石灰石及白云石化学分析方法 第7部分:硫含量的测定 管式炉燃

石灰石及白云石化学分析方法 第7部分:硫含量的测定 管式炉燃
石灰石及白云石化学分析方法 第7部分:硫含量的测定 管式炉燃

I C S73.080

D52

中华人民共和国国家标准

G B/T3286.7 2014

代替G B/T3286.7 1998

石灰石及白云石化学分析方法第7部分:硫含量的测定管式炉燃烧-碘酸钾滴定法二高频燃烧红外吸收法和硫酸钡重量法

M e t h o d s f o r c h e m i c a l a n a l y s i s o f l i m e s t o n e a n dd o l o m i t e

P a r t7:T h e d e t e r m i n a t i o no f s u l p h u r c o n t e n t T h e p i p e f u r n a c e c o m b u s t i o n i o d i c a c i d p o t a s s i u mt i t r a t i o nm e t h o d,t h e h i g h f r e q u e n c y c o m b u s t i o nw i t h

i n f r a r e da b s o r p t i o nm e t h o da n d t h e b a r i u ms u l f a t e g r a v i m e t r i cm e t h o d

2014-09-30发布2015-05-01实施中华人民共和国国家质量监督检验检疫总局

目 次

前言Ⅲ

1 范围1

2 规范性引用文件1

3 管式炉燃烧-碘酸钾滴定法1

4 高频燃烧红外吸收法7

5 硫酸钡重量法9

6 试验报告12 附录A (规范性附录) 试样分析结果接受程序流程图13 附录B (资料性附录) 管式炉燃烧-碘滴定法测定石灰石二冶金石灰中硫含量14 附录C (资料性附录) 高频感应红外碳硫分析仪1

7 附录D (资料性附录) 精密度试验函数关系式及原始数据18

前言

G B/T3286‘石灰石及白云石化学分析方法“分为9个部分:

第1部分:氧化钙和氧化镁含量的测定络合滴定法和火焰原子吸收光谱法;

第2部分:二氧化硅含量的测定硅钼蓝分光光度法和高氯酸脱水重量法;

第3部分:氧化铝含量的测定铬天青S分光光度法和络合滴定法;

第4部分:氧化铁含量的测定邻二氮杂菲分光光度法和火焰原子吸收光谱法;

第5部分:氧化锰含量的测定高碘酸盐氧化分光光度法;

第6部分:磷含量的测定磷钼蓝分光光度法;

第7部分:硫含量的测定管式炉燃烧-碘酸钾滴定法二高频燃烧红外吸收法和硫酸钡重量法;

第8部分:灼烧减量的测定重量法;

第9部分:二氧化碳含量的测定烧碱石棉吸收重量法三

本部分为G B/T3286的第7部分三

本部分按照G B/T1.1 2009给出的规则起草三

本部分代替G B/T3286.7 1998‘石灰石二白云石化学分析方法硫量的测定“,与G B/T3286.7 1998相比,主要技术变化如下:

将标准名称改为‘石灰石二白云石化学分析方法第7部分:硫含量的测定管式炉燃烧-碘酸钾滴定法二高频燃烧红外吸收法和硫酸钡重量法“;

增加了高频燃烧红外吸收法;

将原硫酸钡重量法二管式炉燃烧-碘酸钾滴定法在标准中的顺序进行了互换;

硫酸钡重量法和管式炉燃烧-碘滴定法的测定范围分别改为大于或等于0.10%及0.01%~

0.5%;

规范性引用文件取消了引用标准年号,并增加了部分引用标准;

管式炉燃烧-碘酸钾滴定法中增加了用同类标准物质/标准样品的滴定度计算方法;

进行了实验室间精密度共同试验,用统计得到的重复性限r和再现性限R代替了 允许差 三本部分由中国钢铁工业协会提出三

本部分由全国钢标准化技术委员会(S A C/T C183)归口三

本部分起草单位:武汉钢铁(集团)公司二冶金工业信息标准研究院三

本部分主要起草人:闻向东二余卫华二谭谦二陈士华二张穗忠二邵梅二曹宏燕二仇金辉二文斌二高建平二王姜维三

本部分所代替标准的历次版本发布情况为:

G B/T3286.14 1984;

G B/T3286.15 1993;

G B/T3286.7 1998三

石灰石及白云石化学分析方法第7部分:

硫含量的测定管式炉燃烧-碘酸钾滴定法二

高频燃烧红外吸收法和硫酸钡重量法

警告:使用本部分的人员应有正规实验室工作实践经验三本部分未指出所有可能的安全问题,使用者有责任采取适当的安全和健康措施,并保证符合国家有关法规规定的条件三

1范围

G B/T3286的本部分规定了用管式炉燃烧-碘酸钾滴定法二高频燃烧红外吸收法和硫酸钡重量法测定硫含量三

本部分适用于石灰石二白云石中硫含量的测定,及冶金石灰中硫含量的测定三管式炉燃烧-碘酸钾滴定法和高频燃烧红外吸收法测定范围(质量分数)为0.01%~0.5%;硫酸钡重量法测定范围(质量分数)为硫含量大于或等于0.10%;附录B管式炉燃烧-碘滴定法测定范围(质量分数)为硫含量不小于0.01%三

2规范性引用文件

下列文件对于本文件的应用是必不可少的三凡是注日期的引用文件,仅注日期的版本适用于本文件三凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件三

G B/T2007.2散装矿产品取样二制样通则手工制样方法

G B/T3286.8石灰石及白云石化学分析方法第8部分:灼烧减量的测定重量法

G B/T6379.2测量方法与结果的准确度(正确度与精密度)第2部分:确定标准测量方法重复性与再现性的基本方法

G B/T6682分析实验室用水规格和试验方法

G B/T8170数值修约规则与极限数值的表示和判定

3管式炉燃烧-碘酸钾滴定法

3.1原理

试料与三氧化钨混合,在氮气流中于1275??25?加热燃烧,将试料中硫全部转化为二氧化硫,以酸性碘化钾-淀粉溶液吸收,用碘酸钾标准滴定溶液滴定三

3.2试剂和材料

3.2.1说明

分析中除另有说明外,仅使用认可的分析纯试剂和符合G B/T6682规定的三级以上蒸馏水或其纯度相当的水三

3.2.2氮气

氮气,纯度大于99.5%三

白云石简介及应用

白云石简介及应用 2010-02-09 关注率: 来自:全球矿权网【大中小】 矿物(岩石)名称:白云石。 白云石晶体属三方晶系的碳酸盐矿物[1]。化学成分为CaMg[CO3]2。常有铁、锰等类质同象代替镁。当铁或锰原子数超过镁时,称为铁白云石或锰白云石。三方晶系,晶体呈菱面体,晶面常弯曲成马鞍状,聚片双晶常见。集合体通常呈粒状。纯者为白色;含铁时呈灰色;风化后呈褐色。玻璃光泽。菱面体解理完全。莫氏硬度3.5~4。比重2.85~3.2。遇冷稀盐酸时缓慢起泡。是组成白云岩的主要矿物。海相沉积成因的白云岩常与菱铁矿层、石灰岩层成互层产出。在湖相沉积物中,白云石与石膏、硬石膏、石盐、钾石盐等共生。热液中可直接结晶形成白云石,也可由含镁的热水溶液交代石灰岩或白云质灰岩而形成。 白云石是碳酸盐矿物,分别有铁白云石和锰白云石。它的晶体结构像方解石,常呈菱面体。遇冷稀盐酸时会慢慢出泡。有的白云石在阴极射线照射下发橘红色光。白云石是组成白云岩和白云质灰岩的主要矿物成分。白云石可用于建材、陶瓷、玻璃和耐火材料、化工以及农业、环保、节能等领域。主要用作碱性耐火材料和高炉炼铁的熔剂;生产钙镁磷肥和制取硫酸镁;以及生产玻璃和陶瓷的配料。 各种品质的白云石系列产品:白云石矿石,白云石砂6-10目,10-20目,20-40目,40-80目,80-120目,白云石粉10目通过,白云石超细粉140目,325目,600目,1000目,1600目。 化学成分: CaMg(CO 3 ) 2 ;可含有 Fe 、 Mn 、 Pb 、 Zn 等元素。 结晶状态:晶质体或晶质集合体。 晶系:三方晶系。 晶体习性:菱面体,常呈块状集合体。

