关于实变函数论中某个引理证明的一个注记
特勒根引理方向

特勒根引理方向特勒根引理是一种在数学分析中常用的重要工具,它在函数论、实变函数和复变函数等领域都有广泛的应用。
特勒根引理是由德国数学家奥托·特勒根于20世纪初提出的,它是一种通过研究函数的性质来推导出函数的极限性质的方法。
引理的表述特勒根引理可以用如下的方式表述:设f是定义在实数轴上的一个函数,如果对于任意一个实数x,都存在一个正数δ,使得当|ℎ|<δ时,有|f(x+ℎ)−f(x)|<ϵ,那么就可以得出结论:对于任意一个实数a,都存在一个正数δ′,使得当|x−a|<δ′时,有|f(x)−f(a)|<ϵ。
引理的证明特勒根引理的证明可以通过构造适当的函数序列来完成。
首先,我们定义一个函数序列f n(x),其中n是一个正整数,且n≥1。
对于任意一个实数x,我们有:f n(x)=1n∑fn−1k=0(x+k/n)接下来,我们需要证明的是对于任意一个实数a,都存在一个正数δ′,使得当|x−a|<δ′时,有|f(x)−f(a)|<ϵ。
为此,我们可以通过构造一个函数序列f n(x)来逐步逼近f(x)。
首先,我们可以证明当|x−a|<1/n时,有|f(x)−f n(x)|<ϵ。
根据特勒根引理的条件,我们可以选择一个正数δ,使得当|ℎ|<δ时,有|f(x+ℎ)−f(x)|<ϵ。
由于函数f是连续的,所以对于任意一个实数a,都存在一个正数δ′,使得当|x−a|<δ′时,有|f(x)−f(a)|<ϵ/2。
因此,我们可以选择一个正整数n,使得1/n<δ′。
这样,当|x−a|<1/n时,我们有:|f(x)−f n(x)|=|1n ∑fn−1k=0(x+k/n)−f(x)|≤1n∑|f(x+k/n)−f(x)| n−1k=0<1n∑ϵn−1 k=0=ϵ因此,当|x−a|<1/n时,有|f(x)−f n(x)|<ϵ。
要特别重视六大定理

要特别重视六大定理何松年常言道干什么事情都要有个重点,不能眉毛胡子一把抓。
同样,同学们学习每一门课程也要有个重点,学习‘实变函数’的重点就是学好六大定理。
通常说‘实变函数’三大定理,是指‘控制收敛定理’、‘Levi引理’和‘Fatou 引理’,这三个定理是‘实变函数’的核心成果,集中地体现了Lebesgue积分相对于Reimann积分的优越性,因而这三个定理是‘实变函数’中最重要的定理,三大定理之说法当之无愧!但是,另有三个定理在‘实变函数’中具有基本的重要性,是前述三大定理的基础,它们是‘可测集构造定理’、‘鲁津定理’和‘叶果洛夫定理’。
我们不妨把上述六个定理称为‘实变函数’六大定理。
学习‘实变函数’一定要重视六大定理,学习‘实变函数’差不多可以说主要地就是掌握好六大定理。
前三个定理为什么重要,容易理解,我们在此着重谈谈后三个定理为什么是很重要的。
1944年,著名数学家李特尔伍德(J. E. Littlewood, 1885—1977)曾经写过一本叫《函数论讲义》的书。
书中有这样一段话:“知识的范围不像有时设想的那样大。
有三条原理大致可以表达为:每个可测集几乎是有限个区间的并;每个可测函数几乎是连续的;每个可测函数的收敛序列几乎是一致收敛的。
实变函数论中的大多数结果是这些原理的完全直觉的应用,而学生们掌握了这些,就等于掌握了大多数情况下实变函数理论所要求的。
若可以看到由一条原理可以“很好”地证实一个命题的正确性,那么自然要问“几乎”应充分接近到怎样的程度,这个问题就可以确切地解决了。
”这三个原理依次对应着三个定理:‘可测集构造定理’、‘鲁津定理’和‘叶果洛夫定理’。
Littlewood的这一番话是60多年前说的,现在读来依然感到很有意思,很重要,是画龙点睛之笔。
他紧紧抓住了实函数论中三个最重要的概念,指出了可测集与有限个区间的并;可测函数与连续函数;可测函数列的几乎处处收敛与一致收敛之间的区别与联系。
实变函数的理论与应用

实变函数的理论与应用实变函数是数学分析中的一个重要概念。
它涉及实数域上的函数,即定义域和值域都是实数集合。
实变函数的研究不仅具有理论意义,还有广泛的应用。
本文将从理论和应用两个角度,对实变函数进行详细探讨。
首先,我们来了解一下实变函数的理论。
实变函数理论是数学分析的一部分,主要研究实数域上函数的性质和变化规律。
实变函数的基本性质包括连续性、可导性、积分性等。
其中,连续性是实变函数的重要性质之一。
一个函数在某点处连续,意味着其在这个点附近具有相对平滑的变化。
连续性理论为我们研究函数的极限、导数和积分等提供了基础。
另外,导数也是实变函数理论的重点,它描述了函数在某点处的变化速率。
导数的概念不仅涉及到函数的变化趋势,还与函数的极值、凹凸性等相关。
积分性质则是研究函数的面积和曲线长度等问题。
通过对实变函数的理论研究,我们可以更好地理解函数的性质,为后续的应用打下坚实的基础。
其次,我们来探讨一下实变函数的应用。
实变函数广泛应用于物理学、工程学、经济学等领域。
在物理学中,实变函数被用于描述物体的位置、速度、加速度等物理量的变化规律。
例如,在机械运动中,实变函数可以描述物体的位移与时间的关系,通过对函数求导可以得到物体的速度与加速度。
在工程学中,实变函数可以被用来建模和解决实际问题。
例如,在电子电路设计中,可以通过函数的傅里叶级数展开来分析电路的波形特性。
在经济学中,实变函数被用于描述价格、需求、供应等经济变量的关系。
通过对函数的微分可以得到边际效用、边际成本等重要的经济指标。
实变函数的应用不仅帮助我们更好地理解自然界和社会经济现象,还为我们解决实际问题提供了有力的工具。
此外,实变函数的理论和应用还与数值计算密切相关。
数值计算是利用计算机进行求解数学问题的方法。
对于实变函数,我们常常需要进行数值逼近和数值积分等计算。
例如,在求解微分方程时,我们可以利用数值方法来近似求解。
在实际应用中,由于实变函数的复杂性,往往无法得到解析解,因此需要通过数值计算来求得近似解。
egorov定理的证明

Egorov定理是实变函数论中的一个重要定理,它描述了可测函数列的几乎处处收敛与一致收敛之间的关系。
以下是Egorov定理的一个概要证明,注意这是一个高度抽象和简化的版本,实际的证明需要更详细的分析和数学技巧。
Egorov定理的陈述是:设\( (X, \mathcal{F}, \mu) \)是一个测度空间,\( E \subseteq X \)是一个有限测度集合,\( f_n \)是定义在\( E \)上的可测函数列,且\( f_n \)在\( E \)上几乎处处收敛于可测函数\( f \)。
那么,对于任意正数\( \epsilon \),存在一个\( \mu \)-可测集合\( E_\epsilon \subseteq E \),使得\( \mu(E_\epsilon) \leq \epsilon \),并且在\( E \setminus E_\epsilon \)上,\( f_n \)一致收敛于\( f \)。
证明概要:1. **准备步骤**:首先,我们需要一个辅助引理,它告诉我们对于任意可测集合\( A \)和任意正数\( \epsilon \),存在一个\( \mu \)-可测的集合\( A_\epsilon \subseteq A \),使得\( \mu(A_\epsilon) \leq \epsilon \)且\( A \setminus A_\epsilon \)是相对开的,即\( A \setminus A_\epsilon \in \mathcal{F} \)。
2. **构造\( E_\epsilon \)**:使用上述引理,对于每个\( n \)和\( \epsilon \),构造一个\( E_{n,\epsilon} \subseteq E \),使得\( \mu(E_{n,\epsilon}) \leq \epsilon \)且\( E \setminus E_{n,\epsilon} \)是相对开的。
实变函数知识点总结

引言:实变函数是数学分析中的重要概念,是研究函数性质的基础。
在这篇文章中,我们将总结实变函数的相关知识点,为读者提供一个全面且详细的了解实变函数的资料。
本文将从函数的极限、连续性、导数、积分和级数等五个大点进行阐述,每个大点都包含5-9个小点的详细内容。
概述:实变函数是实数集到实数集的映射,研究实变函数的性质时,我们主要关注函数的极限、连续性、导数、积分和级数。
下面将详细介绍这些知识点。
正文:一、函数的极限1. 函数的极限概念:介绍函数极限的定义和图形解释。
2. 极限的性质:极限的唯一性、界限定理和保号性等。
3. 极限运算法则:介绍极限的四则运算法则和复合函数的极限。
4. 无穷大与无穷小:定义无穷大和无穷小,并介绍无穷大与极限的关系。
5. 函数极限存在的条件:介绍连续函数、单调有界函数和有界变差函数等存在极限的条件。
二、函数的连续性1. 连续函数的定义:介绍连续函数的定义和连续函数的图像特征。
2. 连续函数的性质:介绍连续函数的保号性、介值性和有界性。
3. 连续函数的运算法则:介绍连续函数的四则运算法则和复合函数的连续性。
4. 列举函数的连续与不连续性:介绍一些特殊函数的连续性,如分段函数和有间断点的函数。
5. 连续函数的特例:介绍单调函数、递增函数和递减函数的连续性。
三、函数的导数1. 导数的定义:介绍导数的定义和导数的图形解释。
2. 导数的性质:介绍导数的可加性、可乘性和零点定理等。
3. 常见函数的导数:介绍常数函数、幂函数、指数函数和对数函数的导数。
4. 高阶导数与导数的递推关系:介绍高阶导数的定义和与导数的递推关系。
5. 隐函数与参数方程的导数:介绍隐函数和参数方程的导数计算方法和相关性质。
四、函数的积分1. 定积分的定义:介绍定积分的定义和定积分的几何意义。
2. 定积分的计算方法:介绍定积分的基本计算方法和积分的运算法则。
3. 牛顿-莱布尼茨公式:介绍牛顿-莱布尼茨公式的定义和应用。
4. 微积分基本定理:介绍微积分基本定理的两种形式和相关性质。
《实变函数论》范文

《实变函数论》范文《实变函数论》是数学分析的重要领域之一,主要研究实变函数的性质和性质之间的相互关系。
实变函数是自变量和函数值都是实数的函数,是数学中的基础概念之一、实变函数论的研究对象包括实变函数的连续性、可导性、积分性质、收敛性以及函数的极限等方面。
通过对实变函数的系统研究,可以深入理解数学分析的基本概念,为后续研究提供重要的基础。
实变函数的基本性质是连续性。
连续性是指函数在其中一点处的函数值和该点的邻域中的函数值之间的关系。
实变函数的连续性可分为点连续和区间连续两种情况。
点连续是指函数在其中一点处连续,而区间连续是指函数在其中一区间上连续。
连续函数有许多重要性质,如介值定理、零点定理等。
实变函数的另一个重要性质是可导性。
可导性是指函数在其中一点处存在导数。
导数是函数在其中一点处的变化率,可以理解为函数在该点处的斜率。
可导函数具有许多重要的性质,如极值点的判定、求函数的最大值和最小值等。
实变函数的积分性质也是实变函数论的重要内容。
积分是求函数在其中一区间上的面积,是函数与坐标轴之间的关系。
实变函数的积分分为不定积分和定积分两种情况。
不定积分是求函数的原函数,而定积分是求函数在其中一区间上的面积。
积分也具有许多重要的性质,如积分中值定理、换元积分法等。
实变函数的极限是实变函数论的核心概念之一、极限是指函数在其中一点无限接近一些数的趋势。
