线性代数论文(矩阵在自己专业中的应用及举例)

线性代数论文(矩阵在自己专业中的应用及举例)
线性代数论文(矩阵在自己专业中的应用及举例)

矩阵在自己专业中的应用及举例

摘要:

I、矩阵是线性代数的基本概念,它在线性代数与数学的许多分支中都有重要的应用,许多实际问题可以用矩阵表达并用相关的理论得到解决。

II、文中介绍了矩阵的概念、基本运算、可逆矩阵、矩阵的秩等内容。

III、矩阵在地理信息系统中也有许多的应用,比如文中重点体现的在计算机图形学中应用。

关键词:

矩阵可逆矩阵图形学图形变换

正文:

第一部分引言

在线性代数中,我们主要学习了关于行列式、矩阵、方程、向量等相关性比较强的内容,而这些内容在我们专业的其他一些学科中应用也是比较广泛的,是其它一些学科的很好的辅助学科之一。因此,能够将我们所学的东西融会贯通是一件非常有意义的事,而且对我们的学习只会有更好的促进作用。在计算机图形学中矩阵有一些最基本的应有,但是概念已经与线性代数中的有一些不同的意义。在计算机图形学中,矩阵可以是一个新的额坐标系,也可以是对一些测量点的坐标变换,例如:平移、错切等等。在后面的文章中,我通过查询一些相关的资料,对其中一些内容作了比较详细的介绍,希望对以后的学习能够有一定的指导作用。在线性代数中,矩阵也占据着一定的重

要地位,与行列式、方程、向量、二次型等内容有着密切的联系,在解决一些问题的思想上是相同的。尤其他们在作为处理一些实际问题的工具上的时候。

图形变换是计算机图形学领域内的主要内容之一,为方便用户在图形交互式处理过程中度图形进行各种观察,需要对图形实施一系列的变换,计算机图形学主要有以下几种变换:几何变换、坐标变换和观察变换等。这些变换有着不同的作用,却又紧密联系在一起。 第二部分 研究问题及成果

1. 矩阵的概念

定义:由n m ?个数排列成的m 行n 列的矩阵数表

?????

???????ann an an n a a a n a a a 212222111211 称为一个n m ?矩阵,其中an 表示位于数表中第i 行第j 列的数,i=1,2,3,…n ,又称为矩阵的元素。A,B 元素都是实数的矩阵称为实矩阵。元素属于复数的矩阵称为复矩阵。

下面介绍几种常用的特殊矩阵。

(1)行距阵和列矩阵

仅有一行的矩阵称为行距阵(也称为行向量),如

A=(a11 a12 .... a1n),

也记为

a=(a11,a12,.....a1n).

仅有一列的矩阵称为列矩阵(也称为列向量),如

a= ?????

???????12111an a a 。 (2) 零矩阵

A=?????

???????0000000000000000 记为o 或者0.

(3) 方阵。行数与列数相等的矩阵称为方阵.例如:

A= ?????

???????ann an an n a a a n a a a 212222111211 为n n ?矩阵,称为n 阶方阵或者n 阶矩阵,简记为A=(an )n ,过元素a11,a22,a33,a44,.....ann,的直线为主对角线,主对角线上的元素为主对角元。按方阵的元素排列所构造的行列式称为方阵的行列式。

(4) 对角矩阵。主对角意外的元素全部为零的方阵称为对焦矩阵,常记为:

A=?????

???????ann a a 0002200011 (5) 单位矩阵。主对角线上的元素全部为1的对角矩阵称为单位矩阵,简记为E 或者I :

A= ?????

???????100010001 (6) 数量矩阵 。主对角线上全相等的对角矩阵。例如:

?????

???????c c c 000000 (其中c 为常数) 为一阶数量矩阵。

(7) 三角矩阵。主对角线上方或下方的元素全部为零的方阵称为上(下)三角矩阵。

?????

???????ann n a a n a a a 00222011211 为n 阶上三角矩阵。

(8) 对称矩阵与反对称矩阵,在方阵A=(aij )n ,中,如果aij=aji (ij=1,2,3.。。。。。),则称A 为对称矩阵,如果A 还为实矩阵,那么A 为实对称矩阵。如果aij=-aji ,则称A 为反对称矩阵。 定义:两个同类型的矩阵,如果对应的元素相等,则称矩阵A 等于矩阵B 。 2 .矩阵的运算

2.1 矩阵的加法

⑴A+B=B|+A(加法交换律)

⑵(A+B)+C=A+(B+C)(加法结合律)

⑶A+0=0+A=A

⑷A+(-A)=0.

2.2 数乘矩阵

定义1:数乘一矩阵等于这个数乘以矩阵中的每一个元素。

?????

???????=kann kan kan n ka ka ka n ka ka ka kaij 212222111211)( 定义2:设A B 为同类型的矩阵,k ,l 为常数,则

⑴1A=A

⑵k (lA )=(kl )A

⑶k (A+B)=KA+KB

⑷(K+L)A=KA+LA.

2.3 矩阵的乘法

(1)矩阵的乘法不满足交换律。

(2)两个非零矩阵的乘积可能为零矩阵。

(3)矩阵的乘法不满足消去律。

命题:(1)设A 为p m ?矩阵,则

O o P K m k A ??=,O O N M N P A ??=

(2)设A 为n m ?矩阵,则

A A A A E E N m ==,

其中E 为单位阵

(3)设A 为m*p 矩阵,B 为p*q 矩阵,k 为数,则

A(BC)=(AB)C (kA)B=A(kB)=k(AB)

(4)J 矩阵满足数乘的分配律,矩阵乘积的行列式等于矩阵对应行列式的乘积。

2.4 矩阵的转置

定义2.7 称m n ?矩阵

?????

???????ann an an n a a a n a a a 212222111211 的转置为 ?????

