§1__变分法简介

§1__变分法简介
§1__变分法简介

越南数学家Ngo Bao Chau证明的一个基本引理被《时代》杂志列为2009年度十大科学发现

过去三十年相关领域的数学家一致期望Langlands Program中的一个基本引理会被证明的确是精确的。Ngo Bao Chau一位在法国Université Paris-Sud 和普林斯顿Institute for Advanced Study (IAS) 工作的越南数学家(1972年生于越南河内),证明了这一引理,2009年相关领域的数学家验证了他的证明。这一结果被《时代》杂志列为2009年度十大科学发现的第七项。 The Fundamental Lemma, Solved ?????? In 1979 the Canadian-American mathematician Robert Langlands developed an ambitious and revolutionary theory that connected two branches of mathematics called number theory and group theory. In a dazzling set of conjectures and insights, the theory captured deep symmetries associated with equations that involve whole numbers, laying out what is now known as the Langlands program. Langlands knew that the task of proving the assumptions that underlie his theory would be the work of generations. But he was convinced that one stepping stone that needed confirmation — dubbed the "fundamental lemma" — would be reasonably straightforward. He, his collaborators and his students were able to prove special cases of this fundamental theorem. But proving the general case proved more difficult than Langlands anticipated — so difficult, in fact, that it took 30 years to finally achieve. Over the past few years, Ngo Bao Chau, a Vietnamese mathematician working at Université Paris-Sud and the Institute for Advanced Study (IAS) in Princeton, formulated an ingenious proof of the fundamental lemma. When it was checked this year and confirmed to be correct, mathematicians around the globe breathed a sigh of relief. Mathematicians' work in this area in the last three decades was predicated on the principle that the fundamental lemma was indeed accurate and would one day be proved. "It's as if people were working on the far side of the river waiting for someone to throw this bridge across," says Peter Sarnak, a number theorist at IAS. "And now all of sudden everyone's work on the other side of the river has been proven." ? 《时代》杂志列为2009年度十大科学发现 1.??????? Our Oldest Ancestor, "Ardi" 2.??????? The Human Epigenome, Decoded 3.??????? Gene Therapy Cures Color Blindness 4.??????? A Robot Performs Science 5.??????? Breeding Tuna on Land 6.??????? Water on the Moon 7.??????? The Fundamental Lemma, Solved 8.??????? Teleportation! 9.??????? The Large Hadron Collider, Revived 10. ?A New Planet (or Brown Dwarf?) Discovered

变分原理与变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵范数:线性算子(矩阵)空间数域 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A ② 函数的积分: 函数空间数域

D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?=∏0 221 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({2 2122202 1===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使 系统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B ,A 高于B ,要求在两点间连接一条曲线,使 得有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

有限差分法、有限单元和有限体积法简介

有限差分法、有限单元法和有限体积法的简介 1.有限差分方法 有限差分方法(Finite Difference Method,FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2.有限元方法 有限元方法(Finite Element Method,FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 在数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式.考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等.目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成.在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等.根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0.插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La g range插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等.对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函

零基础数学学高数的方法

零基础数学学高数的方法 零基础数学学高数的方法1、数学基础要打牢 mba数学考试不像高考更不像奥数,要考察某一知识点的延伸,通过研究近几年的真题可以发现,试卷中的大多数题目都是对大纲知识点的直接考察。所以大家一定要把基础打牢,不要盲目追求深度,力争把基础分都拿到。如果连基础分都拿不到,难度分再没搞利索,那就得不偿失了。 那么如何打好数学基础呢?首先要通读教材,整理出大纲要求的知识点,形成知识网络,便于记忆;其次是深究各个知识点,对定义及用法着重分析。最后是对知识点进行融会贯通,通过做习题来巩固。 2、不同阶段,习题量应有所调整 一提起数学,很多人就会想起题海战术,题是需要做,但什么时候做,做多做少都是有讲究的。刚开始复习,基础又不是很好,应该以理论理解为主,先把相关概念弄清楚,可以用少量的习题来辅助理解。习题的选择也要注意,选择一些有针对性的习题来做,真正做到一个题消化一个知识点。 切忌一开始就以做题为主,不但会经常做错,打击信心,还得不到效果,浪费大量的时间。基础打牢之后习题就要多做了。通过做大量的习题来消化和巩固知识点,了解试题考查的维度,熟悉出题规律,另外,还要注意锻炼答题速度。在保证准确性的