实变函数的极限有两个方向,即正向极限和负向极限。
极限具有包含关系,即正向极限等于负向极限等于极限的值。
实变函数的收敛性是指函数序列或函数列在其中一点趋于一些数的性质。
实变函数的收敛性有点收敛和一致收敛两种情况。
点收敛是指函数在其中一点处收敛,而一致收敛是指函数在整个区间上收敛。
收敛性是实变函数论的重要内容,对于理解函数的性质和应用具有重要作用。
总结来说,《实变函数论》是研究实变函数的性质和性质之间的相互关系的数学分析的重要领域。
通过对实变函数的连续性、可导性、积分性质、收敛性以及函数的极限等方面的研究,可以深入理解数学分析的基本概念,为后续研究提供重要的基础。
(完整版)《实变函数》第四章可测函数
第四章 可测函数(总授课时数 14学时)由于建立积分的需要,我们还必须引进一类重要的函数——Lebesgue 可测函数,并讨论其性质和结构。
§1 可测函数及其性质教学目的 本节将给出可测函数的定义并讨论其基本性质教学要点 可测函数有若干等价的定义. 它是一类范围广泛的函数, 并且有很好的运算封闭性. 可测函数可以用简单函数逼近, 这是可测函数的构造性特征。
本节难点 可测函数与简单函数的关系。
授课时数 4学时———---—-——-——-—-—--——-——————-—1可测函数定义定义:设()f x 是可测集E 上的实函数(可取±∞),若[],f a a R E>∀∈可测,则称()f x 是E 上的可测函数。
2可测函数的性质性质1 零集上的任何函数都是可测函数。
注:称外测度为0的集合为零集;零集的子集,有限并,可数并仍为零集性质2 简单函数是可测函数若1nii E E ==⋃ (iE 可测且两两不交),()f x 在每个iE 上取常值ic ,则称()f x 是E 上的简单函数;1()()i ni E i f x c x χ==∑ 其中1()0ii E i x E x x E E χ∈⎧=⎨∈-⎩注:Dirichlet 函数是简单函数性质3 可测集E 上的连续函数()f x 必为可测函数 设()f x 为E 上有限实函数,称()f x 在0x E ∈处连续00(,)((),)0,0,()x f x f OE Oδεεδ∀>∃>⋂⊂若使得对比:设()f x 为(),a b 上有限实函数,0()(,)f x x a b ∈在处连续lim ()()x x f x f x →=若0,0,|||()()|x x f x f x εδδε∀>∃>-<-<即当时,有00(,)((),)0,0,()x f x x Of x O δεεδ∀>∃>∈∈即当时,有00(,)((),)0,0,()x f x f OOδεεδ∀>∃>⊂即使得()f x 在0[,]x a b ∈处连续(对闭区间端点则用左或右连续)证明:任取[]x E f a ∈>, 则()f x a >,由连续性假设知, 对(),0,xf x a εδ=-∃>使得(,)((),)()(,)x x f x f OE Oa δε⋂⊂⊂+∞即(,)[]x x f a OE Eδ>⋂⊂。
实变函数论第二章 点集
第二章习题P291.证明'0p E ∈的充要条件是对于任意含有0p 的邻域()0,N p δ(不一定以0p 为中心)中,恒有异于0p 的点1p 属于E (事实上这样的1p 其实还是有无穷多个)而0p 为E 的内点的充要条件则上有含有0p 的邻域()0,N p δ(同样,不一定以0p 为中心)存在,使()0,N p E δ⊂. 证明:先设'0p E ∈,则()00,,N p E δδ∀> 中有无穷多个点。
现在设()00,p N p δ∈,这表明()00,p p ηρδ≤=<,故()0,y N p δη∀∈-,有()()()00,,,y p y p p p ρρρδηηδ≤+<-+= 故()()0,,N p N p δηδ-⊂故()0,N p E δη- 有无穷个点,自然有异于0p 的点()10,p N p E δη∈-(),N p δ⊂.这就证明了必要性,事实上,(){}00,N p E p δη-- 是无穷集,故(),N p δ中有无穷多个异于0p 的E 中的点.反过来,若任意含有0p 的邻域(),N p δ中,恒有异于0p 的点1p 属于E ,则0δ∀>,(),N p δ中,有异于0p 的点1p 属于E ,记()101,p p ρδ=,则显然1δδ<由条件()01,N p δ中有异于0p 的点2p E ∈,()2021,p p ρδδ=<由归纳法易知,有{}11,1,2,,n n n n δδδδ+∀=<<< 和()01,n n p E N p δ-∈ ,0,1,2,n p p n ≠=这表明()0,N p δ中有无穷个E 中的点.由0δ>的任意性知,'0x E ∈若0p 为E 的内点,则0,δ∃>使()0,N p E δ⊂,故必要性是显然的. 若存在邻域(),N p E δ⊂,使()0,p N p δ∈,则从前面的证明知()()()00,,,N p p p N p E δρδ-⊂⊂,故0p 为E 的内点.2.设1nR R =是全体实数,1E 是[]0,1上的全部有理点,求'11,E E .解:[]0,1x ∀∈,由有理数的稠密性知,()()0,,,N x x x εεεε∀>=-+中有无穷个1E 中的点,故'1x E ∈,故[]'10,1E ⊂.而另一方面,[]0,1x ∀∉,必有0δ>,使()[]0,0,1N x δ=∅ ,故'01x E ∉ 故[]'10,1E ⊂,所以[][]'10,10,1E ⊂⊂. 表明[]'10,1E =而[][]'11110,10,1E E E E === 故[]'110,1E E ==.3.设2n R R =是普通的xy 平面(){}222,;1E x y xy =+<,求'22,E E .解:(){}'222,;1E x y xy =+≤事实上,若()'0002,p x y E =∈,则由于()22,f x y x y =+是2R 上的连续函数,必存在0δ>,使()()0,,x y N p δ∀∈有()22,1f x y x y =+>.故()02,N p E δ=∅ ,故0p 不是'2E 中的点矛盾. 故22001x y +≤时(){}220,;1p x y xy ∈+≤反过来,若()(){}22000,,;1p x y x y x y =∈+≤则0δ∀>,作[]0,1上的函数()()00,f t tp p ρ==t ==-则()f t 是[]0,1上的连续函数,()01f =≤,()10f =,01δ∀<<,[]0,1t δ∃∈使()f t δδ=现在任取()0,0min 1,ηδη>∃<<,使()()00,,N p N p δη⊂. 由上面的结论,存在01t δ<<,使()1f t δδ=<.故0t p δ满足(1)00t p p δ≠;(2)0001t p t p t p t δδδδ==≤<.故02t p E δ∈ (3)()00,t p p δρδη=<,故()0,t p N p δη∈所以(){}020,t p N p E p δη∈-由习题1的结论知'02p E ∈,所以(){}'222,;1E x y xy =+≤.而(){}''222222,;1E E E E x y xy ===+≤ .4.2n R R =是普通的xy 平面,3E 是函数1sin 00x y xx ⎧≠⎪=⎨⎪=⎩的图形上的点所作成的集合,求'3E .解:设函数的图形是()(){}{}'131,;,,sin ;0x f x x R Ex x R x ⎧⎫⎛⎫∈=∈-⎨⎬ ⎪⎝⎭⎩⎭(){}0,0 . 下证(){}'330,;11E E δδ=-≤≤()'0003,p x y E =∈⇔存在()(){}300,,n n n p x y E x y =∈-,()000,,n n n n n p x y p x x y y =→⇔→→,()0,0n p p ρ→设()'0003,p x y E =∈,则存在()(){}30,,n n x y E x y ∈-使00,nn xx y y →→若00x ≠,则0n x ≠(当n 充分大) 则0011sinsin n n y y x x =→= 所以()003,x y E ∈若00x ≠,则0n x →,01sinn ny y x =→,011y -≤≤ 所以()(){}00,0,;11x y δδ∈-≤≤ 故(){}'330,;11E E δδ⊂-≤≤反过来:()(){}0003,0,;11p x y E δδ∀=∈-≤≤ , 若00x ≠,001siny x =, 故存在0n x x ≠,使0n x ≠,0n x x →从而011sinsin n x x → 即存在()001,sin,n n x x y x ⎛⎫→ ⎪⎝⎭故'03p E ∈.若()(){}000,0,;11p y δδ=∈-≤≤ 则从[]01,1y ∈-知存在0x 使00sin x y =, 令()010,1,2,2k x k k x π=≠=+ .则()0001sinsin 2sin kk x x y x π=+==, 所以()3011,sin ,,sin 0,k k k k x E x y x x ⎛⎫⎛⎫∈→ ⎪ ⎪⎝⎭⎝⎭,()()00,0,k x y y →()()00,0,k x y y ≠故'03p E ∈ 故结论成立.5.证明当E 是nR 中的不可数无穷点集时,'E 不可能是有限集. 证明:记B 为E 的孤立点集,则'E B E -= 所以()'E E B B E B =-⊂ .若能证明B 是至多可数集,则若'E 是有限集或可列集知'E B E ⊃ 为至多可数集,这将与E 是n R 中的不可数无穷点集矛盾.故只用证E 的孤立点集B 是至多可数集p B ∀∈,0p δ∃>使(){},p N p E p δ=故(),np p N p R δ⊂ 是B 到n R 中的一个互不相交的开球邻域组成的集的11-对应.而任一互不相交开球邻域作成的集合{},A αα∈Λ是可数的,因为任取α∈Λ,取有理点p A α∈,则从,A A αβαβ=∅≠ 则{},A αα∈Λ与Q 11-对应故{},A αα∈Λ是至多可数集. 证毕P351.证明点集F 为闭集的充要条件是F F =.证明:因为'F F F = ,若F 为闭集,则'F F ⊂所以'F F F F F F F =⊂=⊂ 故F F =反过来,若'F F F F =⊂ ,则必有'F F ⊂从而F 为闭集.2.设()f x 是(),-∞∞上的实值连续函数,证明对于任意常数a ,(){};x f x a >都是开集,(){};x f x a ≥都是闭集.证明:任取常数a ,若 (){}0;x x f x a ∈>,则()0f x a >,由于()f x 连续,0,0a x δ∃>, 使()(){}00,,;a x x N x x f x a δ∈⊂≥. 这表明(){};x f x a >是开集.任取常数a ,若{}(){};n x x f x a ∈≥,且0n x x →,则从()n f x a ≥和()f x 连续知()()0lim n n f x f x a →∞=≥故(){}0;x x f x a ∈≥这表明(){}(){}';;x f x a x f x a ≥⊂≥. 故(){};x f x a ≥是闭集.3.