,全年保管费xk 2000, 依题意:4004003600400200043600⨯+⨯=k ,∴201=k , 24000100144000021001440000=⋅≥+=x xx x y , 当且仅当x 1440000=x 100,24000min =y ,即120=x 台, 答:每批进货的数量为120台时能使资金够用.3. 解:由题意得:约束条件:⎪⎩⎪⎨⎧≤≤≤≤≥+40602804030y x y x ,目标函数y x z +=9.0,作图得:当4,4==y x 时,6.7min =z .4. (1)将0124,3221=+-+==x b ax x x x 分别代入方程得。
历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编解不等式1.(2024∙全国新Ⅰ卷∙高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-2.(2024∙上海∙高考真题)已知,x ∈R 则不等式2230x x --<的解集为 .3.(2023∙全国新Ⅰ卷∙高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}24.(2020∙全国∙高考真题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ( ) A .{4,1}- B .{1,5} C .{3,5}D .{1,3}基本不等式1.(2024∙北京∙高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 2.(2021∙全国乙卷∙高考真题)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x -=+D .4ln ln y x x=+3.(2021∙全国新Ⅰ卷∙高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13B .12C .9D .64.(2020∙全国∙高考真题)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4B .8C .16D .32参考答案解不等式1.(2024∙全国新Ⅰ卷∙高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3}C .{3,1,0}--D .{1,0,2}-【答案】A【详细分析】化简集合A ,由交集的概念即可得解.【答案详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-. 故选:A.2.(2024∙上海∙高考真题)已知,x ∈R 则不等式2230x x --<的解集为 . 【答案】{}|13x x -<<【详细分析】求出方程2230x x --=的解后可求不等式的解集. 【答案详解】方程2230x x --=的解为=1x -或3x =, 故不等式2230x x --<的解集为{}|13x x -<<, 故答案为:{}|13x x -<<.3.(2023∙全国新Ⅰ卷∙高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C【详细分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出. 方法二:将集合M 中的元素逐个代入不等式验证,即可解出.【答案详解】方法一:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--,所以M N ⋂={}2-. 故选:C .方法二:因为{}2,1,0,1,2M =--,将2,1,0,1,2--代入不等式260x x --≥,只有2-使不等式成立,所以M N ⋂={}2-.故选:C .4.(2020∙全国∙高考真题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ( ) A .{4,1}- B .{1,5} C .{3,5} D .{1,3}【答案】D【详细分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ⋂,得到结果. 【答案详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B = , 故选:D.【名师点评】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.基本不等式1.(2024∙北京∙高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 【答案】B【详细分析】根据指数函数和对数函数的单调性结合基本不等式详细分析判断AB ;举例判断CD 即可. 【答案详解】由题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,对于选项AB :可得121222222x xx x ++>=,即12122202x x y y ++>>, 根据函数2log y x =是增函数,所以121212222log log 222x x y y x x+++>=,故B 正确,A 错误;对于选项D :例如120,1x x ==,则121,2y y ==, 可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,故D 错误; 对于选项C :例如121,2x x =-=-,则1211,24y y ==, 可得()122223log log log 332,128y y +==-∈--,即12212log 32y y x x +>-=+,故C 错误, 故选:B.2.(2021∙全国乙卷∙高考真题)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x -=+ D .4ln ln y x x=+【答案】C【详细分析】根据二次函数的性质可判断A 选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出,B D 不符合题意,C 符合题意.【答案详解】对于A ,()2224133y x x x =++=++≥,当且仅当=1x -时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,2422242x x xx y -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意; 对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞ ,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意. 故选:C .【名师点评】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出.3.(2021∙全国新Ⅰ卷∙高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C【详细分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【答案详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C . 【名师点评】4.(2020∙全国∙高考真题)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .32【答案】B【详细分析】因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab值,根据2c =等式,即可求得答案. 【答案详解】 2222:1(0,0)x y C a b a b -=>> ∴双曲线的渐近线方程是b y x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于D ,E 两点 不妨设D 为在第一象限,E 在第四象限 联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故(,)E a b -∴||2ED b =∴ODE 面积为:1282ODE S a b ab =⨯==△双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为28c =≥==当且仅当a b ==∴C 的焦距的最小值:8故选:B.【名师点评】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了详细分析能力和计算能力,属于中档题.。
高考数学试题分类汇编-不等式(含文科理科及详细解析)

8 ,因此 a+b≤2.
