第九章 电磁学压轴大题增分策略(三)——突破“磁发散”和“磁聚焦”两大难点

第九章  电磁学压轴大题增分策略(三)——突破“磁发散”和“磁聚焦”两大难点
第九章  电磁学压轴大题增分策略(三)——突破“磁发散”和“磁聚焦”两大难点

第九章“冲刺双一流”深化内容

电磁学压轴大题增分策略(三)——突破“磁发散”和“磁聚焦”两大难点带电粒子在磁场中的运动形式很多,其中有一种是带电粒子在圆形磁场中的运动。当粒子做圆周运动的半径与圆形磁场的半径相等时,会出现磁发散或磁聚焦现象。

不同带电粒子在圆形磁场中从同一点沿不同方向出发,做发散运动,离开磁场后速度方向都相同。

例如:当粒子由圆形匀强磁场的边界上某点以不同速度射入磁场时,会平行射出磁场,如图所示。

[例1]真空中有一半径为r的圆柱形匀强磁场区域,磁场方

向垂直于纸面向里,Ox为过边界上O点的切线,如图所示。从O

点在纸面内向各个方向发射速率相同的电子,设电子间相互作用

忽略,且电子在磁场中运动的圆周轨迹半径也为r。所有从磁场边界射出的电子,其速度方向有何特征?

[解析]如图所示,无论入射的速度方向与x轴的夹角为何值,

入射点O、出射点A、磁场圆心O1和轨道圆心O2,一定组成边长

为r的菱形,因为OO1⊥Ox,所以O2A⊥Ox。而O2A与电子射出

的速度方向垂直,可知电子射出方向一定与Ox轴方向平行,即

所有的电子射出圆形磁场时,速度方向均与Ox轴正向相同。

[答案]见解析

[例2]如图所示,真空中有一个半径r=0.5 m的圆形磁场,与坐标原点相切,磁场的磁感应强度大小B=2×10-3 T,方向垂直于纸面向外,在x=1 m和x=2 m之间的区域内有一个方向沿y轴正向的匀强电场区域,电场强度E=1.5×103N/C。在x=3 m处有一垂

直x轴方向的足够长的荧光屏,从O点处向不同方向发射出速率相同的比荷q

m=1×10

9 C/kg,且带正电的粒子,粒子的运动轨迹在纸面内,一个速度方向沿y轴正方向射入磁场的粒子,恰能从磁场最右侧的A点离开磁场,不计重力及阻力的作用,求:

(1)沿y 轴正方向射入的粒子进入电场时的速度和粒子在磁场中的运动时间;

(2)速度方向与y 轴正方向成θ=30°角(如图中所示)射入磁场的粒子,离开磁场时的速度方向;

(3)(2)中的粒子最后打到荧光屏上,该发光点的位置坐标。

[解析] (1)由题意可知,粒子在磁场中做匀速圆周运动的轨道半径R =r =0.5 m ,由Bq v =m v 2

R ,可得粒子进入电场时的速度为

v =qBR m =1×109×2×10-

3×0.5 m/s =1×106 m/s 。 在磁场中运动的时间为

t 1=14T =πm 2Bq = 3.142×109

×2×10

-3 s =7.85×10-7 s 。 (2)粒子的运动圆轨迹和磁场圆的交点O 、C 以及两圆的圆心O 1、O 2组成菱形,CO 2和y 轴平行,所以v 和x 轴平行向右,如图所示。

(3)粒子在磁场中转过120°角后从C 点离开磁场,速度方向和x 轴平行,做直线运动,再垂直电场线进入电场,如图所示:

在电场中的加速度大小为:

a =Eq

m =1.5×103×1×109 m/s 2=1.5×1012 m/s 2。 粒子穿出电场时有:

v y =at 2=a ×Δx

v =1.5×106 m/s ,

tan α=v y

v x=

1.5×106

1×106

=1.5。

在磁场中y1=1.5r=1.5×0.5 m=0.75 m。在电场中侧移为:

y2=1

2at2

2=1

2×1.5×10

12×

?

?

?

?

1

1×106

2 m=0.75 m。

飞出电场后粒子做匀速直线运动

y3=Δx tan α=1×1.5 m=1.5 m,

y=y1+y2+y3=0.75 m+0.75 m+1.5 m=3 m。

则该发光点的坐标为(3 m,3 m)。

[答案](1)1×106 m/s7.85×10-7 s(2)与x轴平行向右(3)(3 m,3 m)

速度相同的不同带电粒子进入圆形匀强磁场后,汇聚于同一点。

例如:当速度相同的粒子平行射入磁场中,会在圆形磁场中汇聚于圆上一点,如图所示。

[例3]真空中有一半径为r的圆柱形匀强磁场区域,磁场方向

垂直于纸面向里,Ox为过边界上O点的切线,如图所示,速率相

同,方向都沿Ox方向的不同电子,在磁场中运动的圆周轨迹半径

也为r。进入圆形匀强磁场后,所有从磁场边界出射的电子,离开

磁场的位置有何特征?

[解析]由A点进入磁场的电子,其圆周轨道和圆形磁场的两交点以及两圆心组成边长为r的菱形,v0和AO1垂直,所以AO1的对边也和v0垂直,即AO1的对边和Ox方向垂直,所以AO1的对边即为O2O,电子从O点离开磁场,因此,所有从磁场边界出射的电子,离开磁场的位置都在O点。

[答案]见解析

[例4]如图甲所示,平行金属板A和B间的距离为d,现在A、B板上加上如图乙所示的方波形电压,t=0时,A板比B板的电势高,电压的正向值为u0,反向值为-u0,现有质量为m、带电荷量为q的正粒子组成的粒子束,从AB的中点O1以平行于金属板方向

O 1O 2的速度v 0=

3qu 0T

3dm

射入,所有粒子在AB 间的飞行时间均为T ,不计重力影响。求:

(1)粒子射出电场时位置离O 2点的距离范围及对应的速度;

(2)若要使射出电场的粒子经某一圆形区域的匀强磁场偏转后都能通过圆形磁场边界的一个点处,而便于再收集,则磁场区域的最小半径和相应的磁感应强度是多大?