基础上,还要提高速度,确实不是一件容易的事,必须通过大量的练习来实现。 3、合理规划复习时间并严格执行有的小伙伴们特别随便......没有一个严格的学习计划,想学了就学点......不想学就就去干别的......甚至学着后面的望着前面的......还有的考生复习之前有一个计划,但一到真正实施就管不住自己了,总是不能保质保量的完成任务。当然,我们也不建议完全脱产学习,但不对自己残忍就是对竞争对手的仁慈,要用对待阶级敌人的态度对待学习任务。 4、心态(老话长谈,但一定要说) 现在大家工作生活上的压力都比较大,每个人在mba复习过程中都会遇到一些困难,情绪上也会出现波动。适当聊聊天喝喝茶散散步是百试不爽的,实在没人聊可以找加油菌,总之要把自己的负面情绪发泄出来。 零基础数学学高数的技巧一、背数学 我曾经有一位学生数学成绩一塌糊涂,甚至都想放弃数学,去参加不要求数学成绩的院校招生。直至一天他想到“背数学”的学习方法,他写到: 这个技巧是:不懂的问题,直接看解答,先背起来再说。如此一来,一题一般只要5分钟便背下来,从量来看,可以追赶得上成绩好的同学。 各位猜猜看看,从开始背数学后,她的成绩变好了吗?结果是,她的成绩进步神速,高中三年级时,数学模拟考试成绩还进入全国排名,并应届考上东京大学医学院。比她小一岁的弟弟采用了

变分原理及变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵数:线性算子(矩阵)空间 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1 max ;21 )(11 2 2 ∑∑===n j n i ij a A

② 函数的积分: 函数空间 数域 D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?= ∏02 2 1 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({221222 021 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B,A 高于B ,要求在两点间连接一条曲线,使得 有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

变分法简介(简单明了易懂)(可编辑修改word版)

? §1 变分法简介 作为数学的一个分支,变分法的诞生,是现实世界许多现象不断探索的结果,人们可以追寻到这样一个轨迹: 约翰·伯努利(Johann Bernoulli ,1667-1748)1696 年向全欧洲数学家挑战,提出一个难题:“设在垂直平面内有任意两点,一个质点受地心引力的作用,自较高点下滑至较低点,不计摩擦,问沿着什么曲线下滑,时间最短?” 这就是著名的“最速降线”问题(The Brachistochrone Problem )。它的难处在于和普通的极大极小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条件。这问题的新颖和别出心裁引起了很大兴趣,罗比塔(Guillaume Francois Antonie de l'Hospital 1661-1704)、雅可比· 伯努利( Jacob Bernoulli 1654-1705)、莱布尼茨( Gottfried Wilhelm Leibniz,1646-1716)和牛顿(Isaac Newton1642—1727)都得到了解答。约翰的解法比较漂亮,而雅可布的解法虽然麻烦与费劲,却更为一般化。后来欧拉(Euler Lonhard , 1707~1783)和拉格朗日(Lagrange, Joseph Louis ,1736-1813)发明了这一类问题的普遍解法,从而确立了数学的一个新分支——变分学。 有趣的是,在 1690 年约翰·伯努利的哥哥雅可比·伯努利曾提出著名的悬链线问题(The Hanging Chain Problem)向数学界征求答案,即,固定项链的两端,在重力场中让它自然垂下,问项链的曲线方程是什么。在大自然中,除了悬垂的项链外,我們还可以观察到吊桥上方的悬垂钢索,挂着水珠的蜘蛛网,以及两根电线杆之间所架设的电线,这些都是悬链线(catenary )。 伽利略(Galileo, 1564~1643)比贝努利更早注意到悬链线,他猜测悬链线是抛物线, 从外表看的确象,但实际上不是。惠更斯(Huygens, 1629~1695)在 1646 年(当时 17 岁),经由物理的论证,得知伽利略的猜测不对,但那时,他也求不出答案。到 1691 年,也就是雅可比·伯努利提出悬链线问题的第二年,莱布尼兹、惠更斯(以 62 岁)与约翰·伯努利各自得到了正确答案,所用方法是诞生不久的微积分,具体说是把问题转化为求解一个二阶常微分方程 ? d 2 y ? dx 2 a 1+ ( dy )2 dx ? y (0) = y ? ? ? 解此方程并适当选取参数,得 y '(0) = 0 即为悬链线。 y = 1 2a (e ax + e -ax ) (1) 悬链线问题本身和变分法并没有关系,然而这和最速降线问题一样都是贝努利兄弟间的相互争强好胜、不断争吵的导火索,虽然雅可比·贝努利在解决悬链线问题时略占下风,但他随后所证明的“悬挂于两个固定点之间的同一条项链,在所有可能的形状中,以悬链线的重心最低,具有最小势能”,算是扳回了一局,俩兄弟扯平了!之所以提到悬链线问题,有两方面考虑,其一,这是有关数学史上著名的贝努利家族内的一个趣闻,而这是一个在变分法乃至整个数学物理领域有着巨大贡献的家族,其二,有关悬链线的得几个结论,可以用变 = 0