3
3 a+b 2
4
6(2017 新课标Ⅱ理) [选修 4—5 :不等式选讲 ]( 10 分)
已知 a 0,b 0,a3 b3 2 .证明:
( 1) (a b)(a5 b5) 4 ; ( 2) a b 2.
f ( x) x 1 (x 2)
2x 1 当 1 x 2时
2x 1 1
∴1 x 2
x1
f ( x) x 1 ( x 2) 3
当 x 2时 3 1
综上所述 f ( x) 1的解集为 [1, ) .
x2
(2)原式等价于存在 x R ,使 f (x) x2 x m 成立,即 [ f ( x) =| x+1| ﹣| x﹣2| =
, f( x)≥ 1,
∴当﹣ 1≤x≤2 时, 2x﹣1≥1,解得 1≤x≤2; 当 x>2 时, 3≥1 恒成立,故 x>2; 综上,不等式 f (x)≥ 1 的解集为 { x| x≥1} . ( 2)原式等价于存在 x∈R 使得 f( x)﹣ x2+x≥m 成立, 即 m≤[ f( x)﹣ x2+x] max,设 g(x)=f(x)﹣ x2+x.
5,则 a 的取
x
值范围是 ___________.
【考点】 3H:函数的最值及其几何意义.
【专题】11 :计算题; 35 :转化思想; 49 :综合法; 51 :函数的性质及应用.
【分析】通过转化可知 | x+ ﹣a|+ a≤5 且 a≤ 5,进而解绝对值不等式可知 2a﹣5
≤ x+ ≤5,进而计算可得结论.
【分析】(1)由于 f(x)=| x+1| ﹣| x﹣ 2| =
不等式(十年全国高考数学真题分类汇编 (文科) )

2012-2021十年全国高考数学真题分类汇编 (文科)不等式(原卷版)一、选择题1.(2021年全国高考乙卷文科)若,x y 满足约束条件4,2,3,x y x y y +≥⎧⎪-≤⎨⎪≤⎩则3z x y =+的最小值为 ( )A .18B .10C .6D .42.(2019年高考数学课标Ⅰ卷文科)已知2log 0.2a =,0.22b =,0.30.2c =,则() ( )A .a b c <<B .a c b <<C .c a b <<D .b c a <<3.(2017年高考数学课标Ⅲ卷文科)设满足约束条件,则的取值范围是( )4.(2017年高考数学课标Ⅱ卷文科)设x 、y 满足约束条件.则的最小值是( )A .B .C . D5.(2017年高考数学课标Ⅰ卷文科)设满足约束条件则的最大值为 ( )A .0B .1C .2D .36.(2014年高考数学课标Ⅱ卷文科)设x ,y 满足约束条件1010330x y x y x y +-⎧⎪--⎨⎪-+⎩≥≤≥,则2z x y =+的最大值为( )A .8B .7C .2D .17.(2014年高考数学课标Ⅰ卷文科)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =( )A .-5B .3x y ,326000x y x y +-≤⎧⎪≥⎨⎪≥⎩z x y =-.A [3,0].B [3,2].C 0,2.D 0,32330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩= 2 z x y +15-9-19,x y 33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩z x y =+C .-5或3D .5或-38.(2013年高考数学课标Ⅱ卷文科)设,x y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是( )A .7-B .6-C .5-D .3- 9.(2012年高考数学课标卷文科)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(,)x y 在ABC ∆内部,则z x y =-+的取值范围是 ( )A.(1- B .(0,2) C.1,2)D.(0,1+二、填空题10.(2020年高考数学课标Ⅰ卷文科)若x ,y 满足约束条件220,10,10,x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩则z =x +7y 的最大值为______________.11.(2020年高考数学课标Ⅱ卷文科)若x ,y 满足约束条件1121,x y x y x y +≥-⎧⎪-≥-⎨⎪-≤⎩,,则2z x y =+的最大值是__________.12.(2020年高考数学课标Ⅲ卷文科)若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩, ,则z =3x +2y 的最大值为_________.13.(2019年高考数学课标Ⅱ卷文科)若变量,x y 满足约束条件23603020x y x y y ⎧⎪⎨⎪⎩+-≥+-≤-≤,,,则3z x y =-的最大值是___________.14.