???????ann n a n a an a a an a a 212221212111 命题:设A,B,C,1A ,2A n A 是矩阵,且让它们相应的行数和列数使相

应的运算有意义,k 是数,则

(1)A 的转置的装置等于A

(2)B 与C 的和的转置等于它们转置的和

(3)T T kA kA =)(

(4)T T T A B AB =)(

(5)若A 为n 阶矩阵,则M T T M A A )()(=

(6)A 为对称矩阵的充要条件是A A T =,A 为反对称矩阵的充要条件为A A T -=

2.5 可逆矩阵

定义 设A 为n 阶矩阵,若存在n 阶矩阵B ,使得

E BA AB ==,

则称矩阵A 可逆,B 是A 的可逆矩阵,记作1-=A B

定理 如果n 阶矩阵A 可逆,则它的逆矩阵唯一。

定义 设n ij a A )(=为n 阶矩阵,ij A 为A 中的元素ij a 的代数余子式,

ij=1.2.3.......n ,则称矩阵 ?????

???????nn n n n n A A A A A A A A A 2122221

11211 为A 的伴随矩阵,记为*A . 由伴随矩阵的定义,不难验证A E A A AA ==**

定理 n 阶矩阵A 可逆的充要条件为0≠A ,如果A 可逆,则 *11A A

A =-. 若n 阶矩阵A 的行列式不为零,即0≠A ,即称A 为非奇异矩阵,否则称A 为奇异矩阵,由上述公式可以求出A 的伴随矩阵。

推论 对n 阶矩阵A ,若有n 阶矩阵B 使得

E AB =或者E BA =,

则称矩阵A 可逆,且B A =-1.

克拉默法则 设

????????????=nn n n n n a a a a a a a a a A 21222

2111211,??????? ??=n b b b 21β,?????

???????=321x x x x , 如果矩阵A 可逆,则线性方程组Ax=β存在唯一解β1-=A x 。

2.6 可逆矩阵的性质

命题 设A ,B,),2,1(m i A i =为n 阶可逆矩阵,k 为非零常数,则n A A A AB kA A 211,,,-也是可逆矩阵,且

(1)A A =--11)(;

(2);1)(11--=A k kA

(3);)(,)(11121121111-------==A A A A A A A B AB m n

线性代数应用实例

线性代数应用实例 ● 求插值多项式 右表给出函数()f t 上4个点的值,试求三次插值多项式230123()p t a a t a t a t =+++,并求(1.5)f 的近似值。 解:令三次多项式函数230123()p t a a t a t a t =+++过 表中已知的4点,可以得到四元线性方程组: ?????? ?=+++-=+++=+++=6 27931842033 210321032100 a a a a a a a a a a a a a 对于四元方程组,笔算就很费事了。应该用计算机求解了,键入: >>A=[1,0,0,0;1,1,1,1;1,2,4,8;1,3,9,27], b=[3;0;-1;6], s=rref([A,b]) 得到x = 1 0 0 0 3 0 1 0 0 -2 0 0 1 0 -2 0 0 0 1 1 得到01233,2,2,1a a a a ==-=-=,三次多项函数为23 ()322p t t t t =--+,故(1.5)f 近 似等于23 (1.5)32(1.5)2(1.5)(1.5) 1.125p =--+=-。 在一般情况下,当给出函数()f t 在n+1个点(1,2,,1)i t i n =+ 上的值()i f t 时,就可以用n 次多项式2012()n n p t a a t a t a t =++++ 对()f t 进行插值。 ● 在数字信号处理中的应用----- 数字滤波器系统函数 数字滤波器的网络结构图实际上也是一种信号流图。它的特点在于所有的相加节点都限定为双输入相加器;另外,数字滤波器器件有一个迟延一个节拍的运算,它也是一个线性算子,它的标注符号为z -1。根据这样的结构图,也可以用类似于例7.4的方法,求它 的输入输出之间的传递函数,在数字信号处理中称为系统函数。 图1表示了某个数字滤波器的结构图,现在要求出它的系统函数,即输出y 与输入u 之比。先在它的三个中间节点上标注信号的名称x1,x2,x3,以便对每个节点列写方程。

线性代数结课论文

华北水利水电大学 线性代数发展简史 课程名称:线性代数 专业班级: 成员组成:姓名 学号 联系方式: 年月日

摘要:一次方程也叫线性方程,讨论线性方程及线性运算的代数就是线性代数,它是高等代数的一大分支,同时也是大学数学教育中一门主要基础课程。线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧式空间和二次型等。 关键词:线性代数行列式矩阵向量线性方程组二次型群论 正文: 1.引言:线性代数是大学数学教育中一门主要基础课程,对于培养面向21世纪人才起着重要作用。通过了解线性代数的发展简史可以让我们更好地理解数学,从而更好地学习并应用它。 2.1 行列式 我们知道,在线性代数中最重要的内容之一就是行列式,它不仅是一种语言和速记,而且他的大多数生动的概念能对新的思想领域提供钥匙,同时人们已经证明了这个概念是数学、物理中非常有用的工具。 行列式出现于线性方程组的求解,它的概念最早是由十七世纪日本数学家关孝和在其著作《解伏题之法》中提出的。他于1683年写

了这本书,书里对行列式的概念和它的算法进行了清除的叙述。同时代的德国数学家莱布尼茨是欧洲提出行列式的第一人,也是微积分学的奠基人之一,他于1693年4月在写给洛比达的一封信中使用并给出了行列式,而且给出方程组的系数行列式为零的条件。 1750年,瑞士数学家克莱姆在其著作《线性带分析导引》中,比较完整、明确地阐述了行列式的定义与展开法,并且发表了求解线性系统方程的重要公式,即我们现在所称的解线性方程组的克莱姆法则。 1764年,数学家贝祖将确定行列式每一项符号的方法进行了系统化,利用系数行列式等于零这一条件判断对给定了含n个未知量的n 个齐次线性方程是否有非零解。 尽管上述几位数学家对行列式的提出与应用做出了很大的贡献,但仍在很长一段时间内,行列式只是作为解线性方程组的一种工具使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。 可喜的是,法国数学家范德蒙给出了一条法则,用二阶余子式和它们的余子式来展开行列式,从而把行列式理论与线性方程组求解相分离,他也因此成为了第一个对行列式理论做出连贯的系统的阐述的人。范德蒙自幼在父亲的指导下学习音乐,但他对数学却有浓厚的兴趣,后来终于成为了法兰西科学院院士,就对行列式本身这一点来说,他是这门理论的奠基人。 1772年,拉普拉斯在论文《对积分和世界体系的探讨》中证明了范德蒙的一些规则,并推广了他的展开行列式的方法。