[解析] (1)当粒子由t =nT 时刻进入电场,向下侧移最大, 则:s 1=qu 02dm ????2T 32+qu 0dm ????2T 3????T 3-qu 02dm ????T 32=7qu 0T 2

18dm 。

当粒子由t =nT +2T

3时刻进入电场,向上侧移最大,

则s 2=qu 02dm ????T 32=qu 0T 2

18dm

在距离O 2中点下方7qu 0T 218dm 至上方qu 0T 2

18dm 的范围内有粒子射出。

打出粒子的速度都是相同的,在沿电场线方向速度大小为 v y =

u 0q dm ·T 3=u 0qT

3dm

。 所以射出速度大小为 v =v 02+v y 2=

????3u 0qT 3dm 2+????u 0qT 3dm 2=2u 0qT 3dm

。 设速度方向与v 0的夹角为θ, 则tan θ=v y v 0=1

3,

θ=30°。

(2)要使平行粒子能够交于圆形磁场区域边界且有最小区域时,磁场直径最小值与粒子宽度相等,

粒子宽度

D =(s 1+s 2)cos 30°,

即D =4qu 0T 29dm cos 30°=23qu 0T 2

9dm

故磁场区域的最小半径为 r =D 2=3qu 0T 29dm

。 而粒子在磁场中做圆周运动有 q v B =m v 2r 。 解得B =

23m

qT

。 [答案] (1)见解析 (2)3qu 0T 29dm 23m

qT

[提能增分集训] 1.电子质量为m 、电荷量为e ,从坐标原点O 处沿xOy 平面射入第一象限,射入时速度方向不同,速度大小均为v 0,如图所示。现在某一区域加一方向向外且垂直于xOy 平面的匀强磁场,磁感应强度为B ,若这些电子穿过磁场后都能垂直射到荧光屏MN 上,荧光屏与y 轴平行,求:

(1)荧光屏上光斑的长度; (2)所加磁场范围的最小面积。

解析:(1)如图所示,初速度沿x 轴正方向的电子,沿弧OB 运

动到P 点,为荧光屏上光斑的最高点,初速度沿y 轴正方向的电子,沿弧OC 运动到Q 点,为荧光屏上光斑的最低点,

电子在磁场中,由e v 0B =m v 02R 得R =m v 0

eB , 光斑长度PQ =R =m v 0

eB 。

(2)所加磁场的最小面积是以O ′为圆心、R 为半径的斜线部分,其面积大小为 S =34πR 2+R 2-14πR 2=π

2+1???

?m v 0eB 2。

答案:(1)m v 0eB (2)????π2+1????m v 0eB 2

2.如图所示,质量m =8.0×10

-25

kg 、电荷量q =1.6×10

-15

C 的带

正电粒子从坐标原点O 处沿xOy 平面射入第一象限内,且在与x 方向夹角大于等于30°的范围内,粒子射入时的速度方向不同,但大小均为v 0=2.0×107 m/s 。现在某一区域内加一垂直于xOy 平面的匀强磁场,磁感应强度大小为B =0.1 T ,若这些粒子穿过磁场后都能射到与y 轴平

行的荧光屏MN 上,并且当把荧光屏MN 向左移动时,屏上光斑长度和位置保持不变。求:(π=3.14)

(1)粒子从y 轴穿过的范围; (2)荧光屏上光斑的长度;

(3)从最高点和最低点打到荧光屏MN 上的粒子运动的时间差; (4)画出所加磁场的最小范围(用阴影表示)。 解析:设粒子在磁场中运动的半径为R , 由牛顿第二定律得 q v 0B =m v 02R ,

即R =m v 0

qB 解得R =0.1 m

当把荧光屏MN 向左移动时,屏上光斑长度和位置保持不变,说明粒子出射方向平行,且都沿-x 方向,所加磁场为圆形,半径为R =0.1 m 。

(1)如图所示,初速度沿y 轴正方向的粒子直接过y 轴。

速度方向与x 轴正方向成30°角的粒子,转过的圆心角∠OO 2B 为150°,

则∠OO 2A =120°

粒子从y 轴穿过的范围为0~3R , 即0~0.17 m 。

(2)初速度沿y 轴正方向的粒子,y C =R 由(1)知∠O 2OA =θ=30° y B =R +R cos θ 则荧光屏上光斑的长度 l =y B -y C =0.09 m 。 (3)粒子运动的周期 T =

2πR v 0

=2πm qB =π×10-

8 s

从B 点和C 点射出的粒子在磁场中运动的时间差 t 1=

512T -14T =16

T 出磁场后,打到荧光屏上的时间差 t 2=R 2v 0

从最高点和最低点打到荧光屏MN 上的粒子运动的时间差 t =t 1+t 2=7.7×10-

9 s 。

(4)如图阴影部分所示。

答案:(1)0~0.17 m (2)0.09 m (3)7.7×10-

9 s

(4)见解析

3.设在某一平面内有P 1、P 2两点,由P 1点向平面内各个方向发射速率均为v 0的电子。请设计一种匀强磁场分布,使得由P 1点发出的所有电子都能够汇集到P 2点。电子电量为e ,质量为m 。

解析:如图所示,过P 1点做2个圆,和直线P 1P 2相切于P 1点,圆的半径都是R 。圆内分布有匀强磁场,磁感应强度大小为B ,方向垂直于圆平面,由P 1点向平面内各个方向发射速率均为v 0的电子,电子做匀速圆周运动的半径也是R ,即满足R =m v 0

Be ,则电子离开圆形磁场时速度方向和直线P 1P 2平行。过P 2点做2个圆,和直线P 1P 2相切于P 2点。圆周半径也是R ,圆内分布有匀强磁场,磁感应强度大小为B ,方向垂直于圆平面。电子进入这2个圆形磁场区域后,将汇聚到P 2点,其电子运动轨迹如图所示。

答案:见解析

电磁学第二版习题答案2

电磁学第二版习题答案2

电磁学 第二版 习题解答 电磁学 第二版 习题解答 (2) 第一章 .............................................................. 2 第二章 ............................................................ 18 第三章 ............................................................ 27 第四章 ............................................................ 36 第五章 ............................................................ 40 第六章 ............................................................ 48 第七章 (54) 第一章 1.2.2 两个同号点电荷所带电荷量之和为Q 。在两者距离一定的前提下,它们带电荷量各为多少时相互作用力最大? 解答: 设一个点电荷的电荷量为1q q =,另一个点电荷的电荷量为 2()q Q q =-,两者距离为r ,则由库仑定律求得两个点电荷之间的作用力为 2 0() 4q Q q F r πε-= 令力F 对电荷量q 的一队导数为零,即