(2018年高考数学课标Ⅲ卷文科)若变量x y ,满足约束条件23024020.x y x y x ++⎧⎪-+⎨⎪-⎩≥,≥,≤则13z x y =+的最大值是________.15.(2018年高考数学课标Ⅱ卷文科)若,x y 满足约束条件250,230,50,x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤ 则z x y =+的最大值为__________.16.(2018年高考数学课标Ⅰ卷文科)若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.17.(2016年高考数学课标Ⅲ卷文科)设x y ,满足约束条件210,210,1,x y x y x -+⎧⎪--⎨⎪⎩≥≤≤ 则235z x y =+-的最小值为______.18.(2016年高考数学课标Ⅱ卷文科)若,x y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =-的最小值为__________.19.(2016年高考数学课标Ⅰ卷文科)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.20.(2015年高考数学课标Ⅱ卷文科)若,x y 满足约束条件50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则2z x y =+的最大值为 .21.(2015年高考数学课标Ⅰ卷文科)若x ,y 满足约束条件20,210,220,x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩则3z x y =+的最大值为_________________.22.(2013年高考数学课标Ⅰ卷文科)设,x y 满足约束条件 13,10x x y ≤≤⎧⎨-≤-≤⎩,则2z x y =-的最大值为______.。
2024年全国高考数学真题分类( 不等式与不等关系)汇编(附答案)

2024年全国高考数学真题分类(不等式与不等关系)汇编一、单选题1.(2024ꞏ全国1卷)已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( )A .(10)100f >B .(20)1000f >C .(10)1000f <D .(20)10000f <2.(2024ꞏ全国1卷)已知函数为22,0()e ln(1),0xx ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是( ) A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞3.(2024ꞏ全国2卷)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( ) A .p 和q 都是真命题 B .p ⌝和q 都是真命题 C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题4.(2024ꞏ全国2卷)设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为( )A .18B .14C .12D .15.(2024ꞏ全国甲卷文)若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( ) A .5B .12C .2-D .72-6.(2024ꞏ北京)已知集合{|41}M x x =-<≤,{|13}N x x =-<<,则M N ⋃=( ) A .{}43x x -<< B .{}11x x -<≤ C .{}0,1,2D .{}14x x -<<7.(2024ꞏ北京)记水的质量为1ln S d n-=,并且d 越大,水质量越好.若S 不变,且1 2.1d =,2 2.2d =,则1n 与2n 的关系为( ) A .12n n <B .12n n >C .若1S <,则12n n <;若1S >,则12n n >;D .若1S <,则12n n >;若1S >,则12n n <;8.(2024ꞏ北京)已知()11,x y ,()22,x y 是函数2x y =图象上不同的两点,则下列正确的是( )A .12122log 22y y x x ++> B .12122log 22y y x x ++< C .12212log 2y y x x +>+ D .12212log 2y y x x +<+ 9.(2024ꞏ天津)若0.30.34.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>二、填空题10.(2024ꞏ上海)已知,x ∈R 则不等式2230x x --<的解集为 .三、解答题11.(2024ꞏ全国甲卷文)已知函数()()1ln 1f x a x x =--+. (1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e xf x -<恒成立.12.