证明任何邻域(),N p δ都是开集,而且()(){}'',;,N p p p p δρδ=<(N 通常称为一闭邻域)证明:()0,p N p δ∀∈,则()00,p p ηρδ≤<()0,Q N p δη∀∈-,()()()00,,,Q p Q p p p ρρρηδηδ≤+<+-=故()()0,,N p N p δηδ-⊂. 故(),N p δ是开集得证.(){}(){}'''';,,;,n p p p p p p p p ρδρδ∀∈≤∈≤且 n p p → 则()(),0,,n n p p p p ρρδ→≤ () ()() (),,,,n n n p p p p p p p p ρρρρδ≤+≤+.令n →∞得(),0p p ρδ≤+. 故(){}(){}''''';,;,p p p p p p ρδρδ≤⊂≤.表明(){}'';,p p p ρδ≤是闭集.又(){}'';,p p p p ρδ∀∈≤ 令11k p x p k k ⎛⎫=+- ⎪⎝⎭, 则() ()111,1,1,1k p x p p p p p k k k k ρρρδδ⎛⎫⎛⎫⎛⎫⎛⎫=+-=-≤-< ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.()()1,,0k x p p p kρρ=→ 故() ,,k k x N p x p δ∈→这表明(){}()()''';,,,p p p N p N p ρδδδ≤⊂⊂而()(){}'',;,N p p p p δρδ⊂≤故()(){}(){}()'''',;,;,,N p p p p p p p N p δρδρδδ⊂≤=≤⊂这表明()(){}'',;,N p p p p δρδ=≤.4.设∆是一有限闭区间,()1,2,3,n F n = 都是∆的闭子集,证明如果1n n F ∞==∅ ,则必有正整数N ,使1Nn n F ==∅ .证明:令1nn i i S F == ,则显知11n n n n F S ∞∞=== ,且12n S S S ⊃⊃⊃⊃(),1i n F i n ∀≤≤为闭集,故n S 也为闭集.下证 N ∃,使1Nn N n F S ===∅ .反证,设,n n S ∀≠∅,则n n x S ∃∈⊂∆, 由于∆是有限闭区间,{}n x 是有界点列,若{},1,2,3,n x n = 为无限集合,则由聚点原理{}n x ∃的子列{}00,,k k n n x x x x →∈∆ 由于12n S S S ⊃⊃⊃⊃故任取,m N k ∈充分大时k k n n m x S S ∈⊂,又m S 为闭集,且0k n m x x S →∈ 由m 的任意性知,011m n m m x S F ∞∞==∈==∅ 得矛盾.若{},1,2,3,n x n = 为有限集合,则0n ∃,当()00max ,n n m ≥时,0n n m x x S S =∈⊂,故 011m n m m x S F ∞∞==∈==∅ 得矛盾.所以∃N ,使得1NN n n S F ===∅ .证毕.5.设,nE R μ⊂是一族完全覆盖E 的开邻域,则有μ中的(或有限)多个邻域12,,,m N N N ,它们也完全覆盖了E ( Lindelof 定理)证明:设{};,I αμα=∈ΛΛ为某指标集,则E I αα∈Λ⊂ .,x E ∀∈∃x α∈Λ,使得x x I α∈.由于I Λ是开集,0x δ∃>使(),x N x I δΛ⊂.由有理点在nR 的稠密性易知,存在有理点n x a Q ∈和有理数0x r >,使()(),,x x x x N a r N x I δΛ∈⊂⊂,而n R 中全体以有理点为心,有理数为半径的球作成集合与nQ Q ⨯的一个子集对等,故这些(){},;x x N a r x E ∈至多是一个可数集,从而相应的{};xIx E α∈也是至多可数集.而这些{};x I x E α∈显然为E 的一个开覆盖,因为(),x x x x Ex EE N a r I α∈∈⊂⊂因为每一个上述(),x x N a r 包含在某个I α中,故存在至多可数个i I M ∈,使{};i I i ∈Λ成为E 的一个开覆盖.6.证明nR 中任何开集G 可表成()1n ii G I ∞== 的形式,其中()()()(){}12;,,,,,1,2,3,,niii n j j j I p p x x x c x d j n ==<<=证明:(注意这里并为要求()n iI 互不相交)设G 为nR 中的任意开集,则0x G ∀∈,由开集的定义,∃一个球形邻域()()00,0x x N x G δδ⊂>,令()001200,,,;x n j x j I x x x x x x δδδ⎧⎫==<<+⎨⎩则显然()0000,x x x I N x G δ∈⊂⊂,且x x GG I G ∈⊂⊂ .故x x GG I ∈= ,x I 显然是开区间,也是开集,{},x I x G μ=∈为G 的一个开覆盖.由本节习题5,μ中的至多可数个123,,,,,n I I I I 完全覆盖了G 所以1i i G I G ∞=⊂⊂ .所以1i i G I ∞== ,i I 都是开区间.故本题结论得证.7.试根据Borel 有限覆盖定理证明Bolzano-Weierstrass 定理.证明:反证,设E 为有限无穷点集而无聚点,则'E =∅,从而'E E =∅⊂, 故E 为有界闭集,且任意p E ∈,都是E 的孤立点.故0p δ∃>使(){},p N p E p δ= ,所以(),p p EE N p δ∈⊂ .(){},pN p δ形成E 的一个开覆盖,由于E 为有界闭集,由Borel 有界覆盖定理,∃有限个()()11,,,,,m p m p N p N p δδ ,使()1,imi p i E N p δ=⊂()(){}111,,i i mmmi p i p i i i i E E N p E N p p δδ====== .前已知(){},i i p i N p E p δ= .故{}1mi i E p == 为一有限集合,这与E 为有界无穷集矛盾.8. 证明nR 中任意非空开集的基数都是c .证明:∀开集n U R ⊂,显从nU R ⊂知n U R c ≤=.又存在一个点()00,0,,p U N x U δδ∈∃>⊂,()0,N x c δ=, 故()0,U N x c δ≥≥. 所以Berrstein 定理知U c =. 证毕9. 证明对任意nE R ⊂,E 都是nR 中包含E 的最小闭集.证明:任取n E R ⊂,设F 是包含E 的人一闭集,则E F ⊂,''E F ⇒⊂所以''E E EF F F =⊂= ,因为F 为闭集 所以''E F F ⊂=,所以E 是nR 中包含E 的最小闭集.10. 对于1R 定义的实函数()f x ,令()()()''''00,lim sup lim inf x x x x W f x f x f x δδδδ++→→-<-<=-. 证明:对任意的(){}0,;,x W f x εε>≥都是闭集.进而证明()f x 的全体不连续点作成一F δ集.证明:首先 ,当δ单调下降趋于0时,()''sup x x f x δ-<也单调下降趋于某极限(有限或无限)而()''inf x x f x δ-<单调上升地趋于某极限.故()()()''''00,lim sup lim inf x x x x W f x f x f x δδδδ++→→-<-<=-是有确切定义的(可为无限值) 先证明:()f x 在0x x =连续()0,0W f x ⇔=.证:先设()0,0W f x =,则()00,0εδε∀>∃>使00δδ<<时()()''''sup inf x x x x f x f x δδε-<-<-< 所以y ∀满足0y x δ-<时()()()()''''0sup inf x x x x f y f x f x f x δδε-<-<-≤-< 故f 在0x 处连续.反过来,若()f x 在0x x =处连续,则()0000,,0x εδδε∀>∃=>,当00y x δδ-<<时,()()0f y f x εε-<-<又()000,x δδδε∀<=,''''''00,,,y y y x y x δδδδδδ∃-<-<且()()()()'''''''sup ,inf x x x x f x f y f y f x δδδδεε-<-<-≤≤+ 所以()()()()'''00sup x x f x f x f y f x δδεε-<--≤-<()()()()''''00inf x x f x f x f x f y δδεε-<--+≤-< 不等式相加得()()()()''''''''00sup inf 220lim sup lim inf 4x x x x x x x x f x f x f x f x δδδδδδεεε++-<-<→→-<-<--≤≤-≤即()00,4,0W f x εε≤≤<任意. 所以()0,0W f x =为证(){}0;,x W f x ε≥为闭集,只用证(){}0;,x W f x ε<为开集.(){}00;,x x W f x ε∀∈<必有()0,W f x ε<所以存在()00,0x δδε=>使()00,δδ∀∈时,()()()()000sup inf ,2N x N x f f W N x δδδεδ-<()02y N x δ∀∈,由三角不等式,则()()02N y N x δδ⊂.故()()()02,,W f N y W f N x δδε⎛⎫≤< ⎪⎝⎭所以()()02,lim ,W f y W f N y δδε+→⎛⎫=< ⎪⎝⎭这说明()(){}02;,N x x W f x δε⊂<故(){};,x W f x ε<是开集,从而(){};,x W f x ε≥是闭集. 由于()f x 在x 不连续的充要条件是(),0W f x ≥.所以使x 不连续的点集为表为()11;,k F x W f x k ∞=⎧⎫=≥⎨⎬⎩⎭. 由于()1,;,k x W f x k ⎧⎫∀≥⎨⎬⎩⎭是闭集,故F 为一F δ集. 同时我们看出,全体使f 连续的点集是()11;,ck F x W f x k ∞=⎧⎫=<⎨⎬⎩⎭这是一个G δ集合.推广:(1)对1:n f R R →有一样的结论,只不过在定义(),W f x 时,'x x-理解为nR 中的距离()';x x ρ,其它完全一样,因为三角不等式对().,.ρ成立,(2)若f 是nR 中的开集,G 到1R 的函数,则同样可定义()(),W f x x G ∀∈,因为当(){}0,;,,x x G W f x εε∀>∈<为开集,(){};,x G W f x ε∈≥为闭集.f 的不连续点集为()11;,k x G W f x k ∞=⎧⎫∈≥⎨⎬⎩⎭而f 的不连续点集为()11;,k x W f x k ∞=⎧⎫<⎨⎬⎩⎭. 11. 于nE R ⊂及实数α,定义()(){}1212,,;,,,nnE x x x x x x E αααα=∈ .证明当E 为开集,00,p E αα≠∀∈,则∃0E X ∈,使00p α=XE 开集,0E X ∈,故0δ∃>,使()0,N E δX ⊂.则∀()0,y N αδ∈X ,则yy αα=而0001yy y αδααδαααααX -X --=-X <=.故()0,yN E δα∈X ⊂从而yy E ααα=∈这表明()0,N E αδαX ∈,故E α为开集. 若E 为闭集,0α=,则(){}0,0,0E α=为单点集.