石灰石化学分析方法

石灰石化学分析方法 分析化验联系电话0519886339130找李主任1. 烧失量的测定称取1.0000克试样,至于瓷坩埚中,放在马弗炉内,从低温逐渐升高温度,在900~1000℃下灼烧1h。2. 二氧化硅的测定称取约0.6g试样,精确至0.0001g ,置于铂坩埚中,将盖斜置于坩埚上,并留有一定缝隙,在900~1000℃下灼烧5min,取出坩埚冷却至室温,用玻璃棒仔细压碎块状物,加入0.3g无水碳酸钠混匀,再将坩埚置于950~1000℃下灼烧10min ,取下冷却至室温。将烧结块移入瓷蒸发皿中,加少量水润湿,盖上表面皿,从皿口加入5mL盐酸(1+1)及2~3滴硝酸,待反应停止后取下表面皿,用平头玻璃棒压碎块状物使分解安全,用热盐酸(1+1)清洗坩埚数次,洗液合并于蒸发皿中,将蒸发皿置于沸水浴上,皿上放一玻璃三角架,再盖上表面皿,蒸发至糊状后,加入1g氯化氨,充分搅匀,在沸水浴上蒸发至干后继续蒸发10~15min 。取下蒸发皿,加入10~20mL热盐酸(3+97),搅拌使可溶性盐溶解。用中速滤纸过滤,用胶头檫棒以热水檫洗玻璃棒及蒸发皿,用热水洗涤10~12次。滤液及洗液保存于250mL容量瓶中。将沉淀连同滤纸一并移入原铂坩埚中,干燥、灰化后,放入已升温至950~1000℃的马弗炉内灼烧30min,取出坩埚至于干燥器中,冷却至室温,恒量。向坩埚内加数滴水润

湿沉淀,加3滴硫酸(1+4)和5mL氢氟酸,放入通风橱缓慢加热,蒸发至干,升高温度继续加热至三氧化硫白烟完全散尽。将坩埚放入已升温至950~1000℃内灼烧30min,取出坩埚至于干燥器中,冷却至室温,恒量。经氢氟酸处理后得到的残渣中加入1g焦硫酸钾,在500~600℃下熔融至透明,熔块用热水和数滴盐酸(1+1)溶解,溶液并入分离二氧化硅后得到的滤液和洗液中,用水稀释至标线,摇匀。 3. 氧化钙的测定吸取25mL于400mL烧杯中,加水稀释约200mL,加5mL三乙醇胺(1+2)及适量的CMP(1.000g钙黄绿素、1.000g甲基百里香酚蓝、0.200g酚酞、50g已在105℃烘干过的硝酸钾)混合指示剂,在搅拌下加入氢氧化钾(200g/L)至出现绿色荧光后再过量5~8mL ,以EDTA(0.015mol/L)滴定至绿色荧光消失并出现红色。 4. 氧化镁的测定吸取25mL于400mL烧杯中,加水稀释约200mL,依次加入1mL 酒石酸钾钠(100 g/L)和5mL三乙醇胺(1+2),搅拌,然后加入25mL、pH10缓冲溶液(67.5g氯化氨、570mL氨水)及适量的酸性铬蓝K—萘酚绿B混合指示剂(1.000g酸性铬蓝K、0.200g萘酚绿B、50g硝酸钾),以EDTA(0.015mol/L)滴定,近终点时应缓慢滴定至纯蓝色。5. 浆液pH值的测量电极每天使用前用缓冲溶液进行检查和校核pH值测量必须在现场流动的浆液中进行,并同时观测温度,通过pH计所显示的数字,对浆液在线pH计的读数进行对比。测量完毕

石灰石、白云石中硅钙镁联合测定

石灰石、白云石中硅铁铝钙镁的联合测定 一、试样溶液的制备: 试样以1:1的无水碳酸钠-硼砂混合溶剂熔融,以稀盐酸溶解,制成溶液。 试剂:1、混合溶剂:无水碳酸钠与四硼酸钠按1:1混匀(于700~750 C 焙烧除去水份),研细,置于磨口瓶内备用。 2、盐酸:d 1.19; 1:9 3、石墨粉:光谱纯 分析步骤:称取试样0.5000g(于105C干燥箱中干燥1h)于预先制成桶状的定量滤纸中混匀包好。移入垫有石墨粉的瓷坩埚内,先在炉门口预热至火焰消失,移入850C处熔融5min。取出将熔球冷却,将焙球钳入已盛有25ml(d 1.19)的盐酸和100ml热水的烧杯中,加热至熔球完全溶解,过滤于250ml容量瓶中,冷却稀释至刻度,摇匀作母液备用。 二、二氧化硅的测定-硅钼兰分光光度法 1、方法提要:吸取部分试液,加入钼酸铵后先生成钼酸杂多酸,用 抗坏血酸还原为硅钼兰进行比色测定。 2、试剂:钼酸铵:5% 抗坏血酸:1% 盐酸:1:1; 1:9 3、分析步骤:吸取试液5.0ml于100ml的容量瓶中,加水10ml,加 5%的钼酸铵5ml,热水浴加热1分钟,加入1:1的盐酸30ml及1%的抗坏血酸5ml,冷却后稀释至刻度摇匀。以试剂空白为参比,1cm 比色皿,于680nm处比色。测其吸光度,以标准曲线求得含量。 三、三氯化铁及三氯化二铝的连续测定-EDTA滴定法 1、方法要点:于PH=1.5~2.0时,以黄基水杨酸作指示剂,EDTA 标准溶液滴定铁。于滴定铁后的溶液中,调节其