(2024ꞏ全国甲卷理)已知函数()()()1ln 1f x ax x x =-+-. (1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.参考答案1.B【详细分析】代入得到(1)1,(2)2f f ==,再利用函数性质和不等式的性质,逐渐递推即可判断.【答案解析】因为当3x <时()f x x =,所以(1)1,(2)2f f ==, 又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>, (8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>, (11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+> (14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确. 故选:B.【名师点评】关键点名师点评:本题的关键是利用(1)1,(2)2f f ==,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可. 2.B【详细分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【答案解析】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1aa -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤, 即a 的范围是[1,0]-. 故选:B. 3.B【详细分析】对于两个命题而言,可分别取=1x -、1x =,再结合命题及其否定的真假性相反即可得解.【答案解析】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题, 对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题,综上,p ⌝和q 都是真命题. 故选:B. 4.C【详细分析】解法一:由题意可知:()f x 的定义域为(),b ∞-+,分类讨论a -与,1b b --的大小关系,结合符号详细分析判断,即可得1b a =+,代入可得最值;解法二:根据对数函数的性质详细分析ln()x b +的符号,进而可得x a +的符号,即可得1b a =+,代入可得最值. 【答案解析】解法一:由题意可知:()f x 的定义域为(),b ∞-+, 令0x a +=解得x a =-;令ln()0x b +=解得1x b =-; 若-≤-a b ,当(),1x b b ∈--时,可知()0,ln 0x a x b +>+<, 此时()0f x <,不合题意;若1b a b -<-<-,当(),1x a b ∈--时,可知()0,ln 0x a x b +>+<, 此时()0f x <,不合题意;若1a b -=-,当(),1x b b ∈--时,可知()0,ln 0x a x b +<+<,此时()0f x >; 当[)1,x b ∞∈-+时,可知()0,ln 0x a x b +≥+≥,此时()0f x ≥; 可知若1a b -=-,符合题意;若1a b ->-,当()1,x b a ∈--时,可知()0,ln 0x a x b ++, 此时()0f x <,不合题意; 综上所述:1a b -=-,即1b a =+,则()2222211112222a b a a a ⎛⎫+=++=++≥ ⎪⎝⎭,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12;解法二:由题意可知:()f x 的定义域为(),b ∞-+, 令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;则当(),1x b b ∈--时,()ln 0x b +<,故0x a +≤,所以10b a -+≤;()1,x b ∞∈-+时,()ln 0x b +>,故0x a +≥,所以10b a -+≥;故10b a -+=, 则()2222211112222a b a a a ⎛⎫+=++=++≥ ⎪⎝⎭,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12. 故选:C.【名师点评】关键点名师点评:分别求0x a +=、ln()0x b +=的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性详细分析判断. 5.D【详细分析】画出可行域后,利用z 的几何意义计算即可得.