线性代数论文矩阵在自己专业中的应用及举例

矩阵在自己专业中的应用及举例

摘要: I、矩阵是线性代数的基本概念,它在线性代数与数学的许多分支中都有重要的应用,许多实际问题可以用矩阵表达并用相关的理论得到解决。 II、文中介绍了矩阵的概念、基本运算、可逆矩阵、矩阵的秩等内容。 III、矩阵在地理信息系统中也有许多的应用,比如文中重点体现的在计算机图形学中应用。 关键词: 矩阵可逆矩阵图形学图形变换 正文: 第一部分引言 在线性代数中,我们主要学习了关于行列式、矩阵、方程、向量等相关性比较强的内容,而这些内容在我们专业的其他一些学科中应用也是比较广泛的,是其它一些学科的很好的辅助学科之一。因此,能够将我们所学的东西融会贯通是一件非常有意义的事,而且对我们的学习只会有更好的促进作用。在计算机图形学中矩阵有一些最基本的应有,但是概念已经与线性代数中的有一些不同的意义。在计算机图形学中,矩阵可以是一个新的额坐标系,也可以是对一些测量点的坐标变换,例如:平移、错切等等。在后面的文章中,我通过查询一些相关的资料,对其中一些内容作了比较详细的介绍,希望对以后的学习能够有一定的指导作用。在线性代数中,矩阵也占据着一定的重

要地位,与行列式、方程、向量、二次型等内容有着密切的联系,在解决一些问题的思想上是相同的。尤其他们在作为处理一些实际问题的工具上的时候。 图形变换是计算机图形学领域内的主要内容之一,为方便用户在图形交互式处理过程中度图形进行各种观察,需要对图形实施一系列的变换,计算机图形学主要有以下几种变换:几何变换、坐标变换和观察变换等。这些变换有着不同的作用,却又紧密联系在一起。 第二部分 研究问题及成果 1. 矩阵的概念 定义:由n m ?个数排列成的m 行n 列的矩阵数表 ? ? ??? ?? ?? ???ann an an n a a a n a a a 2 1222 21112 11 称为一个n m ?矩阵,其中an 表示位于数表中第i 行第j 列的数,i=1,2,3,…n ,又称为矩阵的元素。A,B 元素都是实数的矩阵称为实矩阵。元素属于复数的矩阵称为复矩阵。 下面介绍几种常用的特殊矩阵。 (1)行距阵和列矩阵 仅有一行的矩阵称为行距阵(也称为行向量),如 A=(a11 a12 .... a1n), 也记为 a=(a11,a12,.....a1n). 仅有一列的矩阵称为列矩阵(也称为列向量),如

线性代数应用案例资料

线性代数应用案例

行列式的应用 案例1 大学生在饮食方面存在很多问题,多数大学生不重视吃早餐,日常饮 食也没有规律,为了身体的健康就需要注意日常饮食中的营养。大学生每天的配餐中需要摄入一定的蛋白质、脂肪和碳水化合物,下表给出了这三种食物提供的营养以及大学生的正常所需营养(它们的质量以适当的单位计量)。 试根据这个问题建立一个线性方程组,并通过求解方程组来确定每天需要摄入的上述三种食物的量。 解:设123,, x x x 分别为三种食物的摄入量,则由表中的数据可以列出下列 方程组 123231 23365113337 1.1352347445 x x x x x x x x ++=?? +=? ?++=? 利用matlab 可以求得 x = 0.27722318361443 0.39192086163701 0.23323088049177 案例2 一个土建师、一个电气师、一个机械师组成一个技术服务社。假设在 一段时间内,每个人收入1元人民币需要支付给其他两人的服务费用以及每个人的实际收入如下表所示,问这段时间内,每人的总收入是多少?(总收入=实际收入+支付服务费)

解:设土建师、电气师、机械师的总收入分别是123,,x x x 元,根据题 意,建立方程组 1232133 120.20.35000.10.47000.30.4600 x x x x x x x x x --=?? --=??--=? 利用matlab 可以求得 x = 1.0e+003 * 1.25648414985591 1.44812680115274 1.55619596541787 案例3 医院营养师为病人配制的一份菜肴由蔬菜、鱼和肉松组成,这份菜肴 需含1200cal 热量,30g 蛋白质和300mg 维生素c ,已知三种食物每100g 中的有关营养的含量如下表,试求所配菜肴中每种食物的数量。 解:设所配菜肴中蔬菜、鱼和肉松的数量分别为123,,x x x 百克,根据题意,建立方程组 12312312360300600120039630906030300 x x x x x x x x x ++=?? ++=? ?++=? 利用matlab 可以求得 x = 1.52173913043478 2.39130434782609

线性代数矩阵性及应用举例

线性代数矩阵性及应用举例

————————————————————————————————作者:————————————————————————————————日期:

华北水利水电学院线性代数解决生活中实际问题 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2012年11月7日