初等数论中的几个重要定理 引理 和推论

初等数论中的几个重要定理 基础知识 定义(欧拉(Euler)函数)一组数称为是模的既约剩余系,如果对任意的,且对于任意的,若=1,则有且仅有一个是对模的剩余,即。并定义中和互质的数的个数, 称为欧拉(Euler)函数。 这是数论中的非常重要的一个函数,显然,而对于,就是1,2,…, 中与互素的数的个数,比如说是素数,则有。 引理:;可用容斥定理来证(证明略)。 定理1:(欧拉(Euler)定理)设=1,则。 分析与解答:要证,我们得设法找出个相乘,由个数我们想到中与互质的的个数:,由于=1,从而 也是与互质的个数,且两两余数不一样,故 (),而()=1,故。 证明:取模的一个既约剩余系,考虑,由 于与互质,故仍与互质,且有,于是对每个都能找到唯一的一个,使得,这种对应关系 是一一的,从而,。

,,故。证毕。 这是数论证明题中常用的一种方法,使用一组剩余系,然后乘一个数组组成另外一组剩余系来解决问题。 定理2:(费尔马(Fermat)小定理)对于质数及任意整数有。 设为质数,若是的倍数,则。若不是的倍数,则 由引理及欧拉定理得,,由此即得。 定理推论:设为质数,是与互质的任一整数,则。 定理3:(威尔逊(Wilson)定理)设为质数,则。 分析与解答:受欧拉定理的影响,我们也找个数,然后来对应乘法。 证明:对于,在中,必然有一个数除以余1,这是因为 则好是的一个剩余系去0。 从而对,使得; 若,,则,,故 对于,有。即对于不同的对应于不同的,即 中数可两两配对,其积除以余1,然后有,使,即与它自己配对,这时,,或, 或。 除外,别的数可两两配对,积除以余1。故。

变分法简介(简单_明了_易懂)