【答案解析】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y =-可得1155y x z =-, 即z 的几何意义为1155y x z =-的截距的15-, 则该直线截距取最大值时,z 有最小值, 此时直线1155y x z =-过点A , 联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫⎪⎝⎭, 则min 375122z =-⨯=-. 故选:D. 6.A【详细分析】直接根据并集含义即可得到答案. 【答案解析】由题意得()4,3M N ⋃=-,故选:A. 7.C【详细分析】根据题意详细分析可得12.1112.22e e S S n n --⎧=⎪⎨⎪=⎩,讨论S 与1的大小关系,结合指数函数单调性详细分析判断.【答案解析】由题意可得11221 2.1ln 1 2.2ln S d n S d n -⎧==⎪⎪⎨-⎪==⎪⎩,解得12.1112.22e e S S n n --⎧=⎪⎨⎪=⎩, 若1S >,则112.1 2.2S S -->,可得112.1 2.2e e S S -->,即12n n >; 若1S =,则1102.1 2.2S S --==,可得121n n ==; 若1S <,则112.1 2.2S S --<,可得112.1 2.2e e S S --<,即12n n <; 结合选项可知C 正确,ABD 错误; 故选:C. 8.A【详细分析】根据指数函数和对数函数的单调性结合基本不等式详细分析判断AB ;举例判断CD 即可.【答案解析】由题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,对于选项AB:可得121222222x x x x ++>=,即12122202x x y y ++>>, 根据函数2log y x =是增函数,所以121212222log log 222x x y y x x+++>=,故A 正确,B 错误;对于选项C :例如120,1x x ==,则121,2y y ==, 可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,故C 错误; 对于选项D :例如121,2x x =-=-,则1211,24y y ==,可得()122223log log log 332,128y y +==-∈--,即12212log 32y y x x +>-=+,故D 错误, 故选:A.9.B【详细分析】利用指数函数和对数函数的单调性详细分析判断即可. 【答案解析】因为 4.2x y =在R 上递增,且0.300.3-<<, 所以0.300.30 4.2 4.2 4.2-<<<,所以0.30.30 4.21 4.2-<<<,即01a b <<<, 因为 4.2log y x =在(0,)+∞上递增,且00.21<<, 所以 4.2 4.2log 0.2log 10<=,即0c <, 所以b a c >>, 故选:B10.{}|13x x -<<【详细分析】求出方程2230x x --=的解后可求不等式的解集. 【答案解析】方程2230x x --=的解为=1x -或3x =, 故不等式2230x x --<的解集为{}|13x x -<<, 故答案为:{}|13x x -<<.11.(1)见答案解析 (2)见答案解析【详细分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性; (2)先根据题设条件将问题可转化成证明当1x >时,1e 21ln 0x x x --++>即可.【答案解析】(1)()f x 定义域为(0,)+∞,11()ax f x a x x'-=-= 当0a ≤时,1()0ax f x x-'=<,故()f x 在(0,)+∞上单调递减; 当0a >时,1,x a ∞⎛⎫∈+ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递减;0a >时,()f x 在1,a ∞⎛⎫+ ⎪⎝⎭上单调递增,在10,a ⎛⎫⎪⎝⎭上单调递减.(2)2a ≤,且1x >时,111e ()e (1)ln 1e 21ln x x x f x a x x x x ----=--+-≥-++,令1()e 21ln (1)x g x x x x -=-++>,下证()0g x >即可. 11()e 2x g x x -'=-+,再令()()h x g x '=,则121()e x h x x-'=-, 显然()h x '在(1,)+∞上递增,则0()(1)e 10h x h ''>=-=, 即()()g x h x ='在(1,)+∞上递增,故0()(1)e 210g x g ''>=-+=,即()g x 在(1,)+∞上单调递增, 故0()(1)e 21ln10g x g >=-++=,问题得证12.(1)极小值为0,无极大值. (2)12a ≤-【详细分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就12a ≤-、102a -<<、0a ≥分类讨论后可得参数的取值范围.