当然是闭集,若0α≠,则0,n n p E p p α∈→,则0,,,nn n n n n p p E p p αα=X X ∈=X →表明 0nn p p αα=X →,而E 为闭集,0n p αX →,故np E α∈,从而0p p E ααα=∈.这说明()'E E αα⊂.从而得知E α为闭集.12. 设()f p 是定义于nR 上的实函数,证明()f p 在nR 上连续的充要条件是对于1R 中任何开集G .()(){}1;f G p f p G -∈ 都是 1R 中的开集.证明:设1:n f R R →连续,G 为任一1R 中开集.()10p f G -∀∈,则()0f p G ∈,由G 为开集知,0δ∃>,使()()0,N f p G ε⊂对上述()00,,0p εδδε>∃=>,使当()0,y N p δ∈时()()0f y f p ε-<故()()()0,f y N f p G ε∈⊂ 即()1y fG -∈.这说明()()10,N p f G δ-⊂故()1fG -为开集.现设对1R 中任意开集,()1,G fG -为开集,0,ε∀>()()0,N f p ε是1R 中的开集.故()()()10,f N f p ε-是开集,而()()()100,p f N f p ε-∈.故()()()()00,,f N p N f p δε⊂所以()()()()00,,,y N p f y N f p δε∀∈∈.()()0f y f p ε-<这说明f 在0p 连续 证毕13.nR 上的实函数()f P 称为是下半连续的,若对任意nP R ∈,都有()()()()()0,lim inf lim inf Q PP Q f P f Q f Q δρδ→→<≤ ,证明()f P 下半连续等价于对任意的实数(){},;P f P αα≤都是n R 中的闭集,也等价于(){};P f P α≤是n R 中的开集.现若f 下半连续,1R α∀∈,若(){}0;P P f P α∈>.则()()()()000lim inf N P f P f Q δδα→<≤∀()00022f P αεε-<<,()0,0p δδε∃=>使()()()00inf N P f P f Q δαε<-< 所以()0,y N P δ∀∈,有()()()()00inf N P f P f Q f y δαε<-<≤. 所以()(){}0,;N P P f P δα⊂>.故(){};P f P α>为开集.(从而(){};P f P α>为闭集)f 在n R 上下半连续,0,0nP R ε⇔∀∈∀>,()0,0p δδε∃=>.当()0,P N P δ∈时,()()0f P f P ε-<-. 反过来,若(){}1,;R x f x αα∀∈>为开集.则()(){}000,0,;n P R P x f x f P εε∀∈∀>∈>-由于()(){}0;P f P f P ε>-是开集.所以()0,0P δε∃>使()()(){}00,;P N P P f P f P δε∈⊂>-()0,Q N P δ∀∈有()()0f P f P ε>-,即f 在nR 上下连续,故一个等价性得证. 而f 在nR 上下连续(){}1,;R P f P αα⇔∀∈≤是闭集(){};P f P α⇔>是开集.下证(){}1,;R P f P αα∀∈≤()(){},;,nP y P R f P y ⇔∈≤为闭集.先设(){};P f P α≤为闭集,α任意. 所以()()(){},,;;nn n nnP y P y P R f P y ∀∈∈≤,00,n nP P yy →→.所以0,,N ε∀>∃当n N ≥时0n y y ε≤+. 故(){}0;n P P f P y ε∈≤+,这是闭集. 而(){}00;n P P P f P y ε→⇔≤+ 所以()00f P y ε≤+,()0ε∀>故()00f P y ≤. 这表明()()(){}00,,;;nP y P y P R f P y ∈∈≤是闭集.若()(){},;;nP y P R f P y ∈≤是闭集,而(){}0;,nnP P f P P P α∈≤→则()()(){},,;;nn P P y P R f P y α→∈≤,()()0,,n P P αα→.因为()(){},;;nP y P R f P y ∈≤为闭集,故()()(){}0,,;;nP P y P R f P y α∈∈≤所以()0f P α≤.这说明(){}0;P P f P α∈≤ 故(){};P f P α≤为闭集. 得证.14. 设,A B 是nR 中的有界闭集,01λ<<,证明()(){}121;,,,n A B x x x x λλ+- 有()()1212,,,,,,,n n y y y A z z z B ∈∈ ,使()1,1,2,i i i x y z iλλ=+-= 为有界闭集.举例说明当,A B 无界时,()1A B λλ+-可以不是闭集. 证明:,A B 有界,故存在 M 使,x A B x M ∀∈=特别地 i x M ≤.()1x A B λλ∀∈+-,有()1x A B λλ∀∈+-使 ()1i i i x y z λλ=+-,故()1x y z λλ=+-.故()()()111x y z y z M M M λλλλλλ∈+-≤+-≤+-=. 所以01λ≤≤时,()1A B λλ+-也有界.为证()1A B λλ+-为闭集,设()1n x A B λλ∈+-,0n x x →, 则,n n y A z B ∃∈∈使()1n n n x y z λλ=+-.由,A B 有界,()1n x A B λλ∈+-,,n n y A z B ∈∈,由聚点原理,n y ∃的子列k n y 使0k n y y →,{}k n z 有子列{}k ln z 使0k ln z z →,{}k l n x 有子列{}k li n x使()0k lin x x i →→∞从()1k k k lililin n n x y z λλ=+-所以()0001x y z λλ=+-,而,A B 为闭集,故00,y A z B ∈∈.从而有()01x A B λλ=+- 这说明()1A B λλ+-是闭集.若,A B 不全是有界闭集时,()1A B λλ+-可不为闭集,在2R 上考虑()()(){}11,;,0,,,0;1,2,A x y y R x y x B n n ⎧⎫=∈∈∞=⎨⎬⎩⎭=-= B 是全由孤立点组成的集合,显然为闭集,但无界.任取(),n n x y A ∈,若()()100,,n n x y x y R →∈,则00,x y 为有限数,故从01n ny y x =→知00x ≠ 所以00010,x y x >=这说明()00,x y A ∈,故A 为闭集合,显然0x +→时,1y x=→∞,故A 无界. 但1122A B +都不是闭集. 取()1,0,,n B n A n ⎛⎫-∈∈ ⎪⎝⎭则()111111,0,0,22222n p n n A B n n ⎛⎫⎛⎫=-+=∈+ ⎪ ⎪⎝⎭⎝⎭. 显然()0,0n p →,但()110,022A B ∉+. 因为若()110,022A B ∈+,则()0001,0,,n B x A x ⎛⎫∃-∈∈ ⎪⎝⎭使()()0001110,0,,022x n x ⎛⎫=+- ⎪⎝⎭故00011,0x n x =≥=得矛盾 所以1122A B +不是闭集. P402. 证明区间[]0,1上的全体连续函数所作成的集合的基数是c ,同样[]0,1上的左连续的单调函数的全体所作成的集合的基数是c .证明:记[],a b 上的常数函数的集合为[],C a b ,因为[],a b 上的常数函数都是[],a b 上的连续函数,所以1R 与[],C a b 中的一个子集对等.所以[]10,1C R c ≥=,其次对每个[],C a b ϕ∈,我们取一个平面有理点集合2Q Q Q ⨯=中的一个子集对应,即作映射f 如下:()()[](){},;,,f s t Q Q s a b t s ϕϕ=∈⨯∈≤易知f 是从[],C a b 到2Q 的一个单设 若()()ff ϕψ=,则必有ϕψ=.事实上从()[](){}()[](){},;,,,;,,s t Q Q s a b t s s t Q Q s a b t s ϕψ∈⨯∈≤=∈⨯∈≤若ϕψ≠,则存在[]()()000,,x a b x x ϕψ∈≠. 不妨设()()00x x ϕψ<.则由,ϕψ连续和有理数的稠密性知,0δ∃>使()00,x x x δδ∀∈-+有()()x x ϕψ<. 特别,()00,r x x Q δδ∀∈-+ 有()()r r ϕψ<.取定一个()000,r x x Q δδ∈-+ ,任取一个t Q ∈,且()()00r t r ϕψ<< 则()()0,r t f ψ∈()()()200,r t Q t r ψ⇔∈≤且 但()()0,r t fϕ∉,这与()()f f ϕψ=矛盾.故ϕψ=于[],a b故[]2:,2Qf C a b 是单射而22,22Q N Q N .由习题第一章第二节有2Nc =知[]2,2Q C a b c ≤=,故由Berstein 定理知[],C a b c =.下证:[],a b 上全体单调函数所作成的集合的势是c .证明:[],a b ∀上的一个单调函数f 其间断点至多为可数个,记为()i a (i a 可为0)故可令()()i f a ϕ=从而建立了[],a b 上单调函数到全体实数序列的一个对应. 设[],a b 中全体有理数的集合为{}123,,,,n r r r r[],a b ∀上的单调函数,设其至多可列个间断点为{}()1,2,,n x n = f 或n=1,2,n对于这样一个()f x ,当=∞f n 时,令()()()()()()()()()111222,,,,,,,,,,n n n f f a f b x f x f r x f x f r x f x f r当<∞f n 时,令()()()()()()()()()111222,,,,,,,,,,f f fn n n f f a f b x f x f r x f x f r x f x f r若,f g 为[],a b 上两单调函数对应之f g =则f 与g 的间断点重合,在间断点的值也重合,在,a b 处的值也重合 下证[]()(),,x a b f x g x ∀∈=,从而上述对应是单射.由于()()()()()(),,n n f a g a f b g b f r g r ===且两函数的间断点重合,且在间断点的值相等,故两函数的连续点也重合,又注意两函数在有理点的值也重合, 故,f g ∀的共同连续点[]0,x a b ∈,必有[],a b 中的有理数0n r x → 故()()()()00lim lim n n n n f x f x g x g x →∞→∞===这说明f g =于[],a b .由此[],a b 上全体单调函数的集合的势≤(全体实数列的集合的势)c =另一方面,1c R ∀∈,另()f x c ≡于[],a b ,则f 是单调的,故[],a b 上全体单调函数的集合的势1R c ≥=由Berstein 定理知,可知[],a b 上全体单调函数的集合的势为c .当然[],a b 上全体左连续的单调函数的集合的势不大于[],a b 上全体单调函数所作成的集合的势.