§1 变分法简介 作为数学的一个分支,变分法的诞生,是现实世界许多现象不断探索的结果,人们可以追寻到这样一个轨迹: 约翰·伯努利(Johann Bernoulli ,1667-1748)1696年向全欧洲数学家挑战,提出一个难题:“设在垂直平面内有任意两点,一个质点受地心引力的作用,自较高点下滑至较低点,不计摩擦,问沿着什么曲线下滑,时间最短?” 这就是著名的“最速降线”问题(The Brachistochrone Problem )。它的难处在于和普通的极大极小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条件。这问题的新颖和别出心裁引起了很大兴趣,罗比塔(Guillaume Francois Antonie de l'Hospital 1661-1704)、雅可比·伯努利(Jacob Bernoulli 1654-1705)、莱布尼茨(Gottfried Wilhelm Leibniz,1646-1716)和牛顿(Isaac Newton1642—1727)都得到了解答。约翰的解法比较漂亮,而雅可布的解法虽然麻烦与费劲,却更为一般化。后来欧拉(Euler Lonhard ,1707~1783)和拉格朗日(Lagrange, Joseph Louis ,1736-1813)发明了这一类问题的普遍解法,从而确立了数学的一个新分支——变分学。 有趣的是,在1690年约翰·伯努利的哥哥雅可比·伯努利曾提出著名的悬链线问题 (The Hanging Chain Problem)向数学界征求答案,即,固定项链的两端,在重力场中让它自然垂下,问项链的曲线方程是什么。在大自然中,除了悬垂的项链外,我們还可以观察到吊桥上方的悬垂钢索,挂着水珠的蜘蛛网,以及两根电线杆之间所架设的电线,这些都是悬链线(catenary )。 伽利略(Galileo, 1564~1643)比贝努利更早注意到悬链线,他猜测悬链线是抛物线,从外表看的确象,但实际上不是。惠更斯(Huygens, 1629~1695)在1646年(当时17岁),经由物理的论证,得知伽利略的猜测不对,但那时,他也求不出答案。到1691年,也就是雅可比·伯努利提出悬链线问题的第二年,莱布尼兹、惠更斯(以62岁)与约翰·伯努利各自得到了正确答案,所用方法是诞生不久的微积分,具体说是把问题转化为求解一个二阶常微分方程 解此方程并适当选取参数,得 )(21ax ax e e a y -+= (1) 即为悬链线。 悬链线问题本身和变分法并没有关系,然而这和最速降线问题一样都是贝努利兄弟间的相互争强好胜、不断争吵的导火索,虽然雅可比·贝努利在解决悬链线问题时略占下风,但他随后所证明的“悬挂于两个固定点之间的同一条项链,在所有可能的形状中,以悬链线的重心最低,具有最小势能”,算是扳回了一局,俩兄弟扯平了!之所以提到悬链线问题,有两方面考虑,其一,这是有关数学史上著名的贝努利家族内的一个趣闻,而这是一个在变分法乃至整个数学物理领域有着巨大贡献的家族,其二,有关悬链线的得几个结论,可以用变???????='=+=0)0()0()(10222y y y dx dy a dx y d

变分原理

变分原理 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,或称最小作用原理。 例如:实际上光的传播遵循最小能量原理: 在静力学中的稳定平衡本质上是势能最小的原理。 一、举一个例子(泛函) 变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方法),是计算泛函驻值的数学理论。 在理论上和实践上均需要放宽解的条件。因此,引入弱解以及边值问题的弱的形式即变分形式。在讨论二阶椭圆边值问题时的Lax-Milgram 定理。 Poisson 方程的Neumann 问题 设Ω是单连通域,考察Poisson 方程的Neumann 问题 (N) ??? ? ??? =??=?-Γ,g n u f u u ,在Ω内,,使得求函数 这里)(),(2/12Γ∈Ω∈-H g L f ,且满足 01 ,=+Γ Ω ? g f d x 其中的对偶积表示)()(,2/12/1Γ?Γ??-ΓH H . 问题(N )的解,虽然是不唯一的,但是,若把问题(N )局限于商空间)(V 1Ω=H 内求解,且赋予商范数 ΩΩ∈Ω=,1) (/)(1 1i n f ?v v H v R H ,V v ∈? 可以得到唯一解。实际上,由定理5.8推出R H v /)(1?Ω等价于半范Ω→,1?v v . 定义双线性泛函R V V →?: V v u v v u u v u v u B ∈∈∈???=?,?,?,?),,()?,?( 和线性泛函 V v v v u g fdx v l ∈∈?+→Γ Ω??,?,,?:. 其右端与v v ?∈无关。因此v ?中的元素仅仅相差一个任意常数,同时,可以判定'V l ∈,实际上 ,,2/1,2/1,0,0)?(ΓΓ -Ω Ω +≤v g v f v l