关于矩阵逆的判定及求逆矩阵方法的探讨 摘 要:矩阵的可逆性判定及逆矩阵的求解是高等代数的主要内容之一。本文给出 判定矩阵是否可逆及求逆矩阵的几种方法。 关键词:逆矩阵 伴随矩阵 初等矩阵 分块矩阵 矩阵理论是线性代数的一个主要内容,也是处理实际问题的重要工具,而逆矩阵在矩阵的理论和应用中占有相当重要的地位。下面通过引入逆矩阵的定义,就矩阵可逆性判定及求逆矩阵的方法进行探讨。 定义1 n 级方阵A 称为可逆的,如果n 级方阵B ,使得 AB=BA=E (1) 这里E 是n 级单位矩阵。 定义2 如果B 适合(1),那么B 就称为A 的逆矩阵,记作1 -A 。 定理1 如果A 有逆矩阵,则逆矩阵是唯一的。 逆矩阵的基本性质: 性质1 当A 为可逆阵,则A A 1 1 = -. 性质 2 若A 为可逆阵,则k kA A (,1 -为任意一个非零的数)都是可逆阵,且A A =--1 1)( )0(1)(1 1≠= --k A k kA . 性质3 111 ) (---=A B AB ,其中A ,B 均为n 阶可逆阵. 性质4 A ()()'11 '=--A . 由性质3有 定理2 若)2(,21≥n A A A n Λ是同阶可逆阵,则n A A A Λ21,是可逆阵,且21(A A 下面给出几种判定方阵的可逆性及求逆矩阵的方法: 方法一 定义法 利用定义1,即找一个矩阵B ,使AB=E ,则A 可逆,并且B A =-1 。 方法二 伴随矩阵法 定义3 设)(ij a A =是n 级方阵,用ij A 表示A 的),(j i 元的代数余子式)1,(n j i Λ=,

大一线性代数论文

中国矿业大学银川学院机电动力与信息工程 线性代数论文 (2012-2013) 专业:电气及其自动化 班级:11级电气(2)班

姓名:薛成建 学号:120110516126 任课老师:马延福 日期:2012. 6.19 摘要 随着我国经济建设与科学技术的迅速发展,高等教育已进入了一个 飞速发展的时期,并且突破了以前的精英式教育模式,发展成为一种在终身学习的大背景下极具创造性和再创性的基础学科教育。高等学校教育教学观念不断更新,教学改革不断深入,办学规模不断扩大,数学课程开设的专业覆盖面不断增大。越来越需要一本高质量的高等学校非教学类专业的教材———《线性代数》。 为适应教学课程开设的专业覆盖面,逐渐引入了以求适应的知识点。n 阶行列式、矩阵、n 维向量与向量空间,应用数学模型等慢慢走进了专业覆盖面。在实际问题中,我们经常会碰到超过3个元素的数组,例如确定飞机的状态,需要以下几个参数:机身的仰角、机翼的转角、机身的水平转角、飞机重心在空间的位置参数等。因此,需要引入n 维向量的概念。n 个数组成的有序数组 (a a a n ,,,21 )或 a a a n 2 1 称为一个 n 维向量,简称向量。其中只有一行的称 为行向量,只有一列的称为列向量。数a a a n ,,,21 称为这个向量的分量,a i 称为这个向量的第i 个分量或坐标。分量都是实数的向量称为实向量,分量都是负数的向量称为负向量。

实际上,n 维行向量可以看成行矩阵,n 维列向量可以看成列矩阵。 如果两实向量相等,即称两个向量相等。 对于两个分量的各分量的和所组成的向量,称为两个向量的和。 一个数与向量的各分量相乘所组成的向量,称为向量e 与k 的数量乘积,简称数乘,记为k e 。 分量全为零的向量(000 )称为零向量,记为0。 α与-1的数乘(-1)α称为α的负向量,记为-α。 向量的加法与数乘具有下列性质: (1) a +b =b +a ; (交换律) (2) (a +b )+c =a +(b +c ); (结合律) (3) a +0=a ; (4) a +(-a )=0; (5) k (a +b )=k a +k b ; (6) (k+i)a = k a +i a ; (7) k(i a )=(ki)a ; (8) i a = a ; (9) 0a =0; (10) k 0=0 在数学中,满足(1)~(8)的运算称为线性运算。我们还可以证明: (11) 如果k ≠0且a ≠0,那么k a ≠0. 由若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组。 例如一个mxn 矩阵A=) (a ij mxn 有n 个m 维列向量 a 1 = a a a m 1 21 11 , a 2 = a a a m 2 22 12 , ··· ,a n = a a a mn n n 21 , 我们称向量组a a a n 2 1为矩阵A 的列向量组。 对于行向量组也同样。

大学线性代数论文

线性代数论文 线性代数课程是高等学校理工科各专业学生的一门必修的重要基础理论课,它广泛应用于科学技术的各个领域。尤其是计算机日益发展和普及的今天,使线性代数成为工科学生所必备的基础理论知识和重要的数学工具。线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。 主要理论成熟于十九世纪,而第一块基石(二、三元线性方程组的解法)则早在两千年前出现(见于我国古代数学名著《九章算术》)。①线性代数在数学、力学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位;②在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分;③该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的;④随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。 行列式的计算方法. 定义法 在引进行列式的定义之前,,为了更加容易的理解行列式的定义,首先介绍排列和逆序的概念. (1) n级排列:由1,2.3…n组成的一个有序数组称为一个n级排列. (2) 在一个排列中,如果一对数的前后位置与大小顺序相反,即:前面的数大于后面 的数,那么它们就称为一个逆序,一个排列中逆序的总数称为这个排列的逆序 数. (3) 逆序数为偶数的排列称为偶排列,逆序数为奇数的排列称为奇排列. 在做好这些工作之后,来引入行列式的定义: 定义:n阶行列式 等于所有取自不同行不同列的n个元素的乘积. a1j1a2j2a3j3………anj n <Ⅱ> 的代数和,这里j1,j2,j3,……j n为1,2,3,……,n的一个排列,每一项<Ⅱ> j1,j2,j3,……j n是偶排列时, <Ⅱ>带有正号,当都按下列规则带有符号,当