另一方面,1c R ∀∈,令()f x c ≡于[],a b 知,f 是连续的单调函数,故[],a b 上左连续的单调函数的集合的势不小于1R c =.从而由Berstein 定理知[],a b 上左连续的单调函数的集合的势为c .P42P25第四节习题1. 证明全体有理数所构成的集合不是G δ集,即不能表成可数多个开集的交. 证明:设1R 上全体有理数为{}123,,,,n r r r r Q =. 则一个{}n r 作为单点集是闭集,所以{}1i i Q r ∞== 是F δ集,但要证Q 不是G δ集,则不容易.这里用到:Baire 定理,设nE R ⊂是F δ集,即1k k E F ∞== .k F ()1,2,k = 是闭集,若每个k F 皆无内点,则E 也无内点(最后再证之)反证设{};1,2,i Q r i == 为G δ集,即1i i Q G ∞== ,(i G 为开集,1,2,i = )1R 上的单调函数的全体所组成的集合的势为c =ℵ.证明:任取1R 上的单调函数f ,则其间断点至多可数个,设其无理数的间断点,为12,,,,m x x x (可为有限)设1R 中的有理数为{}12,,,,,n Q r r r f =∀∈令 ()()()()()()()()(){}21111,,,,,,,,i i i i f x f x r f r x f x r f r R ϕ=⊂ .则()f ϕ为2R 中可数集.若,f g ∈ ,使()()f g ϕϕ=,则()()(),i i x f x f ϕ∀∈存在 ()()(),j j x g x g ϕ∈使()()()(),,i i j jx f x x g x =所以 () (),ijijx xf xg x ==, 从而()(),i i i x Q f r g r ∀∈=.f ∀的无理数间断点i x ,i x 也是g 的无理数间断点,且()()i i g x f x =.反过来也是的,g ∀的无理间断点,i x 也是f ,的无理数间断点,且()()i i g x f x =. 故()()f g ϕϕ=表明f 与g 在有理点重合,无理间断点相同,且在无理间断点的值. 所以f g =于1R ,所以ϕ是11-的.利用下面结论:Claim :任何其有连续势的集合的全体可数子集所构成的族的势为连续势. 知:c ≤ .另一方面()(){},0,1c c f x x c c ==+∈≤ 证毕.Lemma :设为,X Y 两集合,:X Y ϕ→是一个满射,则Y X ≤.即存在X 的一个子集,A A Y .证明:因为ϕ为满射,()(){}1,;,y Y y x x X x y ϕϕ-∀∈=∈=≠∅且,,y z Y y z ∈≠时必有()()11y z ϕϕ--=∅ .令(){}1;y y Y ϕ-Γ=∈,则由选择公理存在一个集合X ,它由Γ中每一个集合()1y ϕ-中恰取一个元素而形成,显 ,X X a X ⊂∀∈,存在唯一一个y Y ∈,使()1a y ϕ-∈.所以X 与Y 是对等的,故Y X ≤. 证毕.选择公理:若Γ是由互不相交的一些非空集合所形成的集合族,则存在集合X ,它由该族的每一个集合中恰取一个元素而形成.2. 证明[]0,1上全体无理数所作成的集合不是F δ集.证明:设[]0,1上全体无理数所作成的集合是 ,则[]0,1Q =- ,(Q 为1R 上全体有理数的集合)若 为F δ集,则存在闭集,1,2,i F i = 使1i i F ∞== .所以[]10,1cc i i Q F ∞===为G δ集.[][]{}{}110,10,1i k i k Q F r ∞∞==⎛⎫== ⎪⎝⎭,{}k r ,i F 为闭集,{}k r 无内点. 1i i F ∞== 显为内点.所以i F 无内点.这说明[]0,1无内点(Baire 定理)得矛盾. 证毕.3. 证明不可能有在[]0,1上定义的在有理点处都连续,在无理点处都不连续的实函数. 证明:若存在这样的[]0,1上的实函数,它在有理点都连续,在无理点都不连续.()f x 的全体不连续点的集合为[]0,1上的全体无理数为 ,由本章第二节习题10结论知为F δ集,这于本节习题2的结论: 不是F δ集矛盾.故不存在这样的[]0,1上的函数.4. 证明1R 中全体开集构成一基数为c 的集合,从而1R 中全体闭集也构成一基数为c 的集合.证明:对任意的1R 上开集合,由开集的构造定理,存在{}{}1,,,i i R αβαβ∞∞∈∞-∞使得()()()1,,,i i i G αββα∞∞∞==-∞+∞ .下面建立1R 上的开集到全体实数列集成的集合的一个映射I . 若1G R =,令()()0,0,,0,I G = .若1G R ≠,则()()()1,,,mi i i G αββα∞∞==-∞+∞ .令()()1122,,,,,,I G k k αβαβ∞∞= .这里k β∞∞=,若,0k β∞∞≠-∞=;若,k βα∞∞∞=-∞=;若,0k α∞∞≠+∞=;若α∞=+∞则这个映射I 是单射. 若112,G G R⊂()1212,GR G R ≠≠且()()12I G I G =.()()()()()()11''''21,,,,,,i i i i i i G G αββααββα∞∞∞=∞∞∞==-∞+∞=-∞+∞则'''',,,i i i i ααββααββ∞∞∞∞====. 故12G G =.又若()()0,0,0,I G = 则必有1G R =(否则()I G 至少有一个分量不等于零).故I 是单射,所以1R 上全体开集所作成的集合的势c ≤. 令一方面,()1,,1a R a a ∀∈+是一开集,令11:IR R 上全体开集之集合, 则1c R ≤≤“1R 上全体开集之集的势”c ≤, 由Berstrein 定理,1R 上全体开集之集合的势为c . 证:记可数集(){}()()()(){}111,;,,,,,,mnmB x r x Q r QB x r B x r υ=∈∈= .显()(){}12:0,1,,,;01mm u a a aa ϕ∞→== 或()()()12,,,,,m B x r VU B x r a a a ⊂=()()()()1,0,m m m m cm B x r U a B x r U ⎧⊂⎪=⎨≠∅⎪⎩()()()()(),,,,n U V B x r U x r Q Q B x r V ϕϕ+=⇒⊂∈⨯⇔⊂所以U V =. ϕ为单射.所以{}(){}()0,1,;0,c B x r r R c υ∞+=≥≥∈=∞=. 由Berstein 定理c υ={}{}n c n F F R F F R c υ=⊂=⊂== 为闭集为闭集.故I 是单射,所以1R 上全体开集所作成的集合的势c ≤. 另一方面,()1,,1a R a a ∀∈+是一开集令11:IR R 上全体开集的集合 则1c R ≤≤“1R 上全体开集的集合的势”c ≤, 由Berstein 定理,1R 上全体开集的集合的势为c .P441.证明定理2:设E 是一点集,0,d U >是所有到E 的距离小于d 的点p 作成的点集,即(){};,U p p E d ρ=<,则U 是一开集,且U E ⊃.证明:p E ∀∈,显然(),0p E d ρ=<,故p U ⊂,从而U E ⊃. 下证U 为开集.p U ∀⊂,令(),d p E δρ=-,则0δ>,且()()(){},,,inf,;N P q E q y y E εδρρ∀∈=∈.取y E δ∈,使得()(),,2p y p E δδρρ<+.则()()()()(),,,,,22q E q y q p p y p E δδδδρρρρρ≤≤+<++()()(),,,p E d p E p E d δρρρ=+=-+=.故q U ∈,从而(),N P U δ⊂. 这就证明了U 为开集.2. 证明任何闭集都可表成可数多个开集的交.证明:设F 为任一闭集.,n N ∀由本节第一题知()1;,n U p d p F n ⎧⎫=<⎨⎬⎩⎭为开集, 且(),1,2,n F U n ⊂= ,从而有1n n F U ∞=⊂ .下证1n n F U ∞=⊂ ,这只用证1n n U F ∞=⊂ ,1n n p U ∞=∀∈ .反证设p F ∉则cp F ∈,故从F 为闭集知cF 为开集.故0δ∃>使(),c N P F δ⊂.从而有(),,q F d p q δ∀∈≥(否则(),d p q δ≥(),c q N P F δ⇒∈⊂c q F F ⇒∈=∅ 矛盾)这说明()(),inf ,q Fd p F d p q δ∈=≥.另一方面,1n n p U ∞=∈ 表明,n n p U ∀∈,从而有()1,p F nρ=. 令n →∞知(),0p F ρ=. 这与(),0d p F δ≥>矛盾. 所以p F ∈,从而1n n p U ∞=∈ 得证.3.举例说明定理1中的,,A B 都无界时,结论不成立. 解:令(){}(){}1,;0,,,0;xA x y x y eB x x R -=≥==∈.则B 显然是闭集。
实变函数论
实变函数论实变函数论是数学的重要分支之一。
实变函数论主要研究的是几何学与分析学上的某些重要函数,如曲线的切线、曲面的切平面、旋转体的面积、单叶双曲函数、各种变换、黎曼曲面、第二基本形式和复数域上的超越函数等等。
实变函数论与解析几何有密切的联系。
高等代数是实变函数论的主要内容。
它是以集合为元素的数学,是研究集合的运算、性质及其相互关系的数学分支,从它诞生的那天起就深深地渗透到整个数学的大厦之中。
因此,它在物理、化学、天文、地质、航空、军事、建筑、计算机等领域都得到广泛应用。
那么,实变函数论究竟是一门什么样的学科呢?举个例子来说吧:一个电子在晶体里运动,当我们要研究电子在晶体里运动时,我们就需要用到实变函数论。
如果一个人走路,走累了我们就需要休息,所以我们不能停下脚步来思考或者行走,只能靠走路时的双腿来提供动力。
再如,一只狗要咬一块骨头,也必须停下来,否则就会被骨头给伤着。
因为,骨头对于狗而言,就像地球对于我们人类一样,可以提供运动的动力,但是过度的行走,便会伤害身体,所以我们也不能走得太快。
同样的道理,如果我们走得太快,也不行。
在《高等代数》中,数学家们已经证明了这些例子是正确的。
比如,每当一个数学家走路时,他的心脏总是比正常速率快1/8。
如果你在地图上按这个速度画一条线,然后打印出来,将它交给一个没有驾驶执照的司机,你不必担心他会出车祸。
因为司机即使开到这个速度,也无法控制车辆了,即便他知道自己还可以踩刹车,却无法做到,于是他一定会撞车。
数学家们研究这个现象已经很久了,终于发现,要控制这个速度是多么难!难到比让火车停下还要困难!因此,它被称作是“不可控制的运动”。
同样,它也是实变函数论研究的课题。
看到这里,你也许会问:既然走路很难控制,难道有人会向走路一样的速度走吗?是的,确实有人这么做了,在上世纪70年代,曾经有一位宇航员,他用自己最快的速度行走,结果不幸死亡了。
据估计,在太空中平均行走的速度大约为每秒0。
实变函数论讲义