PH=4.5时,加入过量的EDTA与铝配位,用PAN作指示剂,用CuSO4标准溶液回滴过量的EDTA。 2、试剂:氨水:1:1 黄基水杨酸:10% EDTA:0.01mol/L 醋酸缓冲液:PH=4.5 PAN指示剂:0.2%乙醇溶液 硫酸铜标准溶液:0.01mol/L 3、分析步骤:吸取试液50ml于500ml锥形瓶中,加10%的黄基水 杨酸10滴,用1:1的氨水中和至紫色(PH约为2,可用试剂检查)。 加热至60~700C,取下立即用0.01mol/LEDTA滴定至紫色恰好消失为终点。 于滴定铁后的溶液中,加入0.01mol/L的EDTA标准溶液5~10ml(视铝含量而定),加入醋酸缓冲液20ml。加热煮沸3~4min,取下冷却至室温<请合法使用软?t>加入0.2%的PAN指示剂4~5滴,以0.01mol/LCuSO4标准溶液滴定至紫红色或紫兰色为终点。 Fe2O3=(V×TFe2O3/C2)×100 式中:V-EDTA标准溶液的毫升数 TFe2O3-EDTA标准溶液对Fe2O3的滴定度 C2-样品重g Al2O3%=(V1-V2K)TAl2O3/ C2×100 式中:V1-加入EDTA的毫升数 V2-滴定时消耗硫酸铜标准溶液的毫升数 K-EDTA标准溶液与硫酸铜标准溶液的 浓度比值 TAl2O3-EDTA标准溶液对Al2O3的滴定度 C2-试样重g 四、氧化钙、氧化镁的测定-EDTA配位滴定法 1、方法要点:用氨水调节PH>12,铜试剂分离干扰元素,用EDTA

纯铂化学分析方法

纯铂化学分析方法 钯、铑、铱、钌、金、银、铝、铋、铬、铜、铁、镍、铅、镁、锰、锡、锌、硅量的测定 电感耦合等离子体原子发射光谱法 实验报告 年月

纯铂化学分析方法 钯、铑、铱、钌、金、银、铝、铋、铬、铜、铁、镍、铅、镁、锰、锡、锌、硅量的测定 电感耦合等离子体原子发射光谱法 李秋莹、何姣、方海燕、孙祺、王应进 前言 随着化工、化学、医药、催化等行业和材料学科的快速发展,市场对纯铂及其电子产品的需求快速增长,贵研铂业股份有限公司正发展成为铂原材料及其深加工产品的重要生产基地。我公司用于生产合金材料、催化剂、铂网、抗癌药的纯铂在不断增长。铂中杂质元素含量的高低直接影响其材料、产品的电学性能、力学性能、加工工艺和使用寿命。因此,催化、医药、材料研究和生产经营都需要更快、更准确的掌握其杂质元素含量的信息,这就对铂中杂质元素分析提出了快速、准确的要求。 目前国内外在铂纯度检测的标准方法有粉末法[]。该方法主要分析对象为粉末试样,对海绵样品的处理相对简单,不易污染,但对金属块屑状样品的处理就相对复杂繁琐了。全过程至少需要个工作日。此外,该方法粉末标准样品的配制,不但要消耗大量昂贵的高纯贵金属作为基体,而且还需花费大量的人力、物力和时间。 资料调研表明,为解决粉末法的不足,采用溶液进样、-(电感耦合等离子体原子发射光谱法)或-(电感耦合等离子体质谱法)测定纯铂中微量杂质元素已成为近年来的一种发展趋势[]。我们研究的纯铂分析方法,在不使用铂基体匹配的条件下,完全满足产品标准规定元素测定要求。 用基体配制合成样进行检出限及干扰实验,用样品进行了准确度及精密度考察,样品加标回收率为%~%,相对标准偏差()为%%。 、实验部分 仪器及工作条件 美国公司型电感耦合等离子体原子发射光谱仪。工作条件列于表。 表. 仪器工作条件

白云石和石灰石配料除铁控制工艺技术

白云石和石灰石配料除铁控制工艺技术 发表时间:2019-04-30T15:08:04.833Z 来源:《基层建设》2019年第5期作者:张旭 [导读] 摘要:本文通过对白云石、石灰石化学成分的分析,主要论述了白云石和石灰石在除铁工艺中对玻璃性能的影响以及对玻璃总体质量的提升上的帮助,总结了白云石和石灰石配料技术对玻璃生产工艺提升的意义。 河北南玻玻璃有限公司河北省廊坊 065600 摘要:本文通过对白云石、石灰石化学成分的分析,主要论述了白云石和石灰石在除铁工艺中对玻璃性能的影响以及对玻璃总体质量的提升上的帮助,总结了白云石和石灰石配料技术对玻璃生产工艺提升的意义。 关键词:白云石;石灰石;除铁控制;技术 引言 玻璃工业是我国城市化进程的重要驱动力,不管是路桥建设飞速发展,工业化技术的突飞猛进,航空航天科技的突破,都离不开玻璃工业的推动,这些外驱力和行业自身的发展进程对该行业的工艺技术提出了更高的要求。玻璃工艺技术必须要符合玻璃工业的发展,“除铁技术”是玻璃工业技术发展的一个关键因素,如何通过白云石和石灰石配料除铁是玻璃工艺发展的一项技术创新,在提高玻璃工艺质量的同时,提高产品质量。那么在这项技术中白云石和石灰石的化学成分,铁含量等元素如何控制,如何提高除铁工艺的总体质量,如何控制工艺期间的温度,强度以提高工艺技术的可操作性最终提高产品质量。 一、白云石、石灰石的化学成分分析 白云石和石灰石是生产玻璃的主要原料,在玻璃熔制工艺中白云石和石灰石配料的品质高低、成分的稳定性及微量元素含量对成品的质量有重要的影响。那么在玻璃熔制过程中如何保证白云石和石灰石配料的品质、成分、微量元素都能达到工艺要求呢。首先对白云石和石灰石的成分进行分析,白云石是一种晶体结构,其中的化学元素为CaCO3和MgCO3,通常可以用在冶炼时的转化炉耐火内层、玻璃熔剂、大理石材、油漆等材料中。在建材、陶瓷、玻璃和耐火材料、化工环保节能材料领域运用广泛,对玻璃的熔制工艺制度及光学性能有直接影响。石灰石又称为碳酸钙,是存在于岩石中的一种化合物,无色无味,高温下分解成氧化钙和二氧化碳,石灰石是生产玻璃的主要原料,也是建筑材料中经常用到的一种原料,玻璃就是由石灰石、石英砂、碳酸钠等混合,经高温熔融制而得。石灰石和白云石一样与所有强酸发生反应,只是白云石的反应慢于石灰石,用少量盐酸滴液的可以使石灰石产生剧烈的气泡,使澄清的石灰水变浑浊,但同样的盐酸滴液只能使白云石产生少量的气泡,说明在白云石和石灰石的配料中白云石抗酸性更加稳定,可以根据对稳定性的需求来调配白云石和石灰石用量比例。 二、白云石和石灰石在除铁工艺中对玻璃性能的影响 白云石中的CaCO3和MgCO3在玻璃成分中引入CaO和MgO,同时还有Si、Al、Fe等微量元素,石灰石的主要成分是碳酸钙CaCO3,在玻璃成分中主要表现为CaO。由于Fe2O3含量的不同对玻璃的透光率有直接影响。 如图可见,白云石和石灰石中的Fe元素对玻璃透光率的影响,当玻璃呈液态状时,玻璃中的Fe元素会分解为Fe2+或Fe3+的状态存在,而Fe2+或Fe3+元素会导致玻璃在液态状时颜色不同,用肉眼看到的玻璃会呈绿色,也就是铁元素在玻璃中呈现出来的色泽,Fe2+或 Fe3+元素还会在液态状玻璃中影响玻璃的透热性和玻璃液熔化、澄清等性能。上图中可以看到透光率随着玻璃厚度的增加而降低,同一厚度的玻璃Fe2O3含量越高透光率越低,所以在玻璃生产过程中,可以通过白云石和石灰石的配制调节Fe元素对玻璃透光率的影响。 由于铁元素会导致玻璃呈绿色状,除了通过白云石和石灰石配料的调节,还应注意:(1)防止带铁元素物质的混入;(2)在玻璃制作过程中用到的机器设备,如原料输送机、提升机、破碎机等在对原料进行加工的过程中要进行除铁处理;(3)安装多层除铁设施在六角筛下、粉料提升机的出口,以及入库皮带或溜子上,也要进行定期除铁操作;(4)在破碎流程中,要注意锤头等铁件的磨损带入的铁渣、铁器;(5)在白云石和石灰石进厂过程再加工环节进行除铁处理:白云石/石灰石中块料运送至堆场,铲车转运至地坑,行车抓运至吊车和中间仓,转至抖动给料机,转至锤式玻碎机,转至粗块提升机进行六角筛分(在六角筛分中运用抽屉式除铁棒和8目筛网除铁),除铁后的合格粉料至粉料提升机,在粉料提升机中再运用抽屉式除铁棒再次除铁,至分叉溜子,再次运用抽屉式除铁棒除铁,至二线粉料库,通过入库皮带机入一线粉料库之前,最后再用抽屉式除铁棒完成除铁。所以在白云石和石灰石进厂过程中会经过四次除铁操作,最大限度的保证入一线库的粉料没有铁元素物质的混入;(6)在选料过程中对白云石和石灰石的颗粒度也要进行严格筛选,白云石和石灰石都呈粉末状,在筛选过程中要杜绝大颗粒状的粉末,也要对超细粉末含量进行控制,还要严格控制水分含量,过往研究发现100目以下的超细粉不宜超过25%。 三、白云石和石灰石配料除铁对玻璃质量的提升 低铁玻璃具有很强的可加工性和优越的物理、机械及光学性能,它可以像其它优质玻璃一样进行各种深加工处理。通过白云石和石灰石除铁后的低铁玻璃,具有超高透明性,高品质、多功能的新型高档玻璃品种,用途更加广泛,拥有更广阔的市场空间和前景。 1、玻璃的自爆率低,由于在溶解过程中对铁元素的精细控制,使玻璃内部的杂质少大大降低了玻璃的自爆率。 2、颜色一致性高,由于低铁含量玻璃中绿色波段吸收较少,且相较于普通玻璃而言低铁玻璃对光线中的红紫色波段吸收也很少,所以低铁玻璃颜色的一致性高,看起来更加有质感。 3、玻璃通透性好,紫外线穿透率比一般玻璃高,使玻璃显现晶莹剔透的水晶般品质,玻璃展品更显清晰,可见光透过率更高。 4、具有较强的市场前景,虽然在低铁玻璃的生产过程中对白云石和石灰石配料有较高的技术含量,除铁工序的复杂,除铁步骤的繁