20()04dF Q q q dq r πε--== 得 122 Q q q == 即取 122 Q q q == 时力F 为极值,而 22 2 02 204Q q d F dq r πε== < 故当122 Q q q ==时,F 取最大值。 1.2.3 两个相距为L 的点电荷所带电荷量分别为2q 和q ,将第三个点电荷放在何处时,它所受的合力为零? 解答: 要求第三个电荷Q 所受的合力为零,只可能放在两个电荷的连线中间,设它与电荷q 的距离为了x ,如图1.2.3所示。电荷Q 所受的两个电场力方向相反,但大小相等,即 22 00204()4qQ qQ L x x πεπε-=- 得 22 20x Lx L +-= 舍去0x <的解,得 21)x L =- L x L -q Q 2

大学物理电磁学考试试题及答案)

大学电磁学习题1 一.选择题(每题3分) 1.如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电 势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为: (A) E =0,R Q U 04επ=. (B) E =0,r Q U 04επ= . (C) 2 04r Q E επ= ,r Q U 04επ= . (D) 2 04r Q E επ= ,R Q U 04επ=. [ ] 2.一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2 )在同一电场中且通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍. (C) 4倍. (D) 42倍. [ ] 3.在磁感强度为B ? 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平 面的法线方向单位矢量n ?与B ? 的夹角为 ,则通过半球面S 的磁通量(取 弯面向外为正)为 (A) r 2 B . . (B) 2 r 2B . (C) -r 2B sin . (D) -r 2 B cos . [ ] 4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为V ,则此导体的霍尔系数等于 O R r P Q n ?B ?α S D I S V B ?

(A) IB VDS . (B) DS IBV . (C) IBD VS . (D) BD IVS . (E) IB VD . [ ] 5.两根无限长载流直导线相互正交放置,如图所示.I 1沿y 轴的正方向,I 2沿z 轴负方向.若载流I 1的导线不能动,载流I 2的 导线可以自由运动,则载流I 2的导线开始运动的趋势是 (A) 绕x 轴转动. (B) 沿x 方向平动. (C) 绕y 轴转动. (D) 无法判断. [ ] 6.无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于 (A) R I π20μ. (B) R I 40μ. (C) 0. (D) )1 1(20π -R I μ. (E) )1 1(40π +R I μ. [ ] 7.如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为2.0 A 时,测得铁环内的磁感应强度的大小B 为 T ,则可求得铁环的相对磁导率r 为(真空磁导率 =4 ×10-7 T ·m ·A -1 ) (A) ×102 (B) ×102 (C) ×102 (D) [ ] y z x I 1 I 2 O R I

考点3 “磁聚焦”与“磁发散”

考点3 “磁聚焦”与“磁发散” 1.带电粒子的汇聚 如下左图所示,大量的同种带正电的粒子,速度大小相同,平行入射到圆形磁场区域,如果轨迹圆半径与磁场圆半径相等即R =r ,则所有的带电粒子将从磁场圆的最低点B 点射出. 平行四边形OAO ′B 为菱形,可得BO ′为轨迹圆的半径,可知从A 点发出的带电粒子必然经过B 点. 2.带电粒子的发散 如上右图所示,有界圆形磁场磁感应强度为B ,圆心O ,从P 点有大量质量为m ,电量为q 正离子,以大小相等的速度v 沿不同方向射入有界磁场,不计粒子的重力,如果正离子轨迹圆半径与有界圆形磁场半径相等,则所有的运动轨迹的圆心与有界圆圆心O 、入射点、出射点的连线为菱形,即出射速度方向相同. 【例题】如图所示,x 轴正方向水平向右,y 轴正方向竖直向上.在xOy 平面内有与y 轴平行的匀强电场,在半径为R 的圆内还有与xOy 平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x 轴正方向发射出一束具有相同质量m 、电荷量q (q >0)和初速度v 的带电微粒.发射时,这束带电微粒分布在0

电磁学复习题及答案

一、填空题: 1.在电场强度为E的匀强电场 B 中,有A、B两点 (如图),分别放入两个检验电 荷+q1和+q2,且q1=4q2,则A、 B两点的电场强度E A和E B的关 系是___E A=E B______;两 电荷所受的力F A和F B的关系是 __F A=4F B__;A、B两点的 电势__A___点高。 2.在真空中有两个点电荷,若保持电荷间的距离不变,一个电荷的电量变为原来的4倍,另一个电荷的电量变为原来的1/2,则电荷间的作用力变为原来的

___2__倍;若保持一个电荷的电量不变,另一个电荷的电量变为原来的2倍,则电荷的作用力变为原来的__2_倍;若保持两个电荷的电量不变,当电荷间的作用力变为原来的16倍时,电荷间的距离为原来的__1/4__倍。 3.如图所示,在同一电场线上有A、B、C 三点,若选A电势为零,则B、C两点电势分别为V B__<0__,V C___<0_____;若选B 电势为零,则V A__>0__,V C__<0_。(填大于或小于零) A B C 4.两个带电粒子以相同的速度v垂直于

磁感线飞入同一匀强磁场中,它们的质量之比是1:4,电量之比是1:2,它们所受磁场力之比是_1:2_,它们在磁场中的运动半径之比是__1:2___。 5、在一均匀电场E 中,有一边长为a 的立方体闭合面,闭合面内无电荷,如图所示,则通过面Ⅰ 的 电通量为__Ea 2 __,通过侧面Ⅲ的电通量为_0__,Ⅲ面上任一点的场强为____E ____. 6、质量为m 1的电荷+q 以速率v 1,质量为m 2电荷-q 以速率v 2从O 点垂直射入磁场中,m 1=2m 2,2v 1=v 2,+q 、-q 在磁场中做

电磁学试题(含答案)

一、单选题 1、 如果通过闭合面S 的电通量e Φ为零,则可以肯定 A 、面S 没有电荷 B 、面S 没有净电荷 C 、面S 上每一点的场强都等于零 D 、面S 上每一点的场强都不等于零 2、 下列说法中正确的是 A 、沿电场线方向电势逐渐降低 B 、沿电场线方向电势逐渐升高 C 、沿电场线方向场强逐渐减小 D 、沿电场线方向场强逐渐增大 3、 载流直导线和闭合线圈在同一平面,如图所示,当导线以速度v 向 左匀速运动时,在线圈中 A 、有顺时针方向的感应电流 B 、有逆时针方向的感应电 C 、没有感应电流 D 、条件不足,无法判断 4、 两个平行的无限大均匀带电平面,其面电荷密度分别为σ+和σ-, 则P 点处的场强为 A 、02εσ B 、0εσ C 、0 2εσ D 、0 5、 一束α粒子、质子、电子的混合粒子流以同样的速度垂直进 入磁场,其运动轨迹如图所示,则其中质子的轨迹是 A 、曲线1 B 、曲线2 C 、曲线3 D 、无法判断 6、 一个电偶极子以如图所示的方式放置在匀强电场 E 中,则在 电场力作用下,该电偶极子将 A 、保持静止 B 、顺时针转动 C 、逆时针转动 D 、条件不足,无法判断 7、 点电荷q 位于边长为a 的正方体的中心,则通过该正方体一个面的电通量为 A 、0 B 、0εq C 、04εq D 、0 6εq 8、 长直导线通有电流A 3=I ,另有一个矩形线圈与其共面,如图所 示,则在下列哪种情况下,线圈中会出现逆时针方向的感应电流? A 、线圈向左运动 B 、线圈向右运动 C 、线圈向上运动 D 、线圈向下运动 9、 关于真空中静电场的高斯定理0 εi S q S d E ∑=?? ,下述说确的是: A. 该定理只对有某种对称性的静电场才成立; B. i q ∑是空间所有电荷的代数和; C. 积分式中的E 一定是电荷i q ∑激发的; σ- P 3 I

