线性系统的稳定性研究分析

合集下载

33-56 线性定常系统稳定性及劳斯稳定判据

33-56 线性定常系统稳定性及劳斯稳定判据
c t 1 1 1
2
tr
d tp d

1 2
c(tp ) c() Mp c(tp ) 1 e c ( )
ts 1
d
(ln
1 1 ln ) 2 1
ess
e
n t
n
, t 0
0 0
s
1
34.6
s
0
2.3 104
由于该表第一列系数的符号变化了两次,所以该方程中 有两个根在 s 的右半平面,因而系统是不稳定的。
P83
例2:D(s)=s4+5s3+7s2+2s+10=0 试用劳斯判据判别该系统的稳定性。 解:列劳斯表 1 7 10
5 7 2 33 5 5
s4 s3
2 K 1 3
系统闭环稳定与开环稳定之间没有直接关系
例9: 系统结构图如右, (1)确定使系统稳定的参数(K, )的范围; (2)当 =2时,确定使全部极点均位于s=-1之左的K值范围。 解: (1) G( s)
Ka s ( s 2 20 s 100)
Ka 100
K
D( s) s3 20 s 2 100 s 100K 0
s s2 s1 s0
3
1 20
2000 100 K 20
100 100K
0
0 K 20 K 0
100K
(2)当 =2 时,确定使全部极点均位于s=-1之左的K值范围。
当=2时,进行平移变换: s s 1
D( s) s 3 20 2 s 2 100s 100K 0
2
2 1 sin d t arctan

第3章第1-3节线性系统的稳定性及稳定判据

第3章第1-3节线性系统的稳定性及稳定判据
J.Z. Xiao, CEIE, HBU
s1 s0
a n ,1
a n +1,1
14
2、劳斯稳定判据
线性系统稳定 劳斯表中第一列元素各值全部为正。 如果劳斯表第一列中的元素出现小于零的数值,则系统不稳定, 且第一列各元素符号的改变次数,等于特征方程的正实部根的数目。 例3-6 设系统特征方程为
s 4 + 2 s 3 + 3s 2 + 4 s + 5 = 0
sin( γ t + ϕ )
lim e βt sin(γt + ϕ ) = 0
t →∞
( β < 0) ( β > 0)
运动模态
lim e βt sin(γt + ϕ ) = ∞
3)重根:设 α 为q重根
t →∞
eαt ,
te α t , L t q −1e α t
lim t r eαt = 0
t →∞
2 0 0 (0)0 8
4 12 8
8
设: F ( s ) = 2 s 4+8=0 可以求出以原点对称的根为
−1 ± j , 1 ± j
×
ε
64
1
Im
×
ε
1 -1
×
J.Z. Xiao, CEIE, HBU
s0
Re
8
-1 ×
第一列数值有两次符号变化,故本例 系统不稳定,且有两个正实部根。
20
二、劳斯稳定判据的应用
3 4 5
5
s3 s2
s1
s0
5
1 ai−2,1 ai−2, j+1 aij = − ai−1,1 ai−1,1 ai−1, j+1

第六章 系统的稳定性

第六章  系统的稳定性

6.1 稳定性
1.稳定性的概念 只有稳定的系统才能正常工作。在设计一个系统时,首先要 保证其稳定;在分析一个已有的系统时,也首先要判定其是否 稳定。线性系统是否稳定,是系统本身的一个特性,而与系统 的输入量或扰动无关
6.1 稳定性
2.稳定的条件
6.1 稳定性
2.稳定的条件
6.1 稳定性
2.稳定的条件
a0 {( S P1 )( S P2 ) [( S 1 j1 )( S 1 j1 )][( S 2 j 2 )( S 2 j 2 )] } 0
即a 0 {( S P1 )( S P2 ) [( S 2 2 1 S 1 1 )][( S 2 2 2 S 2 2 )] } 0
例1
已知一调速系统的特征方程式为
S 3 41.5S 2 517 S 2.3 10 4 0
试用劳斯判据判别系统的稳定性。
解:列劳斯表
S3 S2 S1 S
0
1 41.5 38.5

4
517 2.3 10 4

0 0
2.3 10
结论: (1)该表第一列系数符号不全为正,因而系统是不稳定的; (2) 且符号变化了两次,所以该方程中有二个根在S的右半 平面。
6.3 Nyquist(乃奎斯特)稳定判据
幅角原理的简单说明 设有辅助函数为 其零、极点在S平面上的分布如下图 所示,在 S平 面上作一封闭曲线Γs , Γs不通过上述零、极点, 在封闭曲线Γs 上任取一点F(s1) , 其对应的辅助函数 的幅角应为
当解析点S1沿封闭曲线Γs按顺时针方向旋转一周后再回到 s1 点,从图中可以发现,所有位于封闭曲线Γs 外面的辅助函数 的零、极点指向s1 的向量转过的角度都为0,而位于封闭曲 线Γs 内的辅助函数的零、极点指向s1 的向量都按顺时针方向 转过2π弧度(一周)。