建筑石灰试验方法化学分析方法

建筑石灰试验方法化学分析方法 时间: 2004-01-18 11:57:13 | [<<][>>] 1 主题内容与适用范围 本标准规定了建筑石灰化学分析的仪器设备、试样制备、试验方法和结果计算以及化学分析允许误 差。 本标准适用于建筑生石灰、生石灰粉和消石灰粉化学分析方法,其他品种石灰可参照使用。 2 总则 2.1送检试样应具有代表性,数量不少于100g,装在磨口玻璃瓶中,瓶口密封。检验时,将试样混均以 四分法缩取25g,在玛钵内研细全部通过80um方孔筛用磁铁除铁后,装人磨口瓶内供分析用。 2.2分析天平不应低于四级,最大称量200g,天平和砝码应定期进行检定。 2.3称取试样应准确至0.0002g,试剂用量与分析步骤严格按照本标准规定进行。 2.4化学分析用水应是蒸馏水或去离子水,试剂为分析纯和优级纯。所用酸和氨水,未注明浓度均为浓

酸和浓氨水。 2.5滴定管、容量瓶、移液管应进行校正。 2.6做试样分析时,必须同时做烧失量的测定,容量分析应同时进行空白试验。 2.7分析前,试样应于100-105℃烘箱中干燥2h。 2.8各项分析结果百分含量的数值,应保留小数点后二位。 3 分析方法 3.1二氧化硅的测定 3.1.1氟硅酸钾容量法 3.1.1.1方法提要 在有过量的氟,钾离子存在的强酸性溶液中,使硅酸形成氟硅酸钾(KaSiF 6)沉淀,经过滤、洗涤、中 和滤纸上的残余酸后,加沸水使氟硅酸钾沉淀水解生成等当量的氢氟酸,然后以酚酞为指示剂,用氢氧化钠 标准溶液进行滴定。 3.1.1.2试剂

a.硝酸(浓); b.氯化钾(固体) c.氟化钾溶液(150s/L):将15g氟化钾放在塑料杯中,加50mL水溶解后,再加20mI硝酸,用 水稀释至100mL,加固体氯化钾至饱和,放置过夜,倾出上层清液,贮存于塑料瓶中备用; d.氯化钾-乙醇溶液(50g/L):将5g氯化钾溶于50mL水中,用95%乙醇,稀至100mL混匀; e.酚酞指示剂乙醇溶液(10g/L):将1g酚酞溶于95%乙醇,并用95%乙醇稀释至100mL; f.氢氧化钠标准溶液(0.05mol/L):将10g氢氧化钠溶于5L水中,充分摇匀,贮于塑料桶中; 标定方法:准确称取0.3000g苯二甲酸氢钾置于400mL烧杯中,加入约15 0mL新煮沸的冷水 (用氢氧化钠熔液中和至酚酞呈微红色),使其溶解,然后加入7 ̄ 8滴酚酞指示剂乙醇溶液(10g/L), 以氢氧化钠标准溶液滴定至微红色为终点,记录V。 氢氧化钠溶液对二氧化硅的滴定度按式(1)计算:

锰矿石的物相分析

锰矿石的物相分析 在自然界中,锰是以氧化锰的形态存在于各种岩石中。有实际价值的锰矿物,是由不同价态组成的氧化锰矿或碳酸锰矿(即菱锰矿)。 根据锰在自然界中的存在情况及工业用途,对锰矿石进行物相分析时,通常只要求测定几种主要锰矿物。在个别情况下,才需测定锰方解石及锰菱铁矿。 本节介绍的锰矿物相分析流程,主要测定MnO2、Mn2O3及MnCO3这三个组分。 一、几种主要锰矿物的测定 主要锰矿物及其表示符号为: 菱锰矿水锰矿·褐锰矿软锰矿 MnCO3 Mn2O3,(3Mn2O3·MnSiO3)MnO2 X Y Z 其不同分析方案如下: 方案一: 方案二: 方案三:

各相锰矿物中锰的实际结果按下式计算: %Mn 菱锰矿X 水锰矿·褐锰矿 Y 软锰矿 Z 总量 Σ Mn A、B、C(见分析方案中相应的符号)——转入不同相中锰的含量(克);G——试样重量(克); Σ Mn——单独称样测得之总锰量。 (一)试剂 硫酸铵溶液6N 称取40克硫酸铵溶于水中,稀释至100毫升。 硫酸9.4N 取硫酸26毫升与水混合后,稀释至100毫升。 硫酸2N 取硫酸13.9毫升与水混合后,稀释至250毫升。 硼酸饱和溶液。 其他试剂同锰的测定。 (二)分析手续 1、菱锰矿(MnCO3)的测定