【答案解析】(1)当2a =-时,()(12)ln(1)f x x x x =++-,故121()2ln(1)12ln(1)111x f x x x x x+'=++-=+-+++, 因为12ln(1),11y x y x=+=-++在()1,∞-+上为增函数, 故()f x '在()1,∞-+上为增函数,而(0)0f '=, 故当10x -<<时,()0f x '<,当0x >时,()0f x '>, 故()f x 在0x =处取极小值且极小值为()00f =,无极大值.(2)()()()()11ln 11ln 1,011a x axf x a x a x x x x +-=-+'+-=-+->++, 设()()()1ln 1,01a x s x a x x x+=-+->+,则()()()()()()222111211111a a x a a ax a s x x x x x ++++-++=-=-=-+++'+, 当12a ≤-时,()0s x '>,故()s x 在()0,∞+上为增函数,故()()00s x s >=,即()0f x '>,所以()f x 在[)0,∞+上为增函数,故()()00f x f ≥=.当102a -<<时,当210a x a+<<-时,()0s x '<, 故()s x 在210,a a +⎛⎫- ⎪⎝⎭上为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()0s x s <,即在210,a a +⎛⎫- ⎪⎝⎭上()0f x '<即()f x 为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()00f x f <=,不合题意,舍.当0a ≥,此时()0s x '<在()0,∞+上恒成立,同理可得在()0,∞+上()()00f x f <=恒成立,不合题意,舍; 综上,12a ≤-.【名师点评】思路名师点评:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.。
福建省各地市高考数学最新联考分类汇编(6)不等式.doc

福建省各地市-下学期高考数学最新试题分类大汇编:第6部分 不等式一、选择题:1. (福建省福州市3月高中毕业班质量检查理科)设22)1(,3005,y x x y x y x y x ++⎪⎩⎪⎨⎧≤≥+≥+-则满足约束条件的最大值为( A )A. 80B. C.25 D.1722. (福建省福州市3月高中毕业班质量检查理科)已知函数f (x +1)是定义在R 上的奇函数,若对于任意给定的不等实数x 1、x 2,不等式1212()[()()]0x x f x f x --<恒成立,则不等式f (1-x )<0的解集为( C ).A.(1,+∞)B.(0,+∞)C.(-∞,0)D.(-∞,1)3. (福建省福州市3月高中毕业班质量检查文科已知函数f (x +1)是定义在R 上的奇函数,若对于任意给定的不等实数x 1、x 2,不等式1212()[()()]0x x f x f x --<恒成立,则不等式f (1-x )<0的解集为( C ).A.(1,+∞)B.(0,+∞)C.(-∞,0)D.(-∞,1) 4.(福建省厦门市高三质量检查文科)已知点0(,)(,)20y P x y y x k k R x y k ≥⎧⎪≤∈⎨⎪++≤⎩满足条件为常数且,若3zmx y +的最大值为8,则实数k 等于( A )A .— 6B .—16C .6D .165.(福建省厦门市高三质量检查理科)2|1|10x x x -≤-<是的 ( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.(福建省厦门市高三质量检查理科)若实数2230,,10,2,x y x y x y x y y +-≥⎧⎪--≤+⎨⎪≤⎩满足则的最小值是( D )AB .5C.2D .927.(福建省莆田市高中毕业班质量检查理科)已知函数1,0()1,0x f x x x≤⎧⎪=⎨>⎪⎩,则使方程()x f x m +=有解的实数m 的取值范围是( D )A .(1,2)B .(,2]-∞-C .(,1)(2,)-∞⋃+∞D .(,1][2,)-∞⋃+∞8.(福建省古田县高中毕业班高考适应性测试理科)设=)(x f R x x x ∈+,3,当02πθ≤≤时,0)1()sin (>-+m f m f θ恒成立,则实数m 的取值范围是:( D )A .(0,1)B .)0,(-∞C .)21,(-∞D .)1,(-∞9.(福建省古田县高中毕业班高考适应性测试文科)已知实数,x y 满足121y y x x y m ≥⎧⎪≤-⎨⎪+≤⎩,如果目标函数z x y =-的最小值是1-,那么此目标函数的最大值是( C ) A .1 B .2 C .3 D .510.(福建省古田县高中毕业班高考适应性测试文科)设34abm ==,且112a b+=,则m =( B )A .12B.C.D .4811. (福建省四地六校联考高三第三次月考理科)设=-+-==≤-=B A x x y y B x x A 则},22|{},4|3|{( A )A .