大学物理电磁学练习题及答案

大学物理电磁学练习题 球壳,内半径为R 。在腔内离球心的距离为d 处(d R <),固定一点电荷q +,如图所示。用导线把球壳接地后,再把地线撤 去。选无穷远处为电势零点,则球心O 处的电势为[ D ] (A) 0 (B) 04πq d ε (C) 04πq R ε- (D) 01 1 () 4πq d R ε- 2. 一个平行板电容器, 充电后与电源断开, 当用绝缘手柄将电容器两极板的距离拉大, 则两极板间的电势差12U 、电场强度的大小E 、电场能量W 将发生如下变化:[ C ] (A) 12U 减小,E 减小,W 减小; (B) 12U 增大,E 增大,W 增大; (C) 12U 增大,E 不变,W 增大; (D) 12U 减小,E 不变,W 不变. 3.如图,在一圆形电流I 所在的平面内, 选一个同心圆形闭合回路L (A) ?=?L l B 0d ,且环路上任意一点0B = (B) ?=?L l B 0d ,且环路上 任意一点0B ≠ (C) ?≠?L l B 0d ,且环路上任意一点0B ≠ (D) ?≠?L l B 0d ,且环路上任意一点B = 常量. [ B ] 4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感应强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示。现测得导体上下两面电势差为V ,则此导体的霍尔系数等于[ C ] (A) IB V D S (B) B V S ID (C) V D IB (D) IV S B D 5.如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc 的长度为 l 。当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势ε和a 、 c 两点间的电势差a c U U -为 [ B ] (A)2 0,a c U U B l εω=-= (B) 2 0,/2a c U U B l εω=-=- (C)22 ,/2a c B l U U B l εωω=-= (D)2 2 ,a c B l U U B l εωω=-= 6. 对位移电流,有下述四种说法,请指出哪一种说法正确 [ A ] (A) 位移电流是由变化的电场产生的; (B) 位移电流是由线性变化的磁场产生的; (C) 位移电流的热效应服从焦耳——楞次定律; (D) 位移电流的磁效应不服从安培环路定理.

电磁学试题库试题及答案

电磁学试题库 试题3 一、填空题(每小题2分,共20分) 1、带电粒子受到加速电压作用后速度增大,把静止状态下的电子加速到光速需要电压是( )。 2、一无限长均匀带电直线(线电荷密度为λ)与另一长为L ,线电荷密度为η的均匀带电直线AB 共面,且互相垂直,设A 端到无限长均匀带电线的距离为a ,带电线AB 所受的静电力为( )。 3、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势( ~ 4、两个同心的导体薄球壳,半径分别为b a r r 和,其间充满电阻率为ρ的均匀介质(1)两球壳之间的电阻( )。(2)若两球壳之间的电压是U ,其电流密度( )。 5、载流导线形状如图所示,(虚线表示通向无穷远的直导线)O 处的磁感应强度的大小为( ) 6、一矩形闭合导线回路放在均匀磁场中,磁场方向与回路平 ' 面垂直,如图所示,回路的一条边ab 可以在另外的两条边上滑 动,在滑动过程中,保持良好的电接触,若可动边的长度为L , 滑动速度为V ,则回路中的感应电动势大小( ),方向( )。 7、一个同轴圆柱形电容器,半径为a 和b ,长度为L ,假定两板间的电压 t U u m ω=sin ,且电场随半径的变化与静电的情况相同,则通过半径为r (a

电磁学课后习题答案

第五章 静 电 场 5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为 2 204π1L r Q εE -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为 2204π21L r r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较. 分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为 r r q εe E 2 0d π41d '= 整个带电体在点P 的电场强度 ?=E E d 接着针对具体问题来处理这个矢量积分. (1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同, ?=L E i E d (2) 若点P 在棒的垂直平分线上,如图(A )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是 ??==L y E αE j j E d sin d

证 (1) 延长线上一点P 的电场强度?'=L r πεE 202, 利用几何关系 r ′=r -x 统一积分变量,则 ()220 022 204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=??????+--=-=? 电场强度的方向沿x 轴. (2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为 E r εq αE L d π4d sin 2 ? '= 利用几何关系 sin α=r /r ′,2 2 x r r +=' 统一积分变量,则 () 2 2 03 /2222 2041π2d π41L r r εQ r x L x rQ εE L/-L/+= +=? 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 r ελL r L Q r εE l 02 20π2 /41/π21lim = +=∞ → 此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线. 5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量. 分析 方法1:由电场强度通量的定义,对半球面S 求积分,即? ?=S S d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理

电磁学试题(含答案)