第1章集合与点集实变函数论作为现代分析数学的基础,其知识结构是建立在集合论之上的.集合论产生于19世纪70年代,由德国数学家康托尔(Cantor)创立,它是整个现代数学的开端及逻辑基础.作为本科教材,本章只介绍必需的集合论知识,而不涉及有关集合论公理的讨论.1.1 集合及相关概念大家在中学就认识了集合这个概念.所谓集合,是指具有某种特定性质的对象的全体.集合中的对象称为该集合的元素.集合通常用大写英文字母A,B,C,…表示;元素通常用小写英文字母a,b,c,…表示.今后用一些特殊的记号表示特殊的集合:R表示全体实数形成的集合;C表示全体复数形成的集合;N,Z,Q分别表示自然数集、整数集和有理数集.另外,不含任何元素的集合称为空集,用记号表示.集合的具体表示方法一般有两种:一种是枚举法,如集合{1,2,3,4,5};一种是描述法,例如,大于20的自然数组成的集合,可写为{x|x>20,且x为自然数}.一般地,若A是具有某种性质P的元素组成的集合,通常记为A={x|x具有性质P}.对于给定的某集合A及某对象a,若a是A中的元素,就说a属于集合A,记为a∈A;否则,就说a不属于集合A,记为给定两个集合A和B,若A中的元素都属于B,则称A是B的子集,记为或进而,若同时有和,则A=B.对于任意的非空集合A,空集和A当然是A的子集,这两个子集称为平凡子集.除此之外的子集称为真子集.例1.1.1 写出{1,2,3}的所有子集,由此计算{1,2,…,n}的子集的个数,其中n∈N.{1,2,3}的所有子集是:,{1,2,3},{1},{2},{3},{1,2},{1,3},{2,3},第1章集合与点集1.1集合及相关概念共个.一般地,{1,2,…,n}的子集的个数是:C0n+C1n+…+C n n=2n,其中C k n=n!k!(n-k)! (k∈{0,1,…,n})为组合数公式.任给集合A,它的所有子集构成的集合称为它的幂集,记为1.1.1 集合的运算我们知道,数可以进行运算,并由此生成新的数.类似地,集合之间也可以进行运算,并由此生成新的集合.其中,最常用的运算有“并”、“交”、“差”三种.定义1.1.1任意给定集合A和B,集合{x|x∈A或x∈B}称为A与B的并集,并集也称为和集,记为A∪B,或A+B;集合{x|x∈A且x∈B}称为它们的交集,交集也称为积集,记为A∩B,或AB;推而广之,给定集合族∈Γ,其中Γ是指标集,则此集合族的并集与交集分别为∪α∈∈Γ,x∈Aα};(1.1)∩α∈∈Γ,x∈Aα}.(1.2)集合{x|x∈A且称为A与B的差集,又称补集,记为A\\B,或A-B.注意:一般来说(A-B)∪B未必等于A.如果已知则A-B称为B相对于A的余集,记为AB,特别地,如果我们在某一问题中所考虑的一切集合都是某一给定集合S的子集时,集合B相对于S的余集就简称为B的余集, SB简记为而集合(A-B)∪(B-A)称为A与B的对称差,记为A△B.例1.1.2 设-1+1i≤x≤1--1k<x<1k,k=1,2,…,则∪mi=1B i=x-1+1m≤x≤1-1m, -1p<x<1p. 其中n,m,p∈N.由此知∪-1<x<1},集合的并、交、差(补)运算满足下面的运算律:定理1.1.1 (1) 交换律A∪B=B∪A, A∩B=B∩A;特别地A∩A=A,A∪A=A, A∪=A,(2) 结合律A∪(B∪C)=(A∪B)∪C, A∩(B∩C)=(A∩B)∩C.(3) 分配律A∩(B∪C)=(A∩B)∪(A∩C);一般地A∩∪α∈∪α∈(4) 大小关系∪B).(5) 若∈Γ,则∪α∈∪α∈∩α∈∈特别地,若或∈Γ,则∪α∈∈证明下面仅证A∩∪α∈∪α∈任取x∈A∩∪α∈则x∈A且α0∈Γ,使得x∈Bα0,于是x∈∪α∈由x 的任意性得A∩∪α∈∪α∈反过来,任取x∈∪α∈α),则α0∈Γ,使得x∈即x∈A且x∈Bα0,从而x∈A且x∈∪α∈故x∈A∩∪α∈由x的任意性得∪α∈∪α∈综合起来,等式成立.□以下给出关于余集计算的部分性质. 定理1.1.2 (1) A-(2) 若则SA SB,B\\A=B∩A c;(3) 对偶律(德摩根(De)律)若则(A∪B)c=A c∩B c,∪B c.一般地∩α∈∪α∈∪α∈∈证明下面仅证对偶律:若则(A∪B)c=A c∩B c,其余结合相关定义类似可得.事实上,由补集定义, (A∪B)c={x|x∈X且∪B}={x|x∈X,x A且={x|x∈X,x∈A c且x∈B c}=A c∩B c.□德摩根律使我们通过余集的运算把并集变为交集,把交集变为并集.这种转化在集合的运算及论证中是很有用的.1.2 集合列的上极限和下极限众所周知,数列可以讨论极限.类似地,集合列也可以讨论极限.以下我们给出集合列及其极限的定义.定义1.1.2 一列集合(n=1,2,…)称为集合列,也可记为属于上述集合列中无限多个集的元素的全体所形成的集称为该集合列的上极限,或称为上限集,记为lim n→∞或lim n→∞sup A n;对于上述集合列,那些除了有限个下标外,属于该集合列中每个集合的元素的全体形成的集称为这个集合列的下极限,或称为下限集,记为lim n→∞A n或lim n→∞inf等价地,lim n→∞sup A n={x|对于任意的自然数n,存在k≥n,使得x∈A k}, lim n→∞inf存在∈N,当时,x∈A n}. 由此知,lim n→∞inf n→∞sup A n.进而,对于给定集合列若其上、下极限相等,则称集合列收敛,其极限即为它的上(或下)极限,记为lim n→∞A n.集合列的上(下)极限可以用“并”与“交”运算来表达. 定理1.1.3 给定集合列n},则lim n→∞∪lim n→∞inf∪证明利用lim n→∞∈N,k≥n,使得x∈A k}(1.3)来证明关于上极限的等式,关于下极限的情况可类似证得.记∪事实上,设x∈A,则对任意取定的n,存在m>n,使得x∈A m,即对任意n,总有x∈∪故x∈B,继而反之,设x∈B,则对任意的n>0,总有x∈∪即总存在m(m≥n),使得x∈A m,故x∈A,继而从而A=B,另一等式可同样证明.□若集合列满足:∈N,则称是单调增加集合列;若∈N,则称之为单调减少集合列.统称为单调集合列.由定理1.1.3易知,单调集合列是收敛的.具体地,若为单调增加集合列,则lim n→∞A n=∪若为单调减少集合列,则lim n→∞A n=∩∞n=1A n.例1.1.3 设是如下一列点集:A2m+1=0,2-12m+1〗,m=0,1,2,…, 〗, 我们来确定的上、下极限.因为闭区间\中的点属于每个而对于开区间(1,2)中的每个点x,必存在自然数N(x),使得当n>N(x)时,有1+12n<x≤2-12n+1,即当n>N(x)时但x∈A2n+1.换言之,对于开区间(1,2)中的x,具有充分大的奇数指标的集合都含有x,即中有无限多个集合含有x,而充分大的偶数指标的集合都不含有x,即中不含有x的集合不会是有限个.又区间\n→∞sup\n→∞inf\例1.1.4 设为:当n=2k时,k∈N;当n=2k+1时,k∈N. 则lim n→∞sup∪{(0,y)|y≥0};lim n→∞inf定义1.1.3设A,B是两个集合,称一切有序“元素对”(x,y)(其中x∈A,y∈B)形成的集合为A与B的直积集或笛卡儿(Descartes)积,记为A×B,即A×B={(x,y)|x∈A,y∈B},其中(x,y) =(x′,y′)是指x=x′,y=y′,X×X也记为例1.1.5 设A={1,2,3},B={4,5},则A×B={(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)}.例1.1.6 \×\为平面上单位闭正方形.例1.1.7 Q×Q=Q Q2为平面上有理点集.习题习题1.3 试证:(1) A∩(B∪C)=(A∩B)∪(A∩C);(2) (A\\B)∪B=(A∩B)\\B的充要条件是(3) A-(B-C)=(A-B)∪(A∩C).1.4 证明:(1) A△B=B△A;(2) (A△B)△C=A△(B△C);(3) A∩(B△C)=(A∩B)△(A∩C);(4) 对任意的A,B,存在C使得A△C=B.1.5 设是一集合列,作-∪n-1k=1A k,n=2,3,…,试证互不相交,且∪ni=1A i=∪nj=1B j,n=1,2,…,∞.1.6 设f(x),g(x)是点集E上定义的两个函数,a,k为任意实数,但k≠0.则(1) {x: f(x)≥a}=∩∞n=1x:f(x)>a-1n;(2) {x: |f(x)|>k}∪x: |g(x)|>ak.1.7 试证:(1) ∪∞i=1(A\\(2) ∩∞i=1(A\\∪i.1.8 设-求出集合列的上限集和下限集.1.9 设A n=E,n=2k-1,F,n=2k, 求集合列的上限集和下限集.1.10 设m为整数,n=1,2,…,试证lim n→∞sup n→∞inf1.11 设是\上的一列函数,且存在\使得lim n→∞f n(x)=1,x∈\\\E, 0, x∈E.令∈\: 求集合lim n→∞E n.1.12设以及f(x)是定义在R上的实值函数,则使不收敛于f(x)的一切点x所形成的集合为∪∞k=1∩∞N=1∪∞n=Nx:-11. 设(k=1,2,…)随着k→∞单调下降趋于(n=1,2,…)定义在E上∈E),试证:对任意的a有(1) E\=∪\;(2) E\\;(3) E\=∪\.注:E\={x∈E|f(x)>a}.1.1.2 映射、基数与可数集1.2 映射、基数与可数集我们都知道,实数是可以比较大小的,那么自然地联想一下,集合有没有大小的差别呢?直观地想,如果是有限集合,可能集合元素的个数多集合就大,那么对于含有无限个元素的集合,集合的大小该怎么比较呢?全体实数构成的集合就一定比全体正实数构成的集合大吗?在对集合的定义和基础运算有了一定的了解之后,我们接下来就介绍一下用以刻画集合大小的概念:基数.在此之前,我们要引入映射的概念,本节的最后,我们还将向大家介绍一种最常见的集合:可数集.1.2.1 映射大家都熟悉函数概念,下面要讲到的映射是函数概念的抽象化.定义1.2.1给定两个非空集合X,Y,若对于X中每个元素x在Y中都存在唯一的元素y与之对应,则称这个对应为映射.若用φ表示这种对应,则记为φ:并称φ是从X到Y的一个映射.此时,x∈X在Y中对应元y称为x在映射φ下的像, x称为y的一个原像,记为y=φ(x).进而,y的原像集为{x|y=φ(x),x∈X},记为-1(∈X}Y称为映射φ:X→Y的值域,而X为定义域.特别地,若φ(X)=Y,则称映射φ是满射,也称为到上的映射(X到Y上的映射);若对于每个y∈φ(X)其原像集-1(y)是单点集,等价地,若x1,x2∈X,当时必有则称该映射是单射,也称为一一映射.注1.2.1 一一映射存在逆映射,即-1:-1(y)=x,当φ(x)=y时.进而,到上的一一映射称为双射,也称为一一对应.给定映射φ:X→Y,及则A的像集为∈A},B的原像集为-1(B)={x|φ(x)∈B}.综上易得下面关于映射与集合的并和交运算的关系式:φ∪α∈∪α∈φ∩α∈∈φ-1∪α∈∪α∈--1∩α∈∈-例1.2.1给定非空集合X,定义其非空子集A上的特征函数为χA(x)=1,x∈A,于是是从X的幂集到{0,1}上的映射.而且可以利用特征函数来反馈集合本身的特征:1.2.2 基数给定一个集合,若它只含有限个元素则称为有限集;否则,就称为无限集.对于有限集来说,若不考虑元素的具体特性,则所含元素的个数是一个基本而重要的量,因与元素个数有关的问题一般会涉及元素个数的比较.两个有限集是否含有相同数量的元素可用能否建立一一对应来衡量.受此启发,尽管对于无限集来说谈论个数没有实际意义,但比较两个无限集所含元素的多少,仍然可以用能否建立一一对应来度量.