{0}B .{2}C .φD .{x |2≤x ≤7}12、(福建省三明市高三三校联考文科)已知M 是ABC ∆内的一点,且32=∙,030=∠BAC ,,若MBC ∆MAB MCA ∆∆,的面积分别为yx y x 41,,,21+则的最小值为( B )A .B .18C .16D .913.(福建省三明市高三三校联考理科)已知实数集R ,集合{||2|2}M x x =+<, N=3{|1}1x x <+,则M ∩(∁R N) =( C )A .{|40}x x -<<B .{|10}x x -<≤C .{|10}x x -≤<D .{|0,2}x x x <>或 14.(福建省三明市高三三校联考理科)已知βα,是三次函数bx ax x x f 22131)(23++=的两个极值点,且)2,1(),1,0(∈∈βα,则12--a b 的取值范围是 ( A ) A )1,41( B )1,21( C )41,21(- D )21,21(-二、填空题:15.(福建省莆田市高中毕业班质量检查理科)若2{|()0,}x x x m m Z ∈-<∈,则m 的最小值为 3 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考文科数学试题分类汇编6:不等式
一、选择题
1 .(2013年高考四川卷(文))若变量,x y 满足约束条件8,24,0,0,
x y y x x y +≤⎧⎪-≤⎪
⎨≥⎪⎪≥⎩且5z y x =-的最大值为a ,最小值为b ,
则a b -的值是
( )
A .48
B .30
C .24
D .16
【答案】C
2 .(2013年高考福建卷(文))若变量y x ,满足约束条件⎪⎩
⎪
⎨⎧≥≥≤+012y x y x ,则y x z +=2的最大值和最小值分别为
( )
A .4和3
B .4和2
C .3和2
D .2和0
【答案】B
3 .(2013年高考课标Ⅱ卷(文))设x,y 满足约束条件,则z=2x-3y 的最小值是 ( )
A .
B .-6
C .
D .-3
【答案】B
4 .(2013年高考福建卷(文))若122
=+y x
,则y x +的取值范围是
( )
A .]2,0[
B .]0,2[-
C .),2[+∞-
D .]2,(--∞
【答案】D
5 .(2013年高考江西卷(文))下列选项中,使不等式x<
1x
<2
x 成立的x 的取值范围是 ( )
A .(,-1)
B .(-1,0)
C .0,1)
D .(1,+)
【答案】A
6 .(2013年高考山东卷(文))设正实数z y x ,,满足04322
=-+-z y xy x
,则当
z
xy
取得最大值时,2x y z +-的最大值为 ( )
A .0
B .
9
8
C .2
D .
94
【答案】C
7 .(2013年高考课标Ⅱ卷(文))若存在正数x 使2x
(x-a)<1成立,则a 的取值范围是
( )
A .(-∞,+∞)
B .(-2, +∞)
C .(0, +∞)
D .(-1,+∞)
【答案】D
8 .(2013年高考天津卷(文))设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪
⎨⎪⎩
则目标函数2z y x =-的最小值为
( )
A .-7
B .-4
C .1
D .2
【答案】A
9 .(2013年高考湖北卷(文))某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的
载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B
型车不多于A 型车7辆.则租金最少为 ( ) A .31200元 B .36000元 C .36800元 D .38400元 【答案】C 10.(2013年高考陕西卷(文))若点(x ,y )位于曲线y = |x |与y = 2所围成的封闭区域, 则2x -y 的最小值为
( ) A .-6 B .-2 C .0 D .2 【答案】A
11.(2013年高考重庆卷(文))关于x 的不等式2
2
280x ax a --<(0a >)的解集为12(,)x x ,且:2115x x -=,
则a = ( )
A .
5
2 B .
72
C .
154
D .
152
【答案】A
12.(2013年高考课标Ⅱ卷(文))设a=log 32,b=log 52,c=log 23,则
( )
A .a>c>b
B .b>c>a
C .c>b>a
D .c>a>b
【答案】D
13.(2013年高考北京卷(文))设,,a b c R ∈,且a b >,则
( )
A .ac bc >
B .
11
a b
< C .22
a b >
D .3
3
a b >
【答案】D 二、填空题
14.(2013年高考大纲卷(文))若x y 、满足约束条件0,34,34,x x y x y ≥⎧⎪
+≥⎨⎪+≤⎩
则z x y =-+的最小值为____________.