Matlab建模教程-变分法简介

§1 变分法简介 作为数学的一个分支,变分法的诞生,是现实世界许多现象不断探索的结果,人们可以追寻到这样一个轨迹: 约翰·伯努利(Johann Bernoulli ,1667-1748)1696年向全欧洲数学家挑战,提出一个难题:“设在垂直平面内有任意两点,一个质点受地心引力的作用,自较高点下滑至较低点,不计摩擦,问沿着什么曲线下滑,时间最短?” 这就是著名的“最速降线”问题(The Brachistochrone Problem )。它的难处在于和普通的极大极小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条件。这问题的新颖和别出心裁引起了很大兴趣,罗比塔(Guillaume Francois Antonie de l'Hospital 1661-1704)、雅可比·伯努利(Jacob Bernoulli 1654-1705)、莱布尼茨(Gottfried Wilhelm Leibniz,1646-1716)和牛顿(Isaac Newton1642—1727)都得到了解答。约翰的解法比较漂亮,而雅可布的解法虽然麻烦与费劲,却更为一般化。后来欧拉(Euler Lonhard ,1707~1783)和拉格朗日(Lagrange, Joseph Louis ,1736-1813)发明了这一类问题的普遍解法,从而确立了数学的一个新分支——变分学。 有趣的是,在1690年约翰·伯努利的哥哥雅可比·伯努利曾提出著名的悬链线问题 (The Hanging Chain Problem)向数学界征求答案,即,固定项链的两端,在重力场中让它自然垂下,问项链的曲线方程是什么。在大自然中,除了悬垂的项链外,我們还可以观察到吊桥上方的悬垂钢索,挂着水珠的蜘蛛网,以及两根电线杆之间所架设的电线,这些都是悬链线(catenary )。 伽利略(Galileo, 1564~1643)比贝努利更早注意到悬链线,他猜测悬链线是抛物线,从外表看的确象,但实际上不是。惠更斯(Huygens, 1629~1695)在1646年(当时17岁),经由物理的论证,得知伽利略的猜测不对,但那时,他也求不出答案。到1691年,也就是雅可比·伯努利提出悬链线问题的第二年,莱布尼兹、惠更斯(以62岁)与约翰·伯努利各自得到了正确答案,所用方法是诞生不久的微积分,具体说是把问题转化为求解一个二阶常微分方程 解此方程并适当选取参数,得 )(21ax ax e e a y -+= (1) 即为悬链线。 悬链线问题本身和变分法并没有关系,然而这和最速降线问题一样都是贝努利兄弟间的相互争强好胜、不断争吵的导火索,虽然雅可比·贝努利在解决悬链线问题时略占下风,但他随后所证明的“悬挂于两个固定点之间的同一条项链,在所有可能的形状中,以悬链线的重心最低,具有最小势能”,算是扳回了一局,俩兄弟扯平了!之所以提到悬链线问题,有两方面考虑,其一,这是有关数学史上著名的贝努利家族内的一个趣闻,而这是一个在变分法乃至整个数学物理领域有着巨大贡献的家族,其二,有关悬链线的得几个结论,可以用变 ???????='=+=0)0()0()(102 2 2y y y dx dy a dx y d

考研数学:必考的定理证明整理

考研数学的定理证明是一直考生普遍感觉不太有把握的内容,而2016 年考研数学真题释放出一个明确信号——考生需重视教材中重要定理的证明。下面跨考教育为考生梳理一下教材中那些要求会证的重要定理。 一、求导公式的证明 2015 年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在2015 年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给2017 考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。 当然,该公式的证明并不难。先考虑f(x)*g(x) 在点x0 处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能 用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!) 。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0 的任意性,便得到了f(x)*g(x) 在任意点的导数公式。 类似可考虑f(x)+g(x) ,f(x)-g(x) ,f(x)/g(x) 的导数公式的证明。 二、微分中值定理的证明 这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。 费马引理的条件有两个:1.f(xO)存在2. f(xO)为f(x)的极值,结论为f(xO)=O。考虑函数 在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f(xO)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0为f(x)的极值”翻译成数学语言即f(x)