线性代数在实际生活中的应用

线性代数在生活中的实际应用 大学数学是自然科学的基本语言,是应用模式探索现实世界物质运动机理的主要手段。学习数学的意义不仅仅是学习一种专业的工具而已。;;初等的数学 知识学习线性代数数学建模函数模型的建立及应用,作为变化率的额倒数在几何学、物理学、经济学中的应用,抛体运动的数学建模及其应用,最优化方法及其在工程、经济、农业等领域中的应用,逻辑斯谛模型及其在人口预测、新产品的推广与经济增长预测方面的应用,网络流模型及其应用,人口迁移模型及其应用,常用概率模型及其应用,等等。 线性代数中行列式实质上是又一些竖直排列形成的数表按一定的法则计算得到的一个数。早在1683年与1693年,日本数学家关孝和与德国数学家莱布尼茨就分别独立的提出了行列式的概念。之后很长一段时间,行列式主要应用与对现行方程组的而研究。大约一个半世纪后,行列式逐步发展成为线性代数的一个独立的理论分支。1750年瑞士数学家克莱姆也在他的论文中提出了利用行列式求解线性方程组的著名法则一一克莱姆法则。随后1812年,法国数学家柯西发现了行列式在解析几何中的应用,这一发现机器了人们对行列式的应用进行探索的浓厚兴趣。如今,由于计算机和计算软件的发展,在常见的高阶行列式计算中,行列式的数值意义虽然不大,但是行列式公式依然可以给出构成行列式的数表的重要信息。在线性代数的某些应用中,行列式的只是依然非常重要。 例如:有甲、乙、丙三种化肥,甲种化肥每千克含氮70克,磷8克,钾2克;乙种、化肥每千克含氮64克,磷10克,钾0.6克;丙种化肥每千克含氮 70克,磷5克,钾1.4克.若把此三种化肥混合,要求总重量23千克且含磷 149克,钾30克,问三种化肥各需多少千克?

线性代数应用题

线性代数应用题集锦 郑波 重庆文理学院数学与统计学院 2011年10月

目录 案例一. 交通网络流量分析问题 (1) 案例二. 配方问题 (4) 案例三. 投入产出问题 (6) 案例四. 平板的稳态温度分布问题 (8) 案例五. CT图像的代数重建问题 (10) 案例六. 平衡结构的梁受力计算 (12) 案例七. 化学方程式配平问题 (15) 案例八. 互付工资问题 (17) 案例九. 平衡价格问题 (19) 案例十. 电路设计问题 (21) 案例十一. 平面图形的几何变换 (23) 案例十二. 太空探测器轨道数据问题 (25) 案例十三. 应用矩阵编制Hill密码 (26) 案例十四. 显示器色彩制式转换问题 (28) 案例十五. 人员流动问题 (30) 案例十六. 金融公司支付基金的流动 (32) 案例十七. 选举问题 (34) 案例十八. 简单的种群增长问题 (35) 案例十九. 一阶常系数线性齐次微分方程组的求解 (37) 案例二十. 最值问题 (39) 附录数学实验报告模板 (40)

这里收集了二十个容易理解的案例. 和各类数学建模竞赛的题目相比, 这些案例确实显得过于简单. 但如果学生能通过这些案例加深对线性代数基本概念、理论和方法的理解, 培养数学建模的意识, 那么我们初步的目的也就达到了. 案例一. 交通网络流量分析问题 城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。 图1 某地交通实况 图2 某城市单行线示意图 【模型准备】某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆).

线性代数发展简史论文范文

华北水利水电学院 线性代数发展简史 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2011年11月6日

摘要:代数学可以笼统地解释为关于字母运算的学科。线性代数是高等代数的一大分支,是研究如何求解线性方程组而发展起来的。线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧氏空间和二次型等。 关键词:高等代数行列式矩阵向量 线性代数发展简史 1 代数学可以笼统地解释为关于字母运算的学科。在中学所学的初等代数中,字母仅用来表示数。初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数学在讨论任意多个未知数的一次方程组,也叫线性方程组的同时,还研究次数更高的一元方程及多元方程组。发展到这个阶段,就叫做高等代数。 线性代数是高等代数的一大分支,是研究如何求解线性方程组而发展起来的。线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧氏空间和二次型等。在线性代数中,字母的含义也推广了,它不仅用来表示数,也可以表示行列式、矩阵、向量等代数量。笼统地说,线性代数是研究具有线性关系的代数量的一门学科。线性代数不仅在内容上,更重要的是在观点和方法上比初等代数有很大提高。 在线性代数中最重要的内容就是行列式和矩阵。虽然表面上看,行列式和矩阵不过是一种语言或速记,但从数学史上来看,优良的数学符号和生动的概念是数学思想产生的动力和钥匙。 行列式出现于线性方程组的求解。行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家、微积分学奠基人之一莱布尼兹(Leibnitz)。1750年克莱姆(Cramer)在他的《线性代数分析导言》中发表了求解线性方程组的重要基本公式(即人们熟悉的Cramer 克莱姆法则)。1764年,法国数学家贝佐特(Bezout)把确定行列式每一项的符号的

线性代数论文

华北水利水电学院 题目:常见的矩阵及其计算 课程名称:线性代数(第二版) 专业班级: 成员组成: 联系方式: 2012年10月20 日

常见的矩阵及其计算 摘要:矩阵是线性代数理论中极其重要的组成部分,是高等数学的一个基本的概念。它在线性代数与数学的许多分支都有重要应用,许多实际问题都可以用有关理论得到解决。矩阵,是由个数组成行列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母表示其元素,其中下标都是正整数,他们表示该元素在矩阵中的位置。 关键词:常见矩阵计算方法 Common matrix and calculation Abstract:The matrix in linear algebra theory is extremely important part, of higher mathematics is a basic concept. It in linear algebra and mathematical many branches have important application, many practical problems can be solved with related theory. Matrix, consisting of a line list of regular form, Usually use capital letters said matrixes of each number, are called matrix elements, usually use lowercase said its elements, the subscript are all positive integer, they said the elements in the position of the matrix. Key words:Common matrix Calculation method