一、单选题 1、如果通过闭合面S的电通量 e 为零,则可以肯定 A、面S内没有电荷 B 、面S内没有净电荷 C、面S上每一点的场强都等于零 D 、面S上每一点的场强都不等于零 2、下列说法中正确的是 A 、沿电场线方向电势逐渐降低B、沿电场线方向电势逐渐升高 C、沿电场线方向场强逐渐减小 D、沿电场线方向场强逐渐增大 3、载流直导线和闭合线圈在同一平面内,如图所示,当导线以速度v 向v 左匀速运动时,在线圈中 A 、有顺时针方向的感应电流 B、有逆时针方向的感应电 C、没有感应电流 D、条件不足,无法判断 4、两个平行的无限大均匀带电平面,其面电荷密度分别为和, 则 P 点处的场强为 A、 B 、 C 、2 D、 0 P 2000 5、一束粒子、质子、电子的混合粒子流以同样的速度垂直进 入磁场,其运动轨迹如图所示,则其中质子的轨迹是 12 A、曲线 1 B、曲线 23 C、曲线 3 D、无法判断 6、一个电偶极子以如图所示的方式放置在匀强电场 E 中,则在 电场力作用下,该电偶极子将 A 、保持静止B、顺时针转动C、逆时针转动D、条件不足,无法判断 7q 位于边长为a 的正方体的中心,则通过该正方体一个面的电通量为 、点电荷 A 、0 B 、q q D 、 q C、 6 0400 8、长直导线通有电流I 3 A ,另有一个矩形线圈与其共面,如图所I 示,则在下列哪种情况下,线圈中会出现逆时针方向的感应电流? A 、线圈向左运动B、线圈向右运动 C、线圈向上运动 D、线圈向下运动 9、关于真空中静电场的高斯定理 E dS q i,下述说法正确的是: S0 A.该定理只对有某种对称性的静电场才成立; B.q i是空间所有电荷的代数和; C. 积分式中的 E 一定是电荷q i激发的;

实验二十三电子射线的电聚焦与磁聚焦

实验二十三 电子射线的电聚焦与磁聚焦 一、实验目的 1. 掌握带电粒子在电场和磁场中的运动规律,学习电聚焦和磁聚焦的基本原理 和实验方法; 2. 掌握利用磁聚焦法测定电子荷质比的基本方法。 二、实验装置 TH-EB 型电子束实验仪;米尺,游标卡尺 三、实验原理 1.电聚焦原理 电子束电聚焦原理如图1所示,在示波管中,阴极K 经灯丝加热发射电子,第一阳极A1加速电子,使电子束通过栅极G 的空隙,由于栅极电位与第一阳极电位不等,在它们之间的空间便产生电场,这个电场的曲度像一面透镜,它使由阴极表面不同点发出的电子在栅极前方汇聚,形成一个电子聚焦点。由第一阳极和第二阳极组成的电聚焦系统, 就把上述聚焦点成像在示波管的荧光屏上。由于该系统与凸透镜对光的会聚作用相似,所以通常称之为电子透镜。 电子束通过电子透镜能否聚焦在荧光屏上,与第一阳极V A1和第二阳极V A2的单值无关,仅取决于它们之间的比值F 。改变第一阳极和第二阳极的电位差,相当于改变电子透镜的焦距,选择合适V A1与V A2的比值,就可以使电子束的成像点落在示波管的荧光屏上。 在实际示波管内,由于第二阳极的特点结构,使之对电子直接起加速作用,所以称为加速极。第一阳极主要是用来改变 V A1与V A2比值,便于聚焦,故又称聚焦极。改变V A2也能改变比值V A1/V A2,故第二阳极又能起辅助聚焦作用。 2.磁聚焦原理 电子束磁聚焦的原理见图2所示,设一速度为v ,在一磁 图1 电子束电聚焦原理 图2 电子束磁聚焦原理

感应强度为B 的均匀磁场中运动的电子,电子将受到洛仑兹力的作用,将v 分解成与B 平行的分量和与B 垂直的分量v h ,电子沿着B 的方向运动时不受力,故沿B 的方向作匀速直线运动。电子在垂直于B 的方向运动时电子所受的洛仑兹力为: f 的方向与υh 垂直,故该力只改变电子运动的方向,不改变电子速度的大小,结果使电子在垂直于B 的平 面内以半径为R 的圆作匀速圆周运动。根据牛顿第二定律可知: 式中m 为电子的质量,R 为电子作圆周运动时的轨道半径,可以表示为: 电子旋转一周所需的时间为: 由此可知,当B 保持不变,电子的速度v h 不同时,电子作圆周运动的半径是不同的,但是电子旋转一周所需的时间(周期)相同,与电子的速度无关。v 垂直于B 时电子的运动轨迹如图2所示。从图2可知,如果有很多电子都从磁场中的同一点出发,各电子运动速度v h 的数值各不相同,但经过T 时间后,都同时回到同一点。 考虑由同一点发出的一束电子,假设各个电子的速度在垂直于B 的平面上的分量υh 各不相同,而各电子的速度在B 的方向上的分量v p 彼此相等,那末电子经过距离l 后(按上面的分析,每个电子在沿B 方向运动时经过一个螺 距 h 后电子又重聚于一点,这种现象称为磁场聚焦作用,且l=nh ,n 为正整数(n=1,2,3,4……)。为了便于想象电子在磁场中的运动情况,图3表示一束v p 相同,υh 在一定范围内变化的电子在磁场作用下运动轨迹图。螺距 h 可以表示为: 在电子束实验仪中,示波管的轴线方向有一均匀分布的磁场,在阴极K 和阳极A 2之间加上一定的电压V ,将会使阴极发射的电子加速,设阴极发射出来的电子在脱离阴极时,沿磁场运动的初速度为零,经阴极K 与阳极A 1之间的电场加速后,速度为υp ,由能量守恒定律可知,电子动能的增加应等于电场力对 (1)e f h B v = (2) R m B e f 2 h =v h υ= (4) eB 2 R 2T m h πυπ== (5)Bh 2m e eB 2Tv h p p p = v v m π π==(3) eB mv R h = v 图3 电子束在聚焦磁场中的螺旋轨迹

(完整版)电磁学练习题及答案

P r λ2 λ1 R 1 R 2 1.坐标原点放一正电荷Q ,它在P 点(x =+1,y =0)产生的电场强 度为E ρ 。现在,另外有一个负电荷-2Q ,试问应将它放在什么 位置才能使P 点的电场强度等于零? (A) x 轴上x >1。 (B) x 轴上00。 (E) y 轴上y <0。 [ C ] 2.个未带电的空腔导体球壳,内半径为R 。在腔内离球心的距离为d 处( d < R ),固定一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去。选无穷远处为电势零点,则球心O 处的电势为 (A) 0 (B) d q 04επ (C) R q 04επ- (D) )11(40R d q -πε [ D ] 3.图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面,均匀带电,沿轴线方向单位长度上的所带电荷分别为λ1和λ2,则在外圆柱面外面、距离轴线为r 处的P 点的电场强度大小E 为: (A) r 0212ελλπ+ (B) ()()202 10122R r R r -π+-πελελ (C) ()202 12R r -π+ελλ (D) 2 02 10122R R ελελπ+π [ A ] 4.荷面密度为+σ和-σ的两块“无限大”均匀带电的平行平板,放在与平面相垂直的x 轴上的+a 和-a 位置上,如图所示。设坐标原点O 处电势为零,则在-a <x <+a 区域的电势分布曲线为 [ C ] 5.点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为 (A) a q 04επ (B) a q 08επ (C) a q 04επ- (D) a q 08επ- [ D ] y x O +Q P (1,0) R O d +q +a a O -σ +σ O -a +a x U (A) O -a +a x U O -a +a x U (C) O -a +a x U (D) a a +q P M