定义1.2.2 给定集合A,B,若存在从A到B的一一对应,则称集合A与B对等,记为A~B.对等关系有下述性质. 定理1.2.1 任给集合A,B,C,有(1) (自反性)A~A;(2) (对称性)若A~B,则B~A;(3) (传递性)若A~B,且B~C,则A~C.符合上述三条的关系称为等价关系.因此,集合之间的对等是一种等价关系.下面,我们描述性地给出集合基数的概念.定义1.2.3设A,B为给定两个集合,如果A~B,那么就称集合A与集合B的基数或者势相同.记为=.因此,对等的集合具有相同的基数(势).特别地,当A是非空有限集时,则存在某自然数使得A与一一对应,而由唯一确定,于是可以认为=n 0.由此知,基数(势)的概念是通常元素个数的推广.以下给出一些常见的集合的例子.例1.2.2 (0,1)~R.事实上,令φ:-π2,则易知φ建立了(0,1)与R之间的一一对应.例1.2.3任意两个圆周上的点集具有相同的基数.事实上,不妨令任给的两个圆同圆心,于是让从圆心出发的同一条射线与两个圆的交点相互对应,则该对应是一一对应.有了集合大小的概念--基数,接下来,我们给出基数大小比较的法则.定义1.2.4给定两个集合A和B,若存在B的子集使得A~则称A的基数不大于B的基数, 记为≤;若≤,并且≠,此时称A的基数小于B的基数,记为<.自然数可以比较大小,类似地,基数也可以比较大小.即,对于任意给定的两个基数α,β,关系式α<β,α=β,α>β,这三者中有且仅有一式成立.证明要涉及集合论的公理系统,超出本教材范围,故略.对于自然数a,b,若a≤b且b≤a则a=b.对于基数也有类似的结论,也就是说集合的大小在某种意义下也是可以比较的. 定理1.2.2(伯恩斯坦(Bernstein)定理)给定集合A,B,若≤且≥,则=.证明由题设,存在双射φ:及双射ψ:下面用迭代法寻找及使得φ(A′)=B\\B′,同时ψ(B′)=A\\A′.为此,考虑下面的方程组:φ(A′)=B\\B′,ψ(B′)=A\\等价地A′=A\\ψ(B′),B′=B\\φ(A′).(1.4) 为了求解方程组(1.4),运用迭代法,逐次作A1=A\\ψ(B), \\\\\\\\-1),\\由上述构造知注意到ψ是一一映射,于是有再结合德摩根律,有∪∪∞i=1(A\\-1))=A∩∞-- 此处记类似地,可得\\∪从而,式(1.4)有解A′=∪定义映射Φ(x)=φ(x),x∈-1(x),x∈A\\A′. 由上述构造知,φ(A′)=B\\-1(A\\A′)=B′,于是Φ是满射.至于Φ的单射性由φ及ψ的单射性即得.因此,Φ是从A到B上的一一对应.从而,A~B.□推论1.2.1 设~C,则A~B,B~C.证明以A~B为例,设φ是A和C之间的一个一一对应,令x∈A,φ(x)∈B},则~B,取则自然有~A.于是由伯恩斯坦定理有A~B.1.13 可数集本小节我们给出最常见的一种无穷集合--可数集的定义,并研究其相关性质.定义1.2.5与自然数集对等的集合称为可数集,或称为可列集.于是任意的可数集A均可写成A={反之,这种形式的集合均为可数集.可数集的基数记为0.下面的定理表明,可数集的基数在无限集中是最小的. 定理1.2.3任意无限集均包含可数子集.证明设A是任意给定的无限集,任意取定∈A,因A\\仍然是无限集,再任意取定2∈A\\{a1},依次类推,在A\\中取出在A\\中取出照此继续,即得A的可数子集进一步,我们有下述定理.□定理1.2.4若X是一个无限集,Y是有限集或可数集,则X∪Y=.证明因X∪Y=X∪(Y\\X),故不妨设若Y是可数集,记由于X是无限集,由定理1.2.3知,X有可数子集于是有分解∪(X\\X1) .令φ:X∪Y→X,使得-1,n=1,2,…;φ(x)=x,x∈X\\X 1.由此构造知φ是X与X∪Y之间的一一对应;若Y为有限集,则对应的取为与Y有相同个数的X中的有限集,然后类似于上面的证明即得.□众所周知,有限集不可能和它的任意真子集建立一一对应关系.无限集与有限集的本质区别就在于此,即下面的定理. 定理1.2.5集合X是无限集的充要条件是,存在X的真子集Y有Y~X.证明因若X是有限集时,X不可能与它的任意真子集对等,由此得证充分性;下证必要性:任取X的一个有限子集A,因X是无限集,故X\\A亦是无限集,利用定理1.2.4得,X\\A=(X \\A)∪A=,记Y=X\\A,得证.□下面一系列定理关心的是集合及其子集的可数性问题. 定理1.2.6可数集的子集如果不是有限集,则一定是可数集.证明设A是可数集是A的一个无限子集.首先,因故其次,因是无限集,由定理1.2.3可知于是由伯恩斯坦定理得即是可数集.□定理1.2.7 设A为可数集,B为有限或可数集,则A∪B为可数集.证明设或(1)先设由于可数集总可排成无穷序列,当B有限时,A∪B={b1,b2,…,b n,a;当B可数时,A∪B={a1,b1,a2,b2,…,a n,b n,…},可见A∪B总可以排成无穷序列,从而是可数集.(2) 一般情况下,此时令-A,则A∩B*=,A∪B*=A∪B.由于B至多可数,故作为B的子集,也至多可数(有限集或可数集),由(1)的证明知,A∪B*可数,故A∪B也可数.□推论1.2.2设是有限集或可数集,则∪ni=1A i也是有限集或可数集,但如果至少有一个是可数集,则∪ni=1A i必为可数集. 定理1.2.8 可列个可数集的并集是可数集.证明设(n=1,2,…)是一列可数集.(1)先设因为都是可数集,于是可记A n={a n1,a n2,…,a nk,…},n,k=1,2,…,从而∪中元素可按下述方式排成一列:∪规则是:排第一位,当i+j>2时排在第j+∑i+j-2k=1k位因此∪是可数集(注:当部分是有限集时仍适用).(2) 一般情况下,各可能相交,令-∪i-1j=1A j(i≥2),则且∪∪由可数易知都是有限集或可数集,如果只有有限个不为空集,则由推论1.2.2易知∪为可数集(因为至少为可数集);如果有无限多个(必为可数个)不为空集,则由(1)知∪∪也是可数集,故在任何场合∪都是可数集.□推论1.2.3 (1) 有限集与可数集的并是一可数集;(2) 有限个可数集的并是一可数集;(3) 可数个互不相交的非空有限集的并是一可数集;(4) 可数个可数集的并是一可数集. 例1.2.4 整数集,有理数集均为可数集.事实上,整数集Z=N∪(-N),其中-为负自然数全体的集合. 因映射f:N→-N,f(n)=-n,建立了N与-之间的一一对应,故-N是可数集.于是由定理1.2.7知Z是可数集.对于有理数集,记Q+为正有理数全体的集;Q-为负有理数全体的集,于是Q=Q+∪Q-∪{0}.令A n=1n,2n,3n,…则(n∈N)是一列可数集,而Q+=∪从而由定理1.2.8知Q+亦可数;又Q-与Q+通过映射f(x)=-x (x∈Q+)建立了一一对应,于是Q-也可数.再利用定理1.2.7即得Q是可数集.由例1.2.4易得下面一些今后很有用的结论:有理系数多项式全体所构成的集合是可数集;R中无限个互不相交的开区间所形成的集是可数集.事实上,在每一个开区间中任意取定一个有理数,由题设可知开区间与取定的有理数是一一对应的.因此这些有理数形成Q的一个无限子集,记为Q 1,由定理1.2.6得Q1可数,从而得证.注1.2.2若A中每个元素可由n个互相独立的记号一对一地加以决定,各记号跑遍一个可数集,即A={a x1,x2,…,x n|x k=x k(1),x k(2),x k(3),…;k=1,2,…,n},则A为可数集.例1.2.5元素是由k个正整数所组成的集合,其全体构成一可数集A={(n 1,n2,…,n k)|n i∈Z+}.例1.2.6 整系数多项式a0x n+a1x n- -的全体是一可数集.记a a0,a1,…,a n=a0x n+a1x n- -则整系数多项式的全体可记为∪,为可数集,其中代数数的全体是一个可数集(所谓代数数,就是整系数多项式的根).事实上,整系数多项式的全体可数,而每一个整系数多项式只有有限个根,故代数数的全体是一个可数集.例1.2.7 N与R不对等,即N≠R.若不然,存在N与R的一个一一对应,将与N中n对应的元素(n)记为则R上至少有一个单位长度的区间不含不妨设此区间为\,将\分为三等分,则0,13〗,23,1〗中至少有一个不含以表示这个区间,将三等分,其左、右两个区间中至少有一个区间不含记为依此类推,可得一串闭区间},满足:(1) 且的长度趋于0; (2)由闭区间套定理知但对任意的换言之不在R中,这是不可能的.这一矛盾说明与R不可能对等.例1.2.8R上任一单调函数的不连续点全体的集至多可数,即或为空集,或为有限集,或为可数集.不妨设f(x)是单调递增函数.若f(x)在R上连续,则其不连续点集为空集;若存在间断点由柯西(Cauchy)收敛原理可知-0)与均存在,于是f(x1-0)=lim x→x1-表明对应开区间-对于两个不同间断点和由函数f(x)的单调性可得,开区间-与-互不相交.进而,由上面的分析知,f(x)的不连续点集与上述开区间形成的集合之间存在一一对应,于是,或为有限集,或为可数集.1.14 不可数集与连续基数对于一个无限集,若不是可数集,则称之为不可数集. 定理1.2.9开区间(0,1)是不可数集.证明用反证法:假若(0,1)是可数集,则可记而每个(i=1,2,…)均可按下述方式唯一表示成十进制纯小数:a(1)=0.a(1)1a2(1)a3(1)…,(2)…,(3)…,规定,上述各数不能从某位起全为0.令满足:当当由上述构造知∈(0,1),但这与假设矛盾.□由前面的例1.2.2及定理1.2.9得,实数集R是不可数集.今后用c表示实数集R的基数,称之为连续基数(势).而且由定理1.2.9知例1.2.9 (a,b)=c,其中a,b∈R.事实上,令φ(x)=a+x(b-a),x∈(0,1),则φ建立了(0,1)与(a,b)之间的一一对应,于是(a,b)=(0,1)=c.类似地,可证(-∞,0)=(0,+∞)=\=(a,b\]=\=\=(0,1)=c.下面的定理关心的是连续基数的性质问题. 定理1.2.10设是一列互不相交的集合,它们均有连续基数,则并集∪n也有连续基数.证明注意到\及\故∪~∪∞n=1\即∪n有连续基数.□由定理1.2.10易知,平面R2有连续基数,即R2=c.类似地有R n=R∞=c,此处R∞是指可数个R的笛卡儿积.定理1.2.3告诉我们,可数集在无限集中间基数最小,那么有没有最大的基数呢?答案是否定的,即下面的结论. 定理1.2.11任给一个非空集合是其幂集,即由A的所有子集形成的集合.则证明假若A~则存在一一对应φ:于是对于每个a∈A,都唯一存在A的子集φ(a)与之对应.作A的子集∈A|xφ(x)}.根据假定,应有A中元素与对应.由此,若∈A0,则与的定义矛盾;若,则由的定义知又应该属于矛盾.于是A与不对等.进而,单点集全体形成的真子集,记为A ~,显然A~~A,因此例1.2.10其中记从自然数集N到两点集{0,1}的所有映射形成的集.事实上,对于任意的f∈{0,1}N,令φ:则φ是从到(0,1\]的一一映射,于是有0,1\];另一方面,每个x∈(0,1\]均可唯一表示(规定下面二进制表达式中必须出现无限多个1)为x=∑∞n=1x n2n,∈{0,1}.令∈N,则∈{0,1}N.进而,定义映射φ:∈(0,1\],则φ是从(0,1\]到的一一映射,于是有(0,1\再利用伯恩斯坦定理即得\]=c.