动力学系统中的稳定性分析方法和准则

动力学系统中的稳定性分析方法和准则

动力学系统中的稳定性分析方法和准则动力学系统是研究物体或系统在时间变化中的行为和变化规律的学科。

在实际应用中,我们经常需要分析系统的稳定性,以便了解系统的演化趋势和预测未来的行为。

本文将介绍动力学系统中的稳定性分析方法和准则。

一、线性稳定性分析方法线性稳定性分析方法是一种常用的分析动力学系统稳定性的方法。

它基于线性化假设,即假设系统在某一点附近可以近似为线性系统。

线性稳定性分析方法的基本思想是通过研究线性系统的特征值来判断系统的稳定性。

线性稳定性分析方法中的一个重要工具是雅可比矩阵。

雅可比矩阵是一个方阵,其元素是系统的偏导数。

通过计算雅可比矩阵的特征值,我们可以判断系统在某一点的稳定性。

如果所有特征值的实部都小于零,那么系统在该点是稳定的。

二、非线性稳定性分析方法线性稳定性分析方法只适用于线性系统,而在实际应用中,我们经常遇到非线性系统。

非线性稳定性分析方法通过研究系统的相图来判断系统的稳定性。

相图是描述系统状态随时间变化的图形。

通过绘制相图,我们可以观察系统的稳定点、极限环等特征,从而判断系统的稳定性。

例如,如果相图中存在一个稳定点,那么系统在该点是稳定的。

非线性稳定性分析方法中的一个重要工具是李雅普诺夫函数。

李雅普诺夫函数是一个能够衡量系统状态随时间变化的函数。

通过研究李雅普诺夫函数的变化趋势,我们可以判断系统的稳定性。

如果李雅普诺夫函数随时间递减,那么系统是稳定的。

三、稳定性分析准则稳定性分析准则是判断系统稳定性的一些基本规则。

在动力学系统中,有许多经典的稳定性分析准则。

其中一个著名的稳定性分析准则是拉普拉斯稳定性准则。

拉普拉斯稳定性准则是基于拉普拉斯变换的方法,通过计算系统的传递函数来判断系统的稳定性。

如果系统的传递函数的所有极点都位于左半平面,那么系统是稳定的。

另一个常用的稳定性分析准则是Nyquist准则。

Nyquist准则是基于奈奎斯特曲线的方法,通过绘制系统的频率响应曲线来判断系统的稳定性。

信号与系统中的线性系统特性分析

信号与系统中的线性系统特性分析

信号与系统中的线性系统特性分析一、引言在信号与系统的研究中,线性系统是非常重要的概念。

线性系统具有许多特性,包括线性性质、时域特性和频域特性等。

本文将详细分析线性系统的特性,包括线性性质、时域特性和频域特性。

二、线性性质线性性质是线性系统最基本的特性之一。

线性系统满足两个重要的性质,即线性叠加性和齐次性。

线性叠加性表明线性系统对输入信号的加权和具有相应的输出信号的加权和关系。

齐次性表示线性系统对于输入信号的缩放会导致输出信号的缩放。

三、时域特性时域特性是描述线性系统在时域上的行为。

常见的时域特性包括冲击响应、单位阶跃响应和频率响应等。

冲击响应是指当输入信号为单位冲激函数时,线性系统的输出信号。

单位阶跃响应是指当输入信号为单位阶跃函数时,线性系统的输出信号。

频率响应是指线性系统对不同频率的输入信号的响应。

四、频域特性频域特性是描述线性系统在频域上的行为。

常见的频域特性包括频率响应、幅频特性和相频特性等。

频率响应是指线性系统对不同频率的输入信号的响应。

幅频特性是指频率响应的振幅随频率变化的特性。

相频特性是指频率响应的相位随频率变化的特性。

五、线性系统的稳定性线性系统的稳定性是指系统对于输入信号的响应是否有界。

稳定性是判断线性系统是否能够长时间运行的重要指标。

常见的稳定性分析方法有极点分析法和BIBO稳定性分析法等。

六、应用举例线性系统的特性分析在实际应用中有着广泛的应用。

例如,在音频处理中,对音频信号的增强、滤波和降噪等处理都需要对线性系统的特性进行分析和设计。

在通信系统中,传输信道可以被看作是线性系统,对通信信号的传输特性进行分析可以优化通信系统的性能。

七、总结本文详细分析了信号与系统中线性系统的特性,包括线性性质、时域特性和频域特性等。

线性系统在信号与系统的研究和实际应用中具有重要作用。

通过对线性系统特性的分析,可以更好地理解和设计信号与系统。

理解线性系统的特性对于工程领域中的信号处理、通信系统设计以及控制系统分析都具有重要的意义。

线性和非线性系统的稳定性和控制