线性代数小论文

摘要:分析了若矩阵A 经过行初等变换化为矩阵B ,则A 与B 的列向量组具有完全相同的线性关系,以及此性质在线性代数的主要应用。 关键词:初等变换;线性相关;线性无关;线性表示 线性代数主要研究的是线性问题。一般而言,凡是线性问题常可以用向量空间的观点和方法加以讨论,因此向量空间成了线性代数的基本概念和中心内容。 向量空间理论的核心问题是向量间的线性关系。其基本概念有向量的线性表示、向量组线性相关与线性无关、向量组等价、向量组的极大无关组,以及向量空间的基与维数等。这些问题通常转化为解线性方程组或解齐次线性方程组。 1 线性相关性证明 设A =(α1,α2,··· ,αn ),αi ∈P m ,若矩阵A 经过行初等变换化为矩阵B ,则A 与B 的列向量组具有完全相同的线性关系。 证明:设A m ×n ,A 经过行初等变换化为B ,将A ,B 分别按列分块为A =(α1,α2,…,αn ),B=(β1, β2,···,βn )。由于对A 只进行有限次行初等变换,故可知有满秩矩阵P ,使PA =B ,即P(α1,α2, ···,αn )=(β1, β2, ···,βn ),于是有i 1 βj = P αj (j=1,2,3, ···,n) (1) 设A 和B 对应的列向量组为αi 1,αi 2, ···,αi r 和βi 1, βi 2,···,βi r (1≤i 1<i 2<···<i r ≤n),由(1)式得 βik = P αik (k=1,2,3, ···,r) 因此,如果αi 1,αi 2, ···,αi r 有线性关系式k 1αi 1+k 2αi 2+ ···+k r αi r =0(k r 为实数),则k 1,k 2…k r 也必使得 k 1βi 1+k 2 βi 2+···+k r βi r =k 1(P αi 1)+ k 2(P αi 2)+ ···+ k r (P αi r ) =P (k 1αi 1+k 2αi 2+ ···+k r αi r )=P 0=0 反之,如果βi 1, βi 2,···,βi r 有线性关系式,得 λ1βi 1+λ2βi 2+ ···+λr βi r =0 则由P 的满秩性可知αj =P -1βj (j=1,2,3, ···,n),于是有 λ1αi 1+λ2αi 2+ ···+λr αi r =λ1P -1βi 1 +λ2P -1βi 2 + ···+λr P -1βi r = P -1(λ1βi 1+λ2βi 2+ ···+λr βi r )= P -10=0 这表明向量组αi 1,αi 2, ···,αi r 与向量组βi 1, βi 2,···,βi r 有相同的线性相关性,证毕。 2 线性相关性在线性代数中的应用 2.1向量组的线性相关性与行列式的关系 若向量组α1,α2, ···,αn 的个数等于于向量的维数,即m=n 时,则

线性代数在数模中的应用

线性代数在数学建模中的应用举例 1 基因间“距离”的表示 在ABO 血型的人们中,对各种群体的基因的频率进行了研究。如果我们把四种等位基因A 1,A 2,B ,O 区别开,有人报道了如下的相对频率,见表1.1。 表1.1基因的相对频率 问题 一个群体与另一群体的接近程度如何?换句话说,就是要一个表示基因的“距离”的合宜的量度。 解 有人提出一种利用向量代数的方法。首先,我们用单位向量来表示每一个群体。为此目的,我们取每一种频率的平方根,记ki ki f x = .由于对这四种群 体的每一种有14 1 =∑=i ki f ,所以我们得到∑==4 1 2 1i ki x .这意味着下列四个向量的每个都 是单位向量.记 .444342414,343332313,242322212,141312111???? ? ? ??????=????????????=????????????=????????????=x x x x a x x x x a x x x x a x x x x a

在四维空间中,这些向量的顶端都位于一个半径为1的球面上. 现在用两个向量间的夹角来表示两个对应的群体间的“距离”似乎是合理的.如果我们把a 1和a 2之间的夹角记为θ,那么由于| a 1|=| a 2|=1,再由内只公式,得 21cos a a ?=θ 而 .8307.03464.02943.03216.0,8228.01778.00000.05398.021???? ? ? ??????????????? ???=a a 故 9187.0c o s 21=?=a a θ 得 2.23=θ°. 按同样的方式,我们可以得到表1.2. 表1.2基因间的“距离” 由表1.2可见,最小的基因“距离”是班图人和英国人之间的“距离”,而爱斯基摩人和班图人之间的基因“距离”最大. 2 Euler 的四面体问题 问题 如何用四面体的六条棱长去表示它的体积?这个问题是由Euler (欧拉)提出的. 解 建立如图2.1所示坐标系,设A ,B ,C 三点的坐标分别为(a 1,b 1,c 1),( a 2,b 2,c 2)和(a 3,b 3,c 3),并设四面体O-ABC 的六条棱长分别为.,,,,,r q p n m l 由立体几何知道,该四面体的体积V 等于以向量→ → → OC OB OA ,,组成右手系时,以它们为棱的平行

浅谈《高等数学》与《线性代数》课程的相通性

浅谈《高等数学》与《线性代数》课程的 相通性 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 《高等数学》和《线性代数》这两门课的内容差异大,但也有不少知识点具有相同性,很多方法和结论相互渗透,本文探讨了《高等数学》与《线性代数》课程内容的一些相通性。 随着科学技术的发展和计算机的广泛应用,《高等数学》和《线性代数》的作用越来越重要,它们是高等院校培养应用型人才重要的数学基础课。《高等数学》主要学习的是微积分方面的知识,《线性代数》主要学习的是几何方面的知识。由于课程内容的不同,部分高校在课程安排上往往一个教师要么只教《高等数学》,要么只教《线性代数》,从而在教学时往往忽略了引导学生去思考这两门课程中的一些相通性。实际上,看似两门完全不同的课程之间实有许多相通之处,而让学生了解和掌握这些相通性不但有利于更好地掌握这两门课程,而且还可以培养学生发现、思考和总结的能力,所学知识真正做到融会贯通。