【答案】0
15.(2013年高考浙江卷(文))设a,b ∈R,若x ≥0时恒有0≤x 4
-x 3
+ax+b ≤(x 2
-1)2
,则ab 等于______________.
【答案】1-
16.(2013年高考湖南(文))若变量x,y 满足约束条件28,
04,03,x y x y +≤⎧⎪
≤≤⎨⎪≤≤⎩
则x+y 的最大值为______
【答案】6
17.(2013年高考重庆卷(文))设0απ≤≤,不等式2
8(8sin )cos 20x x αα-+≥对x R ∈恒成立,则a 的取
值范围为____________.
【答案】5[0,
][
,]
6
6π
π
π
18.(2013年高考山东卷(文))在平面直角坐标系xOy 中,M 为不等式组2360
200x y x y y +-≤⎧⎪
+-≥⎨⎪≥⎩
所表示的区域上一
动点,则直线OM 的最小值为_______
【答案】2
19.(2013年高考四川卷(文))已知函数
()4(0,0)a
f x x x a x
=+>>在3x =时取得最小值,则
a =__________.
【答案】36
20.(2013年高考课标Ⅰ卷(文))设,x y 满足约束条件 13,
10x x y ≤≤⎧⎨
-≤-≤⎩
,则2z x y =-的最大值为______.
【答案】3
21.(2013年高考浙江卷(文))设z kx y =+,其中实数,x y 满足2
240240x x y x y ≥⎧⎪
-+≥⎨⎪--≤⎩
,若z 的最大值为12,则实
数k =________ . 【答案】2
22.(2013年上海高考数学试题(文科))不等式
021
x
x <-的解为_________. 【答案】1
(0,
)2
23.(2013年高考北京卷(文))设D 为不等式组02030x x y x y ≥⎧⎪
-≤⎨⎪+-≤⎩
,表示的平面区域,区域D 上的点与点(1,0)之
间的距离的最小值为___________.
【答案】
25
5
24.(2013年高考陕西卷(文))在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部
分), 则其边长x 为___(m ).
【答案】20
25.(2013年高考天津卷(文))设a + b = 2, b >0, 则
1||
2||a a b
+
的最小值为______. 【答案】
3
4
26.(2013年上海高考数学试题(文科))设常数0a >,若2
91a x a x
+≥+对一切正实数x 成立,则a 的取值范围为________.
【答案】1
[
,)5
+∞ 27.(2013年高考广东卷(文))已知变量,x y 满足约束条件⎪⎩
⎪
⎨⎧≥≤≤-≥+-11103y x y x ,则z x y =+的最大值是___.
【答案】5
28.(2013年高考安徽(文))若非负数变量,x y 满足约束条件1
24x y x y -≥-⎧⎨
+≤⎩
,则x y +的最大值为__________.
【答案】4 三、解答题
29.(2013年上海高考数学试题(文科))本题共有2个小题.第1小题满分6分,第2小题满分8分.
甲厂以x 千米/小时的速度匀速生产某种产品(生产条件要求110x ≤≤),每小时可获得的利润是
3
100(51)x x
+-元.
(1)求证:生产a 千克该产品所获得的利润为213100(5)a x x +
-; (2)要使生产900千克该产品获得的利润最大,问:甲厂应该如何选取何种生产速度?并求此最大利润.
【答案】解:(1)每小时生产x 克产品,获利310051x x ⎛⎫+-
⎪⎝
⎭
, 生产a 千克该产品用时间为
a x ,所获利润为2313100511005a x a x x x x ⎛⎫⎛
⎫+-⋅=+- ⎪ ⎪⎝⎭⎝
⎭.
(2)生产900千克该产品,所获利润为213900005x x ⎛
⎫+- ⎪⎝
⎭1161900003612x ⎡⎤⎛⎫=--+ ⎪⎢⎥⎝⎭⎣⎦
所以6x =,最大利润为61
9000045750012
⨯
=元.。