线性和非线性系统的稳定性和控制

线性和非线性系统的稳定性和控制在控制系统中,线性和非线性系统是常见的两种形式。

线性系统具有可加性和比例性质,非线性系统则不满足这些性质。

在这篇文章中,我们将探讨线性和非线性系统的稳定性和控制,以及它们之间的差异。

1. 线性系统的稳定性和控制在线性系统中,当系统的输入和输出之间的关系满足线性方程时,我们可以使用线性的控制方法来调节其行为。

例如,当我们使用一个比例控制器来调节温度时,我们假设系统的响应是线性的。

这意味着,如果我们两倍地增加控制器的输出,系统的响应也会两倍增加。

线性系统的稳定性可以用传输函数的极点和零点来分析。

当传输函数的所有极点实部都小于零时,系统是稳定的。

如果有任何一个极点的实部大于零,系统就是不稳定的。

我们可以使用各种线性控制器来稳定系统,例如比例控制器、积分控制器和微分控制器。

2. 非线性系统的稳定性和控制对于非线性系统,它们的行为是更加复杂的。

它们不具有可加性和比例性质,这意味着我们无法使用线性控制方法来调节系统行为。

例如,在一个非线性电路中,如果我们将输入信号的幅度加倍,输出信号的幅度可能会非常不同。

非线性系统的稳定性也比线性系统更加复杂。

我们不能简单地使用传输函数的极点和零点来分析系统的稳定性。

相反,我们需要使用更高级的数学工具,例如李雅普诺夫稳定性理论。

该理论使用能量函数来分析系统的行为,从而判断系统是否稳定。

我们可以使用各种非线性控制器来调节非线性系统,例如反馈线性化控制和滑动模态控制。

3. 线性系统和非线性系统的不同在稳定性和控制方面,线性系统和非线性系统之间存在显著的差异。

线性系统具有可加性和比例性质,可以方便地使用传输函数来分析稳定性和设计控制器。

然而,非线性系统不具备这些特性,需要使用更高级的数学工具来分析稳定性和设计控制器。

此外,非线性系统可能会表现出一些奇异的行为,例如混沌和周期性振荡。

这些行为是线性系统所不具有的,因为线性系统的行为是可预测的和稳定的。

对于非线性系统,我们需要更加小心地分析其行为,以确保系统的稳定性和符合我们的预期。

工程力学中的力学系统的稳定性分析

工程力学中的力学系统的稳定性分析

工程力学中的力学系统的稳定性分析在工程力学中,力学系统的稳定性分析是一个重要的研究方向。

稳定性分析旨在研究力学系统在受到外界扰动时的响应,以及系统是否能够恢复到原始状态或者进入新的稳定状态。

本文将介绍力学系统的稳定性分析方法和应用。

一、力学系统的定义力学系统是由若干个物体和它们之间相互作用所组成的物理系统。

在力学系统中,物体之间相互作用有可能产生力和力矩的作用,从而影响系统的运动状态。

二、稳定性的概念稳定性是指力学系统在扰动下能否保持原有的运动状态或回到平衡状态。

稳定性可以分为两种情况,一种是平衡稳定,另一种是非平衡稳定。

1. 平衡稳定:当系统受到轻微扰动后,它将回到原始状态,这种情况称为平衡稳定。

平衡稳定的系统可以维持其平衡位置。

2. 非平衡稳定:当系统受到轻微扰动后,它将进入新的稳定状态,这种情况称为非平衡稳定。

三、力学系统稳定性分析的方法稳定性分析是通过对力学系统的运动方程和能量方程的分析来判断系统的稳定性。

常用的稳定性分析方法有线性稳定性分析和非线性稳定性分析两种。

1. 线性稳定性分析:线性稳定性分析是指将系统的运动方程进行线性化后进行分析。

其基本思想是通过线性化后的运动方程来研究系统在扰动作用下的响应。

线性稳定性分析方法常用于简化模型和小幅度扰动情况下的分析。

2. 非线性稳定性分析:非线性稳定性分析是指考虑系统的非线性特性,并通过对系统的非线性动力学方程进行求解和分析,来判断系统的稳定性。

非线性稳定性分析方法适用于模型复杂和大幅度扰动情况下的分析。

四、力学系统稳定性分析的应用力学系统的稳定性分析在工程领域有着广泛的应用,例如:1. 结构稳定性分析:在建筑工程中,对于大型结构的稳定性分析是非常重要的。

通过对结构进行力学稳定性分析,可以判断结构在承受外力时是否会发生失稳现象,从而保证结构的可靠性和安全性。

2. 机械系统稳定性分析:对于机械系统的稳定性分析可以帮助设计和优化机械装置。

通过稳定性分析,可以判断机械系统的工作状态是否稳定,进而优化设计,提高机械系统的性能和可靠性。