几年来,笔者一直在教学一线,既承担《高等数学》的教学,也承担《线性代数》的教学。在教学实践中,笔者发现和总结了一些这两门课程的相通性,下面介绍几点。 一、《高等数学》和《线性代数》课程中部分定义和结论的相通性 4.方程解的结构。在《线性代数》中,当非齐次线性方程组Ax=b有无穷解时,其解可以表示为对应齐次方程组Ax=0的通解加上非齐次线性方程组Ax=b 的一个特解。在《高等数学》中,非齐次线性微分方程的通解也有类似的结构,即也可表示成对应齐次微分方程的通解加上非齐次微分方程的特解。线性方程组和线性微分方程除了解结构类似外,解的性质也完全一样。 二、《高等数学》和《线性代数》课程中部分量运算的相通性 在《线性代数》中有一个重要的量——矩阵,故对矩阵的运算作了大量的介绍,有矩阵的加法、矩阵

线性代数在生活中的实际应用

線性代數在生活中の實際應用 大學數學是自然科學の基本語言,是應用模式探索現實世界物質運動機理の主要手段。學習數學の意義不僅僅是學習一種專業の工具而已。 ;;;初等の數學知識 學習線性代數數學建模 函數模型の建立及應用,作為變化率の額倒數在幾何學、物理學、經濟學中の應用,拋體運動の數學建模及其應用,最優化方法及其在工程、經濟、農業等領域中の應用,邏輯斯諦模型及其在人口預測、新產品の推廣與經濟增長預測方面の應用,網絡流模型及其應用,人口遷移模型及其應用,常用概率模型及其應用,等等。 線性代數中行列式 實質上是又一些豎直排列形成の數表按一定の法則計算得到の一個數。早在1683年與1693年,日本數學家關孝和與德國數學家萊布尼茨就分別獨立の提出了行列式の概念。之後很長一段時間,行列式主要應用與對現行方程組の而研究。大約一個半世紀後,行列式逐步發展成為線性代數の一個獨立の理論分支。1750年瑞士數學家克萊姆也在他の論文中提出了利用行列式求解線性方程組の著名法則——克萊姆法則。隨後1812年,法國數學家柯西發現了行列式在解析幾何中の應用,這一發現機器了人們對行列式の應用進行探索の濃厚興趣。如今,由於計算機和計算軟件の發展,在常見の高階行列式計算中,行列式の數值意義雖然不大,但是行列式公式依然可以給出構成行列式の數表の重要信息。在線性代數の某些應用中,行列式の只是依然非常重要。 矩陣實質上就是一張長方形の數表,無論是在日常生活中還是科學研究中,矩陣是一種非常常見の數學現象。學校課表、成績單、工廠裏の生產進度表、車站時刻表、價目表、故事中の證劵價目表、科研領域中の數據分析表,它是表述或處理大量の生活、生產與科研問題の有力の工具。矩陣の重要作用主要是它能把頭緒紛繁の十五按一定の規則清晰地展現出來,使我們不至於背一些表面看起來雜亂無章の關系弄得暈頭轉向。塌還可以恰當の給出事物之間內在の聯系,並通過矩陣の運算或變換來揭示事物之間の內在聯系。它也是我們求解數學問題時候“數形結合”の途徑。矩陣の運算是非常重要の內容。 例:計算?????? ??----------?n n n n n n n n n n n n n n n 11111 1 11 112 解: ?????? ??-------- - -n n n n n n n n n n n n n 111111 1 1 1 1 ??? ?????????? ? ?---------=11 1 1111 1112 n n n n ???? ? ? ?---------= 11 1 1111 1112 2 n n n n ?? ? ?? ? ? ??---------=)1()1() 1(12n n n n n n n n n n n n n

线性代数论文

关于线性代数的理解 线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。线性代数是理工类、经管类数学课程的重要内容线性代数起源于对二维和三维直角坐标系的研究。 在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。这就是实数向量空间的第一个例子。作为证明定理而使用的纯抽象概念,向量空间(线性空间)属于抽象代数的一部分,而且已经非常好地融入了这个领域。一些显著的例子有:不可逆线性映射或矩阵的群,向量空间的线性映射的环。线性代数也在数学分析中扮演重要角色,特别在向量分析中描述高阶导数,研究张量积和可交换映射等领域。向量空间是在域上定义的,比如实数域或复数域。线性算子将线性空间的元素映射到另一个线性空间(也可以是同一个线性空间),保持向量空间上加法和标量乘法的一致性。所有这种变换组成的集合本身也是一个向量空间。如果一个线性空间的基是确定的,所有线性变换都可以表示为一个数表,称为矩阵。对矩阵性质和矩阵算法的深入研究(包括行列式和特征向量)也被认为是线性代数的一部分。 我们可以简单地说数学中的线性问题——-那些表现出线性的问题——是最容易被解决的。比如微分学研究很多函数线性近似的问题。在实践中与非线性问题的差异是很重要的。 线性代数方法是指使用线性观点看待问题,并用线性代数的语言描述它、解决它(必要时可使用矩阵运算)的方法。这是数学与工程学中最主要的应用之一。 线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。主要理论成熟于十九世纪,而第一块基石(二、三元线性方程组的解法)则早在两千年前出现(见于中国古代数学名著《九章算术》)。 线性代数课程是高等学校理工科各专业学生的一门必修的重要基础理论课,它广泛应用于科学技术的各个领域。尤其是计算机日益发展和普及的今天,使线性代数成为工科学生所必备的基础理论知识和重要的数学工具。线性代数是为培养中国社会主义现代化建设所需要的高质量专门人才服务的。 线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。我自己对线性代数的应用了解的也不多。但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。 线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。在这门课的学习过程中,很多同学遇到了上课听不懂,一上课就想睡觉,公式定理理解不了,知道了知识但不会做题,记不住等问题。我认为,每门课程都是有章可循的,线性代也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。 线性代数作为一门数学,体现了数学的思想。 数学上的方法是相通的。比如,考虑特殊情况这种思路。线性代数中行列式按行或列展开公式的证明就是从更简单的特殊情况开始证起;解线性方程组时先解对应的齐次方程组,这些都是先考虑特殊情况。高数上解二阶常系数线性微分方程时先解其对应的齐次方程,这用的也是这种思路。