方案一: 称取0.1~0.2克试样,置于100毫升烧杯中,加入6N硫酸铵溶液20毫升、9.4N硫酸0.5毫升,在沸水浴上加热15~20分钟(经常搅拌,随时加水保持体积不变)。冷却后过滤于锥瓶中,用水洗8~10次。残渣留作测定水锰矿、褐锰矿和软锰矿。 滤液中加入磷酸15毫升、2%硝酸银溶液5毫升及30%过硫酸铵溶液10毫升,以下分析手续与总锰的测定同,此为菱锰矿的锰量(A)。 方案二: 称取0.1~0.2克试样,置于200毫升烧杯中,加1%硫酸100毫升,在室温搅拌1小时,过滤,以下手续同上法。 2、水锰矿(Mn2O3)和褐铁矿(3Mn2O3·MnSiO3)的测定 方案三: 称取0.1~0.2克试样,置于铂皿中,用水润湿。加混合液(50毫升2N硫酸+2克氟化钾+2毫升氢氟酸),在沸水浴上加热30分钟(经常搅拌),随时加水保持原来体积,冷却后过滤。滤液收集于预先盛有15毫升饱和硼酸的锥瓶中,用水洗涤8~10次。残渣留作测定软锰矿。 滤液中加入磷酸15毫升、2%硝酸根溶液5毫升、30%过硫酸铵溶液10毫升,以下手续与全锰的测定同。此为菱锰矿、水锰矿和褐锰矿的锰合量(B)。由此减去菱锰矿的锰含量(A),即为水锰矿和褐锰矿的锰含量。 3、软锰矿(MnO2)的测定 将方案三所得的残渣和滤纸置于瓷坩埚中,灰化。然后将残渣移入锥瓶中,加入15毫升磷酸,加热分解,冷却。用水稀释至100~150毫升,加入5毫升2%硝酸根溶液、10毫升30%过硫酸铵溶液,以下手续与全锰的测定同。此为软锰矿的锰含量(C)。 也可用方案一或方案二所得的残渣,测定其中水锰矿、褐锰矿和软锰矿的锰的含量,由此减去水锰矿、褐锰矿的锰含量,即为软锰矿的锰含量。 附:硅酸锰矿(MnSiO3)的测定

铁矿石化学分析方法

铁矿石化学分析方法 1:目的: 规范了铁矿石分析方法。适应生产的需要,确保分析结果准确及时 2:适应范围 适用于铁矿石中全铁、全硫量的测定 3:引用标准: GB/T6730-86铁矿石化学分析方法 4:全铁量的测定—重铬酸钾容量法 4.1方法提要:试样用硫磷混酸溶解,然后加入浓盐酸,氯化亚锡用氯化高汞除去,用二苯胺磺酸钠为指示剂,以重铬酸钾标准溶液滴定,借此测定全铁。 4.2试剂 4.2.1硫酸磷酸1:1比例混合,硫酸(比重1.84),磷酸(比重1.7) 4.2.2二氯化锡溶液(10%)称取100克二氯化锡溶于600ml盐酸(比重1.19)中用水稀释至1000ml,贮于棕色瓶中备用。 4.2.3 二氯化汞饱和溶液 4.2.4盐酸(比重1.19)。 4.2.5二苯胺磺酸钠(0.2%)称取0.2克二苯胺磺酸钠溶于100ml水中,摇匀。 4.2.6重铬酸钾标准溶液(0.07162mol/L)TQ称取3.512克预先在105℃烘干1小时后重铬酸钾(基准试剂)溶于水中,移入1000ml容量瓶中用水稀释至刻度,摇匀。 4.3分析步骤 称取0.2克试样放入500ml三角瓶中,加入10ml 1:1硫、磷混合酸,电炉上加热溶解三氧化硫白烟至离瓶底1/2时取下(试样完全)冷却,以水冲洗瓶壁,加入10ml盐酸,电热上加热至近沸取下,用10%的二氯化锡逐滴还原至无色,并过量1~2滴,流水冷却至室温,加入5ml的二氯化汞饱和溶液,摇匀、静止3分钟,加水150~200ml,加7~8滴二苯胺磺酸钠(0.2%),立即以重铬酸钾标准溶液滴定呈稳定紫色。 4.4计算: 全铁(%)=(N*V*0.05585/W)*100 式中V-消耗重铬酸钾标准溶液的毫升数 N-重铬酸钾标准溶液摩尔浓度 W-试样重(克) 0.05585-1毫升重铬酸钾标准溶液相当于铁的毫克数。 5硫量的测定—燃烧碘酸钾滴定法 5.1方法提要:

铟化学分析方法 第1部分:砷量的测定

ICS .77.99 YS Array铟化学分析方法 第1部分:砷量的测定 氢化物发生—原子荧光光谱法 Methods for chemical analysis of Indium Part 1:Determination of arsenic content- Hydride generation-atomic fluorescence spectrometry (送审稿) ××××-××-××发布××××-××-××实施中华人民共和国工业和信息化部发布

前言 YS/T 276《铟化学分析方法》共包括11个部分: ——第一部分砷量的测定氢化物发生──原子荧光光谱法 ——第二部分锡量的测定苯芴酮-溴代十六烷基三甲胺分光光度法 ——第三部分铊量的测定甲基绿分光光度法 ——第四部分铝量的测定铬天青S分光光度法 ——第五部分锌、铁量的测定方法一:电热原子吸收光谱法 方法二:火焰原子吸收光谱法 ——第六部分铜、镉量的测定火焰原子吸收光谱法 ——第七部分铅量的测定火焰原子吸收光谱法 ——第八部分铋量的测定方法一:氢化物发生-原子荧光光谱法 方法二:火焰原子吸收光谱法 ——第九部分铟量的测定EDTA容量法 ——第十部分铋、铝、铅、铁、铜、镉、锡、铊量的测定电感耦合等离子体原子发射光谱法——第十一部分砷、铝、铅、铁、铜、镉、锡、铊、锌、铋量的测定电感耦合等离子体质谱法本部分为第一部分。 本部分代替YS/T 276.1-1994《铟化学分析方法水相钼蓝分光光度测定砷量》,与YS/T 276.1-1994相比,主要有如下变动: ──改变了测定方法,采用氢化物发生──原子荧光光谱法; ──扩展了测定范围由0.0003%~0.0010%至0.0002%~0.0020%; ──补充了精密度、质量保证和控制条款; ──补充了“试验报告”要求。 本部分由全国有色金属标准化技术委员会提出并归口; 本部分负责起草单位:株洲冶炼集团股份有限公司、北京矿冶研究总院; 本部分起草单位:北京矿冶研究总院; 本部分参加起草单位:广西华锡集团股份有限公司、株洲冶炼集团股份有限公司、中冶葫芦岛有色金属集团公司。 本部分起草人:姜求韬、冯先进、阮桂色、高颖剑、杨观新、覃祚明、潘世山、严伟强、鲁青庆池凤华、李遵义 本部分所代替标准的历次版本发布情况为: ──GB8221.1-1987; ──YS/T 276.1-1994。 2