西工大、西交大自动控制原理 第五节 线性系统的稳定性分析9-10

西工大、西交大自动控制原理 第五节 线性系统的稳定性分析9-10

1.系统稳定性概念
线性控制系统的稳定性定义
设线性控制系统在初始扰动的影响 下,其过渡过程随着时间的推移逐渐衰 减并趋向于零,则称该系统渐进稳定(简 称稳定)。反之,若在初始扰动的影响下, 系统过渡过程随着时间的推移而发散, 则称系统为不稳定。
1.系统稳定性概念
线性控制系统的稳定性是系统自身的固有特性。 稳定与否和输入信号及初始偏差的大小无关。
若通过系统自身的调节作用, 使偏差最后 逐渐减小,系统又逐渐恢复到平衡状态, 那么, 这种系统便是稳定的。
1. 系统稳定性概念
c(t)
c(t)
扰动
O (a)
扰动
O t
t (b)
不稳定
稳定
1. 系统稳定性概念
大范围稳定: 不论扰动引起的初始偏差有多大,
当扰动取消后,系统都能够恢复到原有 的平衡状态。
试用Hurwitz判据判断系统的稳定性。
解:(1) 特征方程式的各项系数均大于0。 (2) 各阶Hurwitz行列式为:
D1 a1 1 0
D2
a1 a0
a3 1 a2 2
5 7 0
3
3、稳定判据(代数判据)
(1) Hurwitz稳定判据
a1 a3 a5 1 5 0 D3 a0 a2 a4 2 3 10 45 0
2线性系统稳定的充分必要条件
设线性系统在初始条件为零时,输入一个 理想单位脉冲信号 (t),这时系统的输出称为 脉冲过渡函数(或称脉冲响应)g (t)
若系统闭环传递函数为:
m
Φs
Cs Rs
M s N s
Kg
n1
s sj
s zi
i 1
s2 2ζ k ωk s ωk2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性系统的稳定性研究分析
一.实验目的
1.通过搭建控制系统典型环节模型,熟悉并掌握自动控制仿真
的方法。
2.通过对典型环节的软件仿真研究,熟悉并掌握Matlab软件的
使用方法。
3.了解并掌握各典型环节的传递函数及其特性,观察和分析各
典型环节的响应曲线,掌握电路模拟和软件仿真研究方法。
二.实验内容
1.搭建各种典型环节的模拟电路,观测并记录各种典型环节的
阶跃响应曲线。
2.调节模拟电路参数,研究参数变化对典型环节阶跃响应的影
响。
3.运行Matlab软件中的simulink仿真功能,完成各典型环节
阶跃特性的软件仿真研究,并与理论计算的结果作比较。
三.实验步骤
1. 典型环节的simulink仿真分析
在实验中观测实验结果时,只要运行Matlab,利用Matlab软
件中的simulink仿真功能,以及Matlab编程功能,可以完成常见的
控制系统典型环节动态响应。
(1)已知单位负反馈控制系统的开环传递函数为
0.2(2.5)()(0.5)(0.7)(3)sGsssss


,用MATLAB编写程序来判断闭环系统的稳定性,

并绘制闭环系统的零极点图。
在MATLAB命令窗口写入程序代码如下:
z=-2.5
p=[0,-0.5,-0.7,-3]
k=0.2
Go=zpk(z,p,k)
Gc=feedback(Go,1)
Gctf=tf(Gc)
dc=Gctf.den
dens=poly2str(dc{1},'s')
运行结果如下:
dens=
s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5
dens是系统的特征多项式,接着输入如下MATLAB程序代码:
den=[1,4.2,3.95,1.25,0.5]
p=roots(den)
运行结果如下:
p =
-3.0058
-1.0000
-0.0971 + 0.3961i
-0.0971 - 0.3961i
p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,
因此闭环系统是稳定的。

三.实验总结

衡状态的线性定长系统,若在外部作用下偏离了原来
的平衡状态,而当外部作用消失后,系统仍能回到原
来的平衡状态,则称该系统是稳定的。否则,系统为
不稳定。稳定性是出外部作用后,系统本身的一种恢
复能力,所以是系统的一固有特性,它只取决于系统
的结构与参数,与外部作用及初始条件无关,因而可
用系统的单位理想脉冲响应来描述。

相关文档
最新文档