有限差分法解薛定谔方程与MATLAB实现

第30卷 第3期高师理科学刊Vol.30No.32010年5月Journal of Science of Teachers ′College and University May 2010 文章编号:1007-9831(2010)03-0068-03 有限差分法解薛定谔方程与 MATLAB 实现 刘晓军(齐齐哈尔大学理学院,黑龙江齐齐哈尔161006) 摘要:介绍了用有限差分法解薛定谔方程,以一维无限深势阱、含位势的一维无限深势阱为例求解,并应用M ATL AB 软件编程计算,模拟画出几率图形. 关键词:有限差分法;薛定谔方程;一维无限深势阱 中图分类号:O413.1文献标识码:A doi :10.3969/j.issn.1007-9831.2010.03.022 在量子力学中求解薛定谔方程是一个重要的问题,但在实际问题中往往很难确定解析解,这样利用数值方法求数值解就有一定的优势和实际意义[1].还可以利用计算机手段给出形象化分析,更有利于理解和应用.根据有限差分法中的二阶微分中心差分算符(其中忽略3x 及更高阶项) [2]222 )()(2)()(d d x x x f x f x x f x f x ++=(1) 可将一维定态薛定谔方程[3])()()()(d d 22 2 2x E x x V x x =+=(2)化为)(])([)(2)()(2)(22x E x V x x x x x x =++= (3)以点x n x n =(N n ....3,2,1=)将坐标分为N 个相等的间隔,当N 充分大时,x 就足够小.将第k 个分点的波函数简记为)(x k k =[4].同时满足条件 00==n ,则式(3)化简为k k k k k E x β2211)(2=++=(4) 式中)()(2222x k V x k + ==β(5)0...000 (000) ..................00...R -0 00...00 (01) 221 =E R R E E R E R R E N N ααααα(6)式(6)为对应的久期方程.式中)(2;)(222 x k V R x R k +==α=(7) 将相对复杂的方程就转化为解久期方程的问题,即使维数再高也是容易求解的. 收稿日期:35 作者简介:刘晓军(),男,黑龙江富裕人,副教授,硕士,从事理论物理与数值模拟研究.:xj @632010-0-01972-E-mail l https://www.360docs.net/doc/b27639600.html,

变分原理与变分法

第一章 变分原理与变分法 1、1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总就是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理就是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也就是光传播最短路径(Heron); ③ 光线折射遵循时间最短的途径 CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上就是势能最小的原理。 二、变分法就是自然界变分原理的数学规划方法(求解约束方程系统极值的数学 方法),就是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间的(映 射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵范数:线性算子(矩阵)空间 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A

② 函数的积分: 函数空间 D ?=?n b a n f dx x f J )( Note : 泛函的自变量就是集合中的元素(定义域);值域就是实数域。 Discussion : ① 判定下列那些就是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i 、 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii 、 弹性地基贮存的能量: dx kw l f ?= ∏02 2 1 iii 、 外力位能: ?-=∏l l qwdx 0 iv 、 系统总的势能: 00 0;})({221222 021 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系统 势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 与B ,A 高于B ,要求在两点间连接一条曲线,使得有 重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i 、 通过A 与B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii 、 建立泛函: x

计算流体力学中有限差分法、有限体积法和有限元法的区别

有限元法,有限差分法和有限体积法的区别 1. FDM 1.1 概念 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 1.2 差分格式 (1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。 (2)从差分的空间形式来考虑,可分为中心格式和逆风格式。 (3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。 目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 1.3 构造差分的方法 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2. FEM 2.1 概述 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 2.2 原理 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。(1)从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法;(2)从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格;

相关文档
最新文档