注意到N=0,例1.2.10用记号表示,即既然没有最大的基数,那么限定在0与c之间情况又如何呢?集合论的奠基者康托尔于1878年提出下面的猜想:在0与c之间没有基数存在,即不存在集合X,使得0<<c.这个问题又被称为连续统假设问题.20世纪伟大的数学家希尔伯特(Hilbert)在1900年国际数学家大会上提出了23个重大数学问题,其中就包括连续统假设问题.而连续统假设问题直到1963年才由科恩(Korn)和哥德尔(Godel)解决:他们证明了,连续统假设与已有的集合论公理系统是相容的,既不能被证明也不能被否定. 习题习题1.15 设f: X→Y是一个满射,证明下列3个命题等价:(1) f是一一映射;(2) 对任意的有f(A∩B)=f(A)∩f(B);(3) 对任意的若则1.16 设f: X→Y,证明f是满射的充要条件是,对任意的有-1(A))=A.1.17 设映射f: ∈I(I为指标集),试证:(1) f∪α∈IAα=∪α∈If(Aα);(2) f∩α∈IAα∩α∈If(Aα);(3) 若则--∈I,i=1,2; (4) -1∪α∈IBα=∪α∈If-1(Bα);(5) -1∩α∈IBα=∩α∈If-1(Bα);(6) -1(Y--1(Y)--1.18 设E是X的子集,定义在X上的特征函数为χE(x)=1,x∈E, 0,x∈X-E.如果都是X的子集.证明:(1) ∪B(x)-(2) (3) --(4) n→∞sup sup(5) n→∞inf n→∞inf 5.设分别是到到的一一映射,问是否一定存在\\到\\的一一映射?1.1.3 试构造(0,1)与\7.试构造出一个从无理数集Q c到实数集R之间的一一映射.1.2.2 试证:若集合A中每个元素由n个独立的记号决定,各记号跑遍一可数集B,即A={a x∈B,k=1,2,…,n},则A为可数集.1.19平面点集A中任意两点之间的距离都大于某一固定常数d,且d>0,则A至多为可数集.1.20 设A=B∪C,=c,则B与C中至少有一个集合的势为c.1.21 如果A=∪则至少有一个的势为c.1.22 试证:若且A~A∪C,则有B~B∪C.1.23 证明:\上的全体无理数作成的集合其基数是c.1.24 证明:若E是可列集,则E中存在可列个互不相交的真子集. 15.若f(x)是R上的实值函数,则集合A1={x|x∈R,f(x)在x处不连续,但右极限f( x+0)存在是可数集.1.1.4 证明\上的连续函数全体C\的势为c.1.1.5 若对任意有限个x:使得∑ni=1f(x)≤M成立,试证,能使f(x)≠0的x的集合至多为可数集.1.1.6 证明(a,b)上的凸函数在除一个至多可数集的点外都是可微的.1.3R n中的点集1.3 中的点集1.3.1 n维欧氏空间R是实数集,其几何表示即数轴;R2={(x,y)|x,y∈R}是有序实数对全体形成的集合,其几何表示即坐标平面.对于任意的∈R2, 定义两种线性运算:(1) 加法(2)数乘∈R.则R2关于这两种运算构成线性空间,(0,1),(1,0)是R2的一组基,因个数为两个,故R2称为二维线性空间.因平面上的点与从原点出发以该点为终点的向量一一对应,故R2又称为向量空间,其中的元素又称为向量.平面几何(欧几里得(Euclid)几何)及平面解析几何就是建立在R2基础之上的.推而广之,有下面的定义.定义1.3.1 n维欧氏空间为集合{x=(x1,x2,…,x n)|x i∈R,i=1,2,…,n(n∈N)},记为R n,或记为R×R×…×R,共n个R.类似地关于上述加法及数乘运算构成一个线性空间为R n的一组基.沿用二维线性空间的称谓也称为n维向量空间,其中的元素称为点或向量.对于任意的∈R n,定义d(x,y)=∑ni= -则d(x,y)有下述3条性质:(1) 正定性,d(x,y)≥0,且d(x,y)=(2) 对称性,d(x,y)=d(y,x);(3) 三角不等式,d(x,z)≤d(x,y)+d(y,z).这3条性质是距离的本质刻画,因此,上面定义的d(·)是R n上的一种距离,于是称为距离空间.性质(1), (2)由定义立得;性质(3)的证明要用到下述柯西-施瓦茨(Cauchy- Schwarz)不等式.引理1.3.1(柯西-施瓦茨不等式)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第28卷 第6期 高 师 理 科 学 刊 Vol. 28 No.6 2008年 11 月 Journal of Science of Teachers′College and University Nov. 2008
文章编号:1007-9831(2008)06-0024-02
关于实变函数论中某个引理证明的一个注记
穆勇
(长江大学 信息与数学学院,湖北 荆州 434023)
摘要:对郑维行在《实变函数与泛函分析概要》中的某一引理的证明进行修改,给出了严格的理
论证明,维护实变函数论这门课程的严密性.
关键词:一维点集;外测度;测度;正测度;有界;无界
中图分类号:O174.1 文献标识码:A
文献[1]的引理4.1(第52页)为
引理1 设E 是一维点集,具有正的测度,数α满足10<<α,那么,存在开区间I ,使>)(I E m ∩ mI α.
文献[1]给出的证明:据外测度定义,存在一开集E G ⊃,使mG mE α>.设G 的结构表示为∪k
k I G =,
k I 等为互不相交的开区间,那么必有某个k I 可以作为引理中的I .其实,假设不然,对每个N ∈k ,有k k mI I E m α≤)(∩,则由等式∑===k k k k I E m I E m G E m mE )()()(∩∩∩∪,将推出mG mI mE k
k αα=≤∑,
这同G 的取法相矛盾.
仔细考察这个引理的证明过程,会发现这个证明有不妥之处.在这个证明过程中说,据外测度定义,存在一开集E G ⊃,使G E m m α>.可是,从这本教材的编写可知,外测度是针对E 是有界集定义的,而引理1的条件中只说明E 是一维点集,并没有说E 是有界的.再者,即便是定义了无界集的外测度,若E 是一个一维无界点集,E 的测度+∞=mE ,而E G ⊃,则有mG mE ≤,于是有 +∞=mG .因为 10<<α,所以+∞=mG α,故mG mE α=,此时mG mE α>就不成立,这样引理1的证明就显得不够严密,下面就对引理1给出更严密的证明.
证明 (1) 当E 是一维有界点集时,设{)(R ⊂=ΣG G G 是有界开集,}E G ⊂.由于mG E m mE G Σ
∈∗==inf 所以R ∈mE ,0≥mE ,由于E 具有正的测度,所以0>mE .因为10<<α,于是由下确界的定义可知,存在一个有界的开集E G ⊃,使得mE mE mG )1(α−+<,即mE mG mE )1(α−−>,因为G E ⊂,所以mG mE ≤[2-3],而01>−α,所以mG mE )1()1(αα−≤−,从而mG mG mG mE mG mE ααα=−−≥−−>)1()1(.
不妨设∪∞
==1k k I G ,其中k I 是G 的一个构成区间,即任给N ∈21 ,k k ,如果21k k ≠,那么φ=2k k I I k ∩,
所以∑∞=∞==⎟⎟⎠⎞⎜⎜⎝⎛=1
1k k k k mI I m mG ∪[4].
收稿日期:2008-06-10
作者简介:穆勇(1973-),男,湖北荆州人,讲师,从事数学分析研究.E-mail:muyong1973@
第6期 穆勇:关于实变函数论中某个引理证明的一个注记 25
假定对于任给N ∈k ,有k k mI I E m α≤)(∩,则=⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝
⎛⎟⎟⎠⎞⎜⎜⎝⎛==∞=∞=∪∪∩∩∩11)()(k k k k I E m I E m G E m mE
mG mI mI I E m k k k k k k ααα==≤∑∑∑∞
=∞=∞=111)(∩,这与mG mE α>矛盾,所以,假定任给N ∈k ,k k I I E m )(m α≤∩是错误的.因而存在N ∈0k ,使得00m )(m k k I I E α>∩,令0k I I =,则mI I E m α>)(∩,即当E 是一维有界
点集时,结论成立[5]
.
(2)当E 是一维无界点集时,由无界集的测度定义,有0)] ,([lim >=−+∞→mE E t t m t ∩,所以存在R ∈0t ,00>t ,使得0)] ,([00>−E t t m ∩,取R ∈b a ,,b a <,且b t t a <<−<00 .由于E b a E t t ∩∩) ,(] ,[00⊂−,所以()()E b a m E t t m ∩∩) ,(] ,[000≤−<,即存在R ∈b a ,,b a <,使得()0) ,(>E b a m ∩.
E b a ∩) ,(是一个具有正测度的一维有界点集,于是由(1)可得,存在一个有界的开区间0I (R ⊂0I ),使得()()00) ,(mI I E b a m α>∩∩.因为00) ,(I b a I ∩⊃,所以()00) ,(I b a m mI ∩≥.因为0>α,所以()00) ,(I b a m mI ∩αα≥.从而()()≥>00) ,(mI I E b a m α∩∩()0) ,(I b a m ∩α[6].令0) ,(I b a I ∩=,则I 是一个有界的开区间,mI I E m α>)(∩,即当E 是一维无界点集时,结论也成立.
综上所述,引理成立. 证毕. 参考文献:
[1] 郑维行,王声望.实变函数泛函分析概要(第1册)[M].2版.北京:高等教育出版社,1996:52.
[2] 周性伟.实变函数[M].2版.北京:科学出版社,2007:28-41.
[3] 何穗,刘思敏,喻小培.实变函数[M].北京:科学出版社,2006:46-58.
[4] 夏道行,吴卓人,严绍宗,等.实变函数论与泛函分析(上册)[M].2版.北京:高等教育出版社,1983:113-115.
[5] 李国祯.实变函数与泛函分析引论[M].北京:科学出版社,2004:29-34.
[6] 严加安.测度论讲义[M].2版.北京:科学出版社,2004:13-16.
A note about the proof of some lemma in real variable function
MU Yong
(School of Information and Mathematical,Changjiang University,Jingzhou 434023,China)
Abstract:Modified the proof of some lemma of Real Varible Function and Functional Analysis basis outline edited by Zheng wei-xing,given the strict theory proof for it in order to protect the strictness of the real variable function. Key words:one-dimensional point set;outer measure;measure;positive measure;bounded;unbounded。