白云石、石灰石、方解石化学分析

白云石、石灰石、方解石化学分析 1.主要内容与适用范围 本标准规定了玻璃工业用白云石、石灰石、方解石化学成分分析的原理,使用的试剂、仪器,分析步 骤和结果处理。 本标准适用于玻璃工业用白云石、石灰石、方解石的化学成分分析。 2.试样的制备 试样必须具有代表性和均匀性,没有外来杂质混入,经过缩分,最后得到约20g试 样,在玛瑙钵中研磨至全部通过孔径150μm(100目)筛,然后装于称量瓶中备用。 3.分析方法 3.1一般规定 3.1.1 标准中同一成分所列不同分析方法,可根据具体情况选用,如发生争议。以第一种方法为准。 3.1.2 所用分析天平感量应为0.0001g,天平与砝码应定期进行校验。“恒重”系指 连续两次称重之差不大于0.0002g。 5.1.3 所用仪器和量器应经过校正。 3.1.4 分析试样应于烘箱中在105-110℃烘干1h以上,冷却至室温,进行称量。

3.1.5 分析用水应为蒸馏水或去离子水;所用试剂应为分析纯或优级纯;用于标定溶 液的试剂应为基准试剂。对水和试剂应做空白试验。 3.1.6 标准中试剂的浓度采用下列表示法: 3.1.6.1当直接用名称表示下列试剂时,系指符合下列百分浓度的浓试剂: 试剂名称试剂浓度(%) 盐酸 36-38 氢氟酸 40以上 硝酸 65-68 高氯酸 70-72 硫酸 95-98 氨水 25-28 3.1.6.2 被稀释的试剂浓度以下列的形式表示: 盐酸(5+95),系指5份体积的盐酸加95份体积的水配成之溶液。3.1.6.3 固体试剂配制的溶液浓度用重量/体积的百分浓度表示(作标准溶液时除外 ),例如:20%氢氧化钾是指每20g氢氧化钾溶于100mL水而制成之溶液。在没有特别指 明时,均指水溶液。 3.1.7 吸光度测量所用之“试剂空白溶液”指不含待测组分之溶液。3.2 烧失量的测定

石灰石或白云石中钙镁含量的测定

石灰石或白云石中钙、镁含量的测定(配位滴定法) 一、实验目的 1、练习酸溶法的溶样方法。 2、掌握配位滴定法测定石灰石或白云石中钙、镁含量的方法和原理。 3、了解沉淀分离法在本测定的应用。 4、练习沉淀分离中的一些基本操作技术,如沉淀、过滤、洗涤等。 二、实验原理 石灰石或白云石的主要成分为CaCO3和MgCO3,此外,还常常含有其他碳酸盐、石英、FeS2、粘土、硅酸盐和磷酸盐等。石灰石或白云石中钙、镁含量测定的原理如下: 1、试样的溶解:一般的石灰石或白云石,用盐酸就能使其溶解,其中钙、镁等以Ca2+、Mg2+ 等离子形式转入溶液中,有些试样经盐酸处理后仍不能全部溶解,则需以碳酸钠熔融,或用高氯酸处理,也可将试样先在950~1050℃的高温下灼烧成氧化物,这样就易被酸分解(在灼烧中粘土和其他难于被酸分解的硅酸盐会变为可被酸分解的硅酸镁等)。 2、干扰的除去:石灰石或白云石试样中常含有铁、铝等干扰元素,但其含量不多,可在pH值为5.5~6.5的条件下使之沉淀为氢氧化物而除去。在这样的条件下,由于沉淀少,因此吸附现象极微,不致影响分析结果。 3、钙、镁含量的测定:石灰石或白云石经溶解并除去干扰元素后,调节其溶液之pH≥12,以钙指示剂为指示剂,用EDTA标准溶液滴定至酒红色→纯蓝色,用EDTA V1mL,此时,测定的是钙的含量。 钙指示剂(H3Ind)在水溶液中按下式电离:H32H++HInd2-;在pH》12的溶液中,Ca2+与Hind2-形成比较稳定的配离子; HInd2-+Ca CaInd-+H+;CaInd-+H2Y2-+OH CaY2-+HInd2-+ H2O 酒红色无色纯蓝色 再取一份试液,调节其酸度至pH≈10,以K-B指示剂作指示剂,用EDTA标准溶液滴定至终点(棕红色→墨绿色),记下滴定所用的毫升V1mL,此时得到钙、镁的总量。由(V2-V1)即可以求镁量。 因为 Ca2+~ EDTA Mg2+~ EDTA ωCa2+ =c(EDTA).V1.M Ca2+/1000m试样,同理ωMg2+ =c(EDTA).(V2-V1.)M Mg2+/1000m试样 三、仪器及药品 0.02molL-1EDTA标准溶液;1∶1HCl溶液,1∶1氨水,NH3-NH4Cl缓冲液(pH≈10),10%NaOH溶液,钙指示剂,铬黑T指示剂,K-B指示剂,0.2%甲基红指示剂,镁溶液,1∶1三乙醇胺溶液。酸式滴定管,锥形瓶(250mL),FA/JA1004型电子天平,称量瓶。 四、实验步骤 1、试液的制备:准确称取石灰石或白云石试样0.2~0.3克,放入250毫升烧杯中,然后加入数滴纯水将试样润湿,盖上表面皿,从烧杯嘴处逐滴滴加1:1盐酸至刚好溶解,加适量水后定量转移到容量瓶中,转移时玻棒下端靠住容量瓶颈内壁,烧杯口靠住玻棒,转移过程中不能有液体洒在外面。并配制成250毫升溶液。 2、钙量的滴定: ①初步滴定:吸收25毫升试液,加三乙醇胺3毫升,加25毫升水稀释,加10毫升10%NaOH溶液,摇匀,使溶液pH达12~14左右,再加约0.01克钙指示剂(米粒大小即可),用EDTA标准溶液滴定至酒红色→纯蓝色(在快至终点时,必须充分振摇),记录所用EDTA溶液的体积。 ②正式滴定:吸收25毫升试液,加三乙醇胺3毫升,加25毫升水稀释,加入比初步滴定时少1毫升左右的EDTA 溶液,再加入10毫升10%NaOH溶液,然后再加入0.01克钙指示剂(米粒大小即可),继续以EDTA滴定至终点(酒红色→纯蓝色),记下滴定所用的EDTA溶液的体积V1mL。

水泥厂原料的化学分析方法

水泥厂原料的化学分析方法 D1石灰石的化学分析方法 D⒈1试样的制备 试样必须具有代表性和均匀性。由大样缩分后的试样不得少于100g,试样通过0.08mm 方孔筛时的筛余不应超过15%。再以四分法或缩分器减至约25g,然后研磨至全部通过孔径为0.008mm方孔筛。充分混匀后,装入试样瓶中,供分析用。其余作为原样保存备用。 D⒈2烧失量的测定 D⒈⒉1方法提要 试样中所含水分、碳酸盐极其他易挥发性物质,经高温灼烧即分解逸出,灼烧所失去的质量即为烧失量。 D⒈⒉2分析步骤 称取约1g试样(m),精确至0.0001g,置于已灼烧恒量的瓷坩锅中,将盖斜置于坩锅上,放入马弗炉内,从低温开始逐渐升温,在950~1000℃下灼烧1h,取出坩锅置于干燥器中,