线性代数论文

关于矩阵与行列式 线性代数就是数学的一个分支,它的研究对象就是:行列式 矩阵 空间向量与线性方程组。 矩阵与行列式就是两个完全不同的概念,行列式代表着一个数,而矩阵仅仅就是一些数的有顺序的摆法。利用矩阵这个工具,可以把线性方程组中的系数组成向量空间中的向量;这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等等一系列理论上的问题,就都可以得到彻底的解决。矩阵的应用就是多方面的,不仅在数学领域里,而且在力学、物理、科技等方面都十分广泛的应用。 行列式与矩阵的本质区别在于它们的定义。行列式就是一种特殊的算式,它就是根据求解方程组个数与未知量个数相同的一次方程组的需要而定义的,经计算能算出其数值,而矩阵只就是一个数表,无法通过计算求得其值;而且两者的表示方法也不同。如下例: 432 1表示的就是一个2阶行列式;而??? ? ??4321则表示就是一个2×2的矩阵。而且432 1可以通过计算求得其值为-2;而???? ??4321只能表示一个数表,不能求出值。 行列式的行数与列数必须就是相等的;而矩阵的行数与列数可以相等也可以不相等。由n 2个数组成的n 行n 列行列式为n 阶行列式;由m 行n 列组成的数表为m ×n 矩阵。只有行数与列数相

等的矩阵即方阵才能计算其行列式。如:???? ?? ? ? ?620816732 531 就是一个3×4的矩阵;而6208167325 31这样的行列式就是不存在的,因此??? ??? ? ? ?620816 732 531无法求其行列式。 而且行列式与矩阵的性质与运算法则也不同。如下: (1)记D= nn n n n n a a a a a a a a a ???????21 2222111211 ,D T = nn n n n n a a a a a a a a a ???????212 2212 1 2111,则称D T 为D 的转置行列式,并有D= D T ,行列式中行与列具有同等的地位,因此,行列式的性质凡就是对行成立的对列也同样成立;同样的矩阵A 的转置矩阵A T 就是指把矩阵A 的行换成同序数的列得到的 新矩阵,即记A=??????? ?????????nn n n n n a a a a a a a a a 2 1 22221 11211 ,则A T =?? ? ? ? ? ? ?????????nn n n n a a a a a a a a a 2n 122212 12111 , 但有(A T )T =A 。且对方阵来说,T A =A 。 (2)互换行列式的两行(列),行列式变号,例 如:9876543 21=-9 873216 54,因此可以推出——如果行列式有两行(列)

线性代数的应用论文

论文:线性代数的应用与心得体会班级: 姓名: 学号: 指导老师: 完成时间:2014年10月20日

目录 【摘要】 (2) 【关键词】 (2) 一、线性代数被广泛运用的原因 (2) 二、线性代数在实际中的应用 (2) 1. 用二阶行列式求平行四边形面积,用三阶行列 式求平行六面面体 (2) 2. 希尔密码 (2) 3.在人们平常日常生活的应用——减肥配方的实 现 (3) 4、在城市人们出行的应用——交通流的分析 (4) 5、马尔可夫链 (5) 6、在人口迁移的应用人口迁徙模型 (5) 三、心得与体会 (7)

【摘要】我们对线性代数的了解大概是,线性代数理论有着悠久的历史和丰富的内容,还有其主要知识:矩阵、方程组和向量;我们也应该了解其在众多的科学技术领域和实际生活中的应用都十分广泛。下面就是看一些具体实例应用,和一些心得体会。 【关键词】线性代数;实际生活;应用实例;心得体会; 。 一、线性代数被广泛运用的原因 为什么线性代数得到广泛运用,也就是说,为什么在实际的科学研究中解线性方程组是经常的事,而并非解非线性方程组是经常的事呢? 原因之一,大自然的许多现象恰好是线性变化的,研究的是单个变量之间的关系。例如我们高中学过的物理学科中,物理可以分为机械运动、电运动、还有量子力学的运动。而比较重要的机械运动的基本方程是牛顿第二定律,即物体的加速度同它所受到的力成正比,其实这又恰恰符合基本的线性微分方程。再如电运动的基本方程是麦克思韦方程组,这个方程组表明电场强度与磁场的变化率成正比,而磁场的强度又与电场强度的变化率成正比,因此麦克思韦方程组也正好是线性方程组。 原因之二,之后随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,因为各种实际问题在大多数情况下可以线性化,而且由于计算机的发展,线性化了的问题又可以计算出来,所以,线性代数因这方面的成为了解决这些问题的有力工具而被广泛应用。 原因之三,在数学中线性代数与几何和代数有着不可分割的联系。线性代数所体现的几何观念与代数方法之间的联系,从具体概念变为抽象出来的公理化方法,对于强化人们的数学训练,增强科学性是非常有用的。 二、线性代数在实际中的应用 1.用二阶行列式求平行四边形面积,用三阶行列式求平行六面面体 2.希尔密码 希尔密码(Hill Password)是运用基本矩阵论原理的替换密码,由Lester S. Hill在1929年发明。每个字母当作26进制数字:A=0, B=1, C=2... 一串字母当成n维向量,跟一个n×n 的矩阵相乘,再将得出的结果模26。注意用作加密的矩阵(即密匙)在\mathbb_^n必须是可逆的,否则就不可能译码。只有矩阵的行列式和26互质,才是可逆的。 例题、 设明文为HPFRPAHTNECL,密钥矩阵为:

相关文档
最新文档