“磁发散与磁聚焦”模型在高考中的应用-2019年文档

“磁发散与磁聚焦”模型在高考中的应用 当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律. 磁发散:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如图1所示. 磁聚集:平行射入圆形有界磁场的相同带电粒子,如果圆形磁场的半径与圆轨迹半径相等,则所有粒子都从磁场边界上的同一点射出,并且出射点的切线与入射速度方向平行,如图2所示. 图1图2这两条规律在近几年高考中频频出现,如能在平时对平行运动带电粒子磁聚焦问题进行深入分析和研究,那么在考试中遇到类似题目就会有“游刃有余,一切尽在掌控中”的自信和豪情. 一、突出对粒子运动径迹的考察 例1如图3,ABCD是边长为的正方形.质量为、电荷量为的电子以大小为的初速度沿纸面垂直于BC变射入正方形区域.在正方形内适当区域中有匀强磁场.电子从BC边上的任意点入射,都只能从A 点射出磁场.不计重力,求:(1)次匀强磁场区域中磁感应强度的方向和大小;(2)此匀强磁场区域的最小面积. 图3图4解析: (1)设匀强磁场的磁感应强度的大小为B.令圆弧AEC是自C点垂直于BC入射的电子在磁场中的运行轨道.电子所受到的磁场的作用力大小为f =ev0B,方向应指向圆弧的圆心,因而磁场的方向应垂直于纸面向外.圆弧AEC的圆心在CB边或其延长线上.

依题意,圆心在A、C连线的中垂线上,故B点即为圆心,圆半径为a,按照牛顿定律有f=mv202,联立两式得B=mv0ea. (2)由(1)中决定的磁感应强度的方向和大小,可知自点垂直于入射电子在A点沿DA方向射出,且自BC边上其他点垂直于入射的电子的运动轨道只能在BAEC区域中.因而,圆弧AEC是所求的最小磁场区域的一个边界. 为了决定该磁场区域的另一边界,我们来考察射中A点的电子的速度方向与BA的延长线交角为θ(不妨设0≤θ≤π/2)的情形.该电子的运动轨迹qpA,如图4所示.图中,圆弧AP的圆心为O,pq垂直于BC边,由B=mv0ea知,圆弧AP的半径仍为a,在以A为原点、AB为x轴,AD为轴的坐标系中,P点的坐标(x,y)为x=asin θ,y=a-acosθ. 消去参数θ得x2+(y-a)2=a2. 这意味着,在范围0≤θ≤π/2内,p点形成以D为圆心、为半径的四分之一圆周AFC,它是电子做直线运动和圆周运动的分界线,构成所求磁场区域的另一边界.因此,所求的最小匀强磁场区域时分别以AEC和AFC为圆心、为半径的两个四分之一圆周AEC和AFC所围成的,其面积为S=2(14πa2-12a2)=π-22a2. 点评:这是一个典型的利用磁场进行平行运动带电粒子磁聚焦的考题,看起来在考磁场的最小面积问题,但实质上在考核粒子的运动径迹.从知识和能力的角度看,对于面对陌生题目的考生而言,综合考查了学生对于带电粒子在磁场中运动的综合分析能力, 二、突出对粒子运动“汇聚点”的考察

电磁场理论复习考试题(含答案)

第1~2章 矢量分析 宏观电磁现象的基本规律 1. 设:直角坐标系中,标量场zx yz xy u ++=的梯度为A ,则M (1,1,1)处 A = ,=??A 0 。 2. 已知矢量场xz e xy e z y e A z y x ?4?)(?2 +++= ,则在M (1,1,1)处=??A 9 。 3. 亥姆霍兹定理指出,若唯一地确定一个矢量场(场量为A ),则必须同时给定该场矢量 的 旋度 及 散度 。 4. 写出线性和各项同性介质中场量D 、E 、B 、H 、J 所满足的方程(结构方 程): 。 5. 电流连续性方程的微分和积分形式分别为 和 。 6. 设理想导体的表面A 的电场强度为E 、磁场强度为B ,则 (a )E 、B 皆与A 垂直。 (b )E 与A 垂直,B 与A 平行。 (c )E 与A 平行,B 与A 垂直。 (d )E 、B 皆与A 平行。 答案:B 7. 两种不同的理想介质的交界面上, (A )1212 , E E H H == (B )1212 , n n n n E E H H == (C) 1212 , t t t t E E H H == (D) 1212 , t t n n E E H H == 答案:C 8. 设自由真空区域电场强度(V/m) )sin(?0βz ωt E e E y -= ,其中0E 、ω、β为常数。则???222x y z e e e ++A ??A ??E J H B E D σ=μ=ε= , ,t q S d J S ??-=?? t J ?ρ ?-=??

空间位移电流密度d J (A/m 2)为: (a ) )cos(?0βz ωt E e y - (b ) )cos(?0βz ωt ωE e y - (c ) )cos(?00βz ωt E ωe y -ε (d ) )cos(?0βz ωt βE e y -- 答案:C 9. 已知无限大空间的相对介电常数为4=εr ,电场强度(V/m) 2cos ?0d x e E x πρ= ,其中0ρ、d 为常数。则d x =处电荷体密度ρ为: (a )d 04πρ- (b )d 004ρπε- (c )d 02πρ- (d )d 02ρπε- 答案:d 10. 已知半径为R 0球面内外为真空,电场强度分布为 ?????? ?>θ+θ<θ+θ-=θθ )R ( )sin ?cos 2?() R ( )sin ?cos ?(2 0300 r e e r B r e e R E r r 求(1)常数B ;(2)球面上的面电荷密度;(3)球面内外的体电荷密度。 Sol. (1) 球面上 由边界条件 t t E E 21=得: sin sin 230 0θ=θR B R 202R B =→ (2)由边界条件s n n D D ρ=-21得: θε= -ε=-ε=ρcos 6)()(0 210210R E E E E r r n n s (3)由ρ=??D 得: ???><=θ?θ?θε+??ε=??ε=ρθ )R ( 0)R ( 0)sin (sin 1)(10002200r r E r r E r r E r 即空间电荷只分布在球面上。 11. 已知半径为R 0、磁导率为μ 的球体,其内外磁场强度分布为 ??? ??>θ+θ<θ-θ=θθ )R ( )sin ?cos 2?(A )R ( )sin ?cos ?(203 0r e e r r e e H r r 且球外为真空。求(1)常数A ;(2)球面上的面电流密度J S 大小。