冷却至室温,称量。反复灼烧,直至恒量。 D⒈⒉3结果表示 烧失量的质量百分数X LOI 按式(D1.1)计算: m-m 1 X LOI =————×100 ......................(D1.1) m 式中: X LOI—烧失量的质量百分数,%; m 灼烧后试料的质量,g; 1— m—试料的质量,g。 D⒈⒉4允许差 同一实验室的允许差为:0.25%; 不同实验室的允许差为:0.40%。 D⒈3二氧化硅的测定(基准法) D⒈⒊1方法提要

试样以无水碳酸钠烧结,盐酸溶解,加固体氯化铵于沸水浴中加热蒸发,使硅酸凝聚,灼烧称量。用氢氟酸处理后,失去的质量即为二氧化硅含量。 D⒈⒊2分析步骤 称取约0.6g试样(m2 ),精确至0.0001g,置于铂坩锅中,将盖斜置于坩锅上,在950~1000℃下灼烧5min,取出铂坩锅冷却至室温,用玻璃棒仔细压碎块状物,加入0.3g研细无水碳酸钠混匀。再将坩锅置于950~1000℃下灼烧10min,取出冷却至室温。 将烧结物移入瓷蒸发皿中,加少量水润湿,盖上表面皿。从皿口加入5mL盐酸(1+1)及2~3滴硝酸,待反应停止后取下表面皿,用平头玻璃棒压碎块状物使分解完全,用热盐酸(1+1)清洗坩锅数次,洗液合并于蒸发皿中。将蒸发皿置于沸水浴上,皿上放一玻璃三角驾,再盖上表面皿,蒸发至糊状后,加入氯化铵充分搅匀,放入沸水浴中蒸发至干后继续蒸发10~20min。 取下蒸发皿,加入10~20mL热盐酸(3+97),搅拌使可溶

石灰石和白云石的特性大理石

很多情况下,区别这几种天然石材却是非常重要的,至少对于最终用户来说,了解了这几种看似相同的石材的差异之处,有助于他们在选购时可以作全面的比较。 下面我们就来详细了解一下大理石、石灰石和白云石的特性。 大理石: 大理石也叫变质或重新结晶的石灰石。真正的大理石是一种方解石质的变质岩石,且具有晶体结构。大理石是根据地区性石材的变质作用由石灰石衍生而来,一般含有大块的、质地粗糙的结晶体,其中方解石的成分占99%以上。结晶体用肉眼可见,尤其是在其断面上。 大多数典型的石灰石孔隙密度小于1%,大理石与之相比,密度要大的多。由于其具有晶体结构,许多大理石是半透明的,一般可视厚度超过30厘米,而非结晶状的石灰石则是不透明的。由于大理石产地及内部成分不同,天然石材的颜色各异。 而在建筑业,人们谈及的大理石通常是指包括石灰石、白云石和蛇纹石在内的多种石材。美国大理石协会规定:用于商业的所有具有天然石灰质且能抛光出亮度的岩石都称为大理石,包括白云石和蛇纹石。 石灰石: 石灰石也叫方解石、碳酸钙,其摩氏硬度值(MOH)为3。 石灰石是一种含有单个方解石矿物成分的岩石,方解石成分占95%,其含有的另外少量矿物质有白云石、菱铁矿、石英、长石、云母以及能够体现石材颜色的粘土矿物质。成分纯净的石灰石是白色的。褐铁矿和菱铁矿使石灰石产生黄褐色的图案和颜色,如血红色、海绿色、亚氯酸盐绿、沥青灰直至黑色。 产自海水中的石灰石由动植物的骨骼碎片、石灰质泥的物理变化以及海水中的有机物等多种成分构成。这些有机物死后,碳酸盐在海水中被溶解,堆积在海底,逐渐形成碳酸钙及贝壳质组织。通常石灰石被切割后,会发现在石材内部存在完整无缺或被破坏了的生物化石。 除非石灰石形成暗礁,一般来说,产自海中的石灰石都有层状结构。其组织结构或许致密,或许有颗粒状的孔隙。 白云石: 白云石的主要成分为碳酸镁钙,摩氏硬度值(MOH)在3.5到4之间。 白云石矿主要成分为碳酸钙和碳酸镁。这种石材在外观上看来非常接近石灰石,事实上,在发现石灰石沉积物的地区,也会经常发现白云石。大多数白云石的沉积物含有一定比例的石灰石。区别白云石的重要依据是岩石中白云石矿物质的含量不少于50%。另外,白云石是多孔性石材。因构成白云石的化学成分对酸性物质不敏感,白云石具有更佳的耐候性。 一般说来,人们通常用硬度测试法和酸性测试法这两种方法来区别石灰石和白云石。 摩氏硬度测试法(MOH)是一种简单的机械测试法,即用另外一种已知硬度的金属来刮擦这种石材。由此测得白云石的硬度值介于3到4之间。而酸性测试法则是将稀释后的盐酸涂布到石材表面,石灰石反应强烈,而白云石反应不太明显,表面会形成粉状物。如果以上测试效果不明显,则需要做实验室分析。若能知道石材的来源矿,则矿物质种类和成分就会一清二楚了。 总的来讲,大理石、石灰石和白云石这三种石材可以作为建筑材料交替使用。但即使是属于同一类别的石材,其物理属性也各不相同。在决定哪一种石材最适合使用前,要将石材的吸收性、密度和结构上的完整性等因素全部考虑在内。可以借鉴其他建筑物的石材使用情况。 石灰石的吸收性较强,鉴于这一特点,我们在用石灰石铺设地面等区域时,要将乱涂乱写等日后易出现的污染考虑在内。在易受环境损坏、受重压的区域要使用密度大且吸收性小的石材。 从历史上的建筑物来看,白云石用作外墙表面,经受风化或侵蚀的能力比大理石和石灰石要强。因为其方解石含量少,所以对大气的污染(主要以酸为主)耐候性较强。 希望以上几点可以帮助您更正确的认识以上几种石材。

铁矿石化学分析方法.doc

铁矿石分析 铁矿石主要是赤铁矿(Fe2O3)、黄铁矿(FeS2)以及硫酸制造工业的废渣硫酸渣(以Fe2O3为主)。 一、二氧化硅(氟硅酸钾容量法) 准确称取约0.3g已在105~110℃烘干过的试样,置于银坩埚中,在700~750℃的高温炉中灼烧20~30min。取出,放冷。加入10g氢氧化钠,盖上坩埚盖(应留一定缝隙),再置于750℃的高温炉内熔融30~40min(中间可取出坩埚将熔融物摇动1~2次)。取出坩埚,放冷,然后将坩埚置于盛有约150ml热水的烧杯中,盖上表面皿,加热。待熔块完全浸出后,取出坩埚,用水及盐酸(1+5)洗净。向烧杯中加入5ml盐酸(1+1)及20ml硝酸,搅拌。盖上表面皿,加热煮沸。待溶液澄清后,冷至室温,移入250ml容量瓶中,加水稀释至标线,摇匀。此溶液可供测定二氧化硅、三氧化二铁、三氧化二铝、二氧化钛、氧化钙、氧化镁以及氧化亚锰之用。 吸取50ml上述试样溶液,放入300ml塑料杯中,加入10~15ml 硝酸,冷却.加入10ml150g/L氟化钾溶液,搅拌.加固体氯化钾,搅拌并压碎未溶颗粒,直至饱和.冷却并静置15min。以快速滤纸过滤,塑料杯与沉淀用50g/L氯化钾溶液洗涤2~3次。 将滤纸连同沉淀一起置于原塑料杯中,沿杯壁加入10ml50g/L氯化钾—乙醇溶液及1ml10g/L酚酞指示剂溶液,用0.15mol/L氢氧化钠溶液中和未洗净的酸,仔细搅动滤纸并随之擦洗杯壁,直至溶液呈