电磁学复习题答案

一、填空题(每小题3分) 1、如图一边长为a 的等边三角形两顶点A ,B 上分别放电量为+q 的两点电荷,问顶点C 处的电场强度大小为 2043a q πε 。 2、如图边长为L 的等边三角形的三个顶点,若在A 、B 、C 三个顶点处分别放置带电量为q 的正点电荷,则A 、B 、C 三点电荷在等边三角形三条中线交点上产生的合场强的大小为 0 。 3、两无限大的带电平面,其电荷密度均为+σ,则两带电平面之间的场强为 0 。 4、均匀带电(电荷面密度为σ)无限大均匀带电平板,距平板距离为r 处一点平p 处的电场强度大小为 0 2εσ 。 5、一无限大均匀带电平面,电荷面密度为σ,则带电平面外任一点的电场强度的大小为 0 2εσ 。 6、两无限大的带电平面,其电荷密度分别为+σ,-σ,则两带电平面之间的场强为 0 εσ 。 7、均匀带电圆环带电量q ,圆环半径为R ,则圆环中心点处的电场强度大小为 0 。 8、ABCD 是边长为L 的正方形的四个顶点,若在A 、B 、C 、D 四个顶点处分别放置带电量为q 的 正点电荷,则A 、B 、C 、D 四点电荷在正方形对角线交点上产生的合场强的大小为 0 。 9、静电场力做功的特点:静电场力做功与路径 无关 (填“有关”或“无关” ) 10、如图所示,一点电荷q +位于立方体的中心,则通过abcd 面的E 的电通量φ大小为 0 6εq 。 11、静电平衡导体的表面电荷面密度为α,则表面处的电场强度E = 0εα 。 12、半径为R 的球壳均匀带电荷q ,电场中球面处的电势为 R q 04πε 。 13、半径为R 的球面均匀带电荷q ,在真空中球心处的电势为 R q 04πε 。 14、设点电荷q 的电场中的某一点距电荷q 的距离为处r 的电场强度的大小为 204r q πε ,该点的电势为 r q 04πε 。 15、通过磁场中某一曲面的磁场线叫做通过此曲面的磁通量,则通过任意闭合曲面的磁通量为 0 。 16、真空中,半径为R 的圆形载流导线的电流为I ,则在圆心处的磁感应强度大小为 R I 20μ 。(真磁导率为0μ) 17、如图所示,电流元l Id 在A 处产生的磁感应强度大小为 204sin r Idl πθμ 。 18.通有电流I 半径为R 圆形导线,放在均匀磁场B 中,磁场与导线平面垂直,则磁场作用在 圆形导线上的最大力矩为 IB R 2π 。 19、一通有电流I 的无限长载流导线,距导线垂直距离R 处的一点P 处的磁感应强度B 大小为 R I πμ20 。 20、一无限长通电螺线管,单位长度上线圈的匝数为n ,通有电流为I ,则螺线管内部磁感应强度大小为 nI 0μ 。 21、一个直径为D 的线圈有N 匝,载有电流I ,将它置于磁感强度为B 的匀强磁场中,作用于线圈的最大力矩M= 4/2IB D N π 。 22、一面积为S 正方形线圈由外皮绝缘的细导线绕成,共有N 匝,放在磁感应强度为B 的外磁场中,当导线通有电流 I 的电流时,线圈磁矩M 的最大值等于 NIBS 。

电磁学试题大集合(含答案)

长沙理工大学考试试卷 一、选择题:(每题3分,共30分) 1. 关于高斯定理的理解有下面几种说法,其中正确的是: (A)如果高斯面上E 处处为零,则该面内必无电荷。 (B)如果高斯面内无电荷,则高斯面上E 处处为零。 (C)如果高斯面上E 处处不为零,则该面内必有电荷。 (D)如果高斯面内有净电荷,则通过高斯面的电通量必不为零 (E )高斯定理仅适用于具有高度对称性的电场。 [ ] 2. 在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于: (A)1P 和2P 两点的位置。 (B)1P 和2P 两点处的电场强度的大小和方向。 (C)试验电荷所带电荷的正负。 (D)试验电荷的电荷量。 [ ] 3. 图中实线为某电场中的电力线,虚线表示等势面,由图可看出: (A)C B A E E E >>,C B A U U U >> (B)C B A E E E <<,C B A U U U << (C)C B A E E E >>,C B A U U U << (D)C B A E E E <<,C B A U U U >> [ ] 4. 如图,平行板电容器带电,左、右分别充满相对介电常数为ε1与ε2的介质, 则两种介质内: (A)场强不等,电位移相等。 (B)场强相等,电位移相等。 (C)场强相等,电位移不等。 (D)场强、电位移均不等。 [ ] 5. 图中,Ua-Ub 为: (A)IR -ε (B)ε+IR (C)IR +-ε (D)ε--IR [ ] 6. 边长为a 的正三角形线圈通电流为I ,放在均匀磁场B 中,其平面与磁场平行,它所受磁力矩L 等于: (A) BI a 221 (B)BI a 234 1 (C)BI a 2 (D)0 [ ]

磁的应用

磁的应用 磁的应用——磁在收音机中的应用 磁在电视机中的应用 磁在磁录音机和磁录像机中的应用 磁在新型汽车中的应用 磁在发电机和电动机中的应用 磁在磁浮列车中的应用 磁在高能加速器和对撞机中的应用 定向能电磁辐射武器和电磁炮 磁的应用——磁在收音机中的应用 收收音机用到多种磁性材料和磁 性器件。例如,收音机中都要使用电声 喇叭把电信号变成声音,而一般最常用 的电声喇叭便是永磁式电声喇叭。这种 喇叭的结构示意图如图1所示,收音机所收到的电台发射机已将声音转换成的电信号,在受到电声喇叭中永久磁铁的磁场作用而使电线圈振动发声。这样便将电台发射的已转换为电信号的声音复原了。电声喇叭中的永久磁铁的磁场在这种电-声转换中起了重要的作用。喇叭则将电线圈的振动发声放大。另外在收音机中转换高频率的电信号和低频率的电信号也都需要使用多种的高频变压器和低频变压器,这些变压器也需要使用多种的磁性材料。 为了提高收音机的灵敏度和接收距离,需要使用天线。如果利用磁性材料制成 图1 收音机中应用的 永磁式电声喇叭示意图