现红色。然后加入200ml沸水(此沸水应预先以酚酞为指示剂,用氢氧化钠溶液中和至微红色),以0.15mol/L氢氧化钠标准溶液滴定溶液滴定至微红色。 试样中二氧化硅的质量百分数按下式计算: TSiO2V SiO2= —————×100 m×1000 式中:TSiO2————每毫升氢氧化钠标准溶液相当于二氧化硅的毫克数; V———滴定时消耗氢氧化钠标准溶液的体积,ml; m———试料的质量,g。 二、三氧化二铁(EDTA—铋盐回滴定法) 吸取25ml上述所制备的试样溶液,放入400ml烧杯中,加水稀释至约200ml,用硝酸和氨水(1+1)调整溶液PH至1.0~1.5(以酸度计或精密PH 试纸检验)。加2滴100g/L磺基水杨酸钠指示剂溶液,用0.015mol/LEDTA标准溶液滴定溶液至紫红色消失后,再过量1~2ml,搅拌并放置1min。然后加入2~3滴5g/L半二甲酚橙指示剂溶液,用0.015mol/L硝酸铋标准滴定溶液滴定至溶液由黄变为橙红色。试样中三氧化二铁的质量百分数按下式计算: TFe2O3(V1-KV2)×10 Fe2O3 =——————————×100 m×1000

第一章石灰石化学分析

第一章石灰石化学分析 一.石灰石中水分的测定:称取200g试样于105℃的烘箱内烘2小时,取出干燥器内冷却至室温后称量。 结果计算:水分=(称样重-烘后的石灰石重量)÷称样重×100% 二.细度的测定:准确称取25g的试样于筛子里用水冲流,烘干。 结果计算:筛余物的重量÷所称的样品重×100%即为细度的百分数。 三、试样溶液的制备 1. 石灰石试样溶液制备 称取1g石灰石试样,精确至0. 0001g,置于250毫升的烧杯中。加入少量除盐水,再加入25毫升盐酸溶液(1+1),稍加摇动,待剧烈反应停止后,置于电热板上加热,微沸10min后使溶液冷却。将溶液用慢速定量滤纸过滤,500mL 干净烧杯承接,并用除盐水冲洗残余物及杯壁,所得滤液移入250mL容量瓶中,用水稀释至刻度,摇匀,用来测定Ca2+、Mg2+等分析项目(所得固体进行干燥、冷却后称重即为可测得酸不溶物的含量)。 2.CaO的测定 (1)方法提要 以三乙醇胺掩蔽试样中铁、铝等干扰元素,在pH大于12.5的溶液中,以钙羧酸作指示剂,用EDTA标准滴定溶液滴定钙。 (2)试剂和溶液(包括MgO的测定试剂) 2.1 三乙醇胺:1+1溶液。 2.2 氢氧化钾:200g/L溶液。 2.3 糊精:40g/L溶液。称取4g糊精,用水调成糊状,加入100mL沸水(使用前配制)。 2.4 氯化铵-氨水缓冲溶液(PH≈10):称取67. 5g氯化铵溶于300mL水中,加570mL氨水,移入1000mL容量瓶中,用水稀释至刻度,摇匀。 2.5 盐酸羟胺:50g/L溶液。 2.6 乙二胺四乙酸二钠(EDTA):c(EDTA)约为0.02mol/L标准滴定溶液,配制与标定按GB 601执行。 2.7 钙羧酸指示剂:称取1g钙羧酸与100g氯化钠研磨,混匀,保存于磨口瓶中。 2.8 酸性铬蓝K指示剂:5g/L溶液。称取0.5g酸性铬蓝K溶解于100mL水中(使用期为一周)。 2.9 萘酚绿B指示剂:5g/L溶液。称取0. 5g萘酚绿B溶解于100mL水中(使用期为一周)。 2.10 铬黑T指示剂:5g/L溶液。称取0.5g铬黑T溶解于100mL三乙醇胺(1+1)溶

蒸发泵和渗透回流白云石化模式

蒸发泵和渗透回流白云石化模式 摘要:本文主要是简单介绍古代白云岩形成的经典模式:原生白云石模式、蒸发作用模式、渗流-回流模式、混合白云石化模式、埋藏白云石化模式和最近兴起的构造热液白云岩化。 关键词:碳酸盐白云石化模式 1、原生白云石模式 “原生白云石”通常定义为:从溶液中成核为晶体并像原生沉积物那样堆积下来,或者以胶结物形式沉淀在大孔隙中,因此在它们生长过程中仅仅占据了流体的空间。其中作为原生白云石最典型的实例是澳大利亚南部考龙泻湖和美国加利福尼亚深泉盐湖中的白云石。但研究中发现,这些白云石大都不是化学计量成分的,且沉淀速度不是过快就是太慢,故将它们看作是同生白云石化作用的例子可能更为合适。由此,许多人认为在地表条件下不能直接沉淀白云石。但随着研究的深入及新仪器的应用,国内外学者陆续在波斯湾、巴哈马安得罗斯全新世沉积物、牙买加发现湾附近裙礁及我国西沙群岛第三系生物礁碳酸盐岩中发现了直接沉淀的原生白云石沉积物。这些原生自形的白云石或与文石、高镁方解石共生,或作为孔隙充填的胶结物产出。 另外,最近人们开始关注“非叠层石生态系兰细菌白云岩”。在四川盆地上震旦统灯影组白云岩地层中,除发育有浅色的叠层石生态系兰细菌白云岩外,还发育有黑色的非叠层石生态系兰细菌白云岩。它既可发育于沉积期和胶结作用期,也可发育于成岩作用期。沉积期发育的非叠层石生态系兰细菌白云岩呈纹层状产出或围绕颗粒的四周生长,其单层厚度从1mm到大于10mm不等,有时呈不连续的黑色小点发育于白色叠层石生态系兰细菌白云岩的叠层石、层纹石中。现在的某些学者支持将这种白云岩算作是原生白云石的例子。虽然原生白云石的例子已被大量发现,但目前在常温、常压的条件下,在实验室中尚未合成出真正化学计量的白云石。所以,是否有真正原生的白云石,即是否真正有以化学沉淀的方式从水体中直接沉淀出来的白云石的问题,仍将继续讨论下去。 2、蒸发泵和渗透回流白云石化模式 这两种作用模式都需要比较炎热的气候,发生在蒸发作用比较强烈的海岸环境。 蒸发泵(萨布哈)模式——准同生白云石化作用在现代热带地区的潮上带。对于波斯湾的萨勃哈潮上区的白云石化作用,许靖华等提出了蒸发泵的机理(图1),他们认为,海水是由于萨勃哈上面的蒸发泵作用从泻湖侧向被抽吸至潮上沉积物内。沉积不久的表层沉积物(主要是文石)中的粒间水不断蒸发,同时海水又通过毛细管作用不断地补充到粒间。久而久之,粒间水的盐度增大,正常的海水就变成了盐水。石膏首先从这种盐水中沉淀出来,使粒间水或表层积水的

相关文档
最新文档