磁天线,不但可以显著减小天线的尺寸,而且还可以显著提高收音机的灵敏度。这种磁天线的性能既同天线的设计有关,又同磁性材料的磁特性有关。 收音机工作时需要使用电源。有使用电池作电源的,也有使用交流电源的。在使用交流电源时,又需要使用变压器来改变电压。变压器也需要采用磁性材料。 这样可以看出,我们使用的收音机虽然体积很小,但是却离不开磁性材料,和用多种磁性材料制成的多种磁性器件。 磁在电视机中的应用 电视机是我们生活中经常应用的另一种电器。磁在电视机中的应用也是相当多的。同收音机相比较,电视机不但能听到声音,而且能看到活动的图像。在彩色电视机中还能看到色彩鲜艳逼真的彩色活动图像。因此电视机要应用比收音机更多数量、更多种类和更多功能的磁性材料和磁性器件。具体说来,电视机除了也使用收音机所使用的多种磁变压器和永磁电声喇叭外,还要使用磁聚焦器、磁扫描器和磁偏转器。 电视机的结构和工作原理是很复 杂的。这里只简单地介绍磁在电视机中 的作用。关于电视机中的声音部分基本 上同收音机相似,这里就不再介绍,而 只说明同活动图像相关的磁的应用。电 视机中的活动图像的放映是在显像电子管中进行的。电视台将活动图像转换 成电信号后通过无线或有线传送到电 图2 电视机显像管应用的 磁聚集器和磁偏转器示意图

大学物理电磁学复习题集含答案解析

题8-12图 8-12 两个无限大的平行平面匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强. 解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间, n E )(21210 σσε-= 1 σ面外, n E )(21210 σσε+- = 2σ面外, n E )(21210 σσε+= n :垂直于两平面由1σ面指为2σ面. 8-13 半径为R 的均匀带电球体的电荷体密度为ρ,若在球挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔的电场是均匀的. 解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a). (1) ρ+球在O 点产生电场010=E , ρ - 球在O 点产生电场'd π4π343 03 20 OO r E ερ= ∴ O 点电场'd 33 030 OO r E ερ= ; (2) ρ+ 在O '产生电场'd π4d 343 03 01OO E ερπ=' ρ-球在O '产生电场002='E ∴ O ' 点电场 03ερ= 'E 'OO

题8-13图(a) 题8-13图(b) (3)设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r (如题8-13(b)图) 则 3ερr E PO = , 0 3ερr E O P '- =' , ∴ 003'3)(3ερερερd OO r r E E E O P PO P = ='-=+=' ∴腔场强是均匀的. 8-14 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C -1的外电场中,求外电场作用于电偶极子上的最大力矩. 解: ∵ 电偶极子p 在外场E 中受力矩 E p M ?= ∴ qlE pE M ==max 代入数字 4536max 100.2100.1102100.1---?=?????=M m N ? 8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为 2r =25cm ,需作多少功? 解: ? ? == ?= 2 2 2 1 0212021π4π4d d r r r r q q r r q q r F A εε )11(2 1r r - 61055.6-?-=J 外力需作的功 61055.6-?-=-='A A J 题8-16图 8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功. 解: 如题8-16图示 0π41 ε= O U 0)(=-R q R q

磁聚焦和电子荷质比的测量

磁聚焦和电子荷质比的测量 【实验目的】 1、学习测量电子荷质比的一种方法。 【实验原理】 1、示波管的简单介绍: 示波管结构如图1所示 示波管包括有: (1)一个电子枪,它发射电子,把电子加速到一定速度,并聚焦成电子束; (2)一个由两对金属板组成的偏转系统; (3)一个在管子末端的荧光屏,用来显示电子束的轰击点。 所有部件全都密封在一个抽成真空的玻璃外壳里,目的是为了避免电子与气体分子碰撞而引起电子束散射。接通电源后,灯丝发热,阴极发射电子。栅极加上相对于阴极的负电压,它有两个作用:①一方面调节栅极电压的大小控制阴极发射电子的强度,所以栅极也叫控制极;②另一方面栅极电压和第一阳极电压构成一定的空间电位分布,使得由阴极发射的电子束在栅极附近形成一个交叉点。第一阳极和第二阳极的作用一方面构成聚焦电场,使得经过第一交叉点又发散了的电子在聚焦场作用下又会聚起来;另一方面使电子加速,电子以高速打在荧光屏上,屏上的荧光物质在高速电子轰击下发出荧光,荧光屏上的发光亮度取决于到达荧光屏的电子数目和速度,改变栅压及加速电压的大小都可控制光点的亮度。水平偏转板和垂直偏转板是互相垂直的平行板,偏转板上加以不同的电压,用来控制荧光屏上亮点的位置。 2、电子的加速和电偏转: 为了描述电子的运动,我们选用了一个直角坐标系,其z轴沿示波管管轴,x轴是示波管正面所在平面上的水平线,y轴是示波管正面所在平面上的竖直线。

从阴极发射出来通过电子枪各个小孔的一个电子,它在从阳极2A 射出时在z 方向上具有速度Z v ;Z v 的值取决于K 和2A 之间的电位差C B 2V V V +=(图2)。 电子从K 移动到2A ,位能降低了2V e ?;因此,如果电子逸出阴极时的初始动能可 以忽略不计,那么它从2A 射出时的动能 2z v m 2 1? 就由下式确定: 22 z V e v m 21?=? (1) 此后,电子再通过偏转板之间的空间。如果偏转板之间没有电位差,那么电子将笔直地通过。最后打在荧光屏的中心(假定电子枪描准了中心)形成一个小亮点。但是,如果两个垂直偏转板(水平放置的一对)之间加有电位差d V ,使偏转板之间形成一个横向电场y E ,那么作用在电子上的电场力便使电子获得一个横向速度y v ,但却不改变它的轴向速度分量z v ,这样,电子在离开偏转板时运动的方向将与z 轴成一个夹角θ,而这个θ角由下式决定: z y v v tg =θ (2) 如图3所示。果知道了偏转电位差和偏转板的尺寸,那么以上各个量都能计算出来。 设距离为d 的两个偏转板之间的电位差d V 在其中产生一个横向电场d /V E d y =,从而对电子作用一个大小为d /eV eE F d y y == 的横向力。在电子从偏转板之间通过的时间t ?内,这个力使电子得到一个横向动量y mv ,而它等于力的冲量,即

相关文档
最新文档