巴特沃斯低通滤波器公式 巴特沃斯低通滤波器设计原理

合集下载

【完整版毕业论文】巴特沃斯有源低通滤波器的设计

【完整版毕业论文】巴特沃斯有源低通滤波器的设计

巴特沃斯有源低通滤波器的设计摘要随着社会科学技术的飞速发展,各种科技产品在人类社会中随处可见,极大的丰富了人们的日常生活。

物联设备、可穿戴设备以及虚拟仪器产品在各种应用和消费场合变得极为普遍。

就目前而言,在几乎所有的电子产品中,各种增益、带宽以及高性能的滤波器都发挥着至关重要的作用,例如可穿戴设备的语音信号输入系统中,运用高性能的低通滤波器进行语音信号的降噪、滤波、回声消除,来提高系统的音质和语音识别精准度等。

本论文通过对各种低通滤波器的通频带、增益和截止频率的分析,采用通频带最大扁平度技术(巴特沃斯技术)来设计实现四阶高性能低通滤波器,通过Multisum仿真软件,验证了设计的正确性。

在这基础上,本文还对如何提高该滤波器的响应速度进行了研究,提出了一种有效的提高响应速度的方案,并通过仿真软件得以验证。

这在低通滤波器的理论以及实际工程应用中,都具有非常重要的意义。

关键词:有源低通滤波器,巴特沃斯,运算放大器Design of Butterworth Active Low Pass FilterABSTRACTWith the rapid development of social science and technology, various technological products can be seen everywhere in human society, which greatly enriches people's daily lives. IoT devices, wearable devices, and virtual instrument products have become extremely common in various applications and consumer occasions. For now, in almost all electronic products, various gains, bandwidths, and high-performance filters play a vital role. For example, in the voice signal input system of wearable devices, the use of high-performance low-pass The filter performs noise reduction, filtering, and echo cancellation of the speech signal to improve the sound quality of the system and the accuracy of speech recognition.In this paper, through the analysis of the passband, gain and cutoff frequency of various low-pass filters, the maximum flatness of the passband technology (Butterworth technology) is used to design and implement a fourth-order high-performance low-pass filter, through Multisum simulation software To verify the correctness of the design. On this basis, this paper also studies how to improve the response speed of the filter, and puts forward an effective scheme to improve the response speed, which is verified by simulation software. This is of great significance in the theory of low-pass filters and in practical engineering applications.KEYWORDS:active low-pass filter,butterworth,amplifier1绪论1.1 引言在近现代的科技发展中,滤波器作为一种必不可少的组成成分,在仪器仪表、智能控制、计算机科学、通信技术、电子应用技术和现代信号处理等领域有着十分重要的作用。

巴特沃斯数字低通滤波器要点

巴特沃斯数字低通滤波器要点

目录1.题目.......................................................................................... .22.要求 (2)3.设计原理 (2)3.1 数字滤波器基本概念 (2)3.2 数字滤波器工作原理 (2)3.3 巴特沃斯滤波器设计原理 (2)3.4脉冲响应不法 (4)3.5实验所用MATLAB函数说明 (5)4.设计思路 (6)5、实验内容 (6)5.1实验程序 (6)5.2实验结果分析 (10)6.心得体会 (10)7.参考文献 (10)一、题目:巴特沃斯数字低通滤波器二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ,通带最大衰减为0.5HZ,阻带最小衰减为10HZ,画出幅频、相频相应相应曲线。

并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ。

用此信号验证滤波器设计的正确性。

三、设计原理1、数字滤波器的基本概念所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。

正因为数字滤波通过数值运算实现滤波,所以数字滤波处理精度高、稳定、体积小、质量轻、灵活、不存在阻抗匹配问题,可以实验模拟滤波器无法实现的特殊滤波功能。

如果要处理的是模拟信号,可通过A\DC和D\AC,在信号形式上进行匹配转换,同样可以使用数字滤波器对模拟信号进行滤波。

2、数字滤波器的工作原理数字滤波器是一个离散时间系统,输入x(n)是一个时间序列,输出y(n)也是一个时间序列。

如数字滤波器的系统函数为H(Z),其脉冲响应为h(n),则在时间域内存在下列关系y(n)=x(n) h(n)在Z域内,输入输出存在下列关系Y(Z)=H(Z)X(Z)式中,X(Z),Y(Z)分别为输入x(n)和输出y(n)的Z 变换。

巴特沃斯低通滤波器的设计方法

巴特沃斯低通滤波器的设计方法
极点:-0.3090±j0.9511,-0.8090±j0.5878; -1.0000
H a(p )p 5 a 4p 4 a 3p 3 1 a 2p 2 a 1p a 0
其中,a0=1.0000, a1=3.2361, a2=5.2361, a3=5.2361, a4=3.2361
2021/2/11
14
归一化:
——由于各滤波器的幅频特性不同,为使设计统一,需要将所 有的频率归一化
——这里采用对3dB截止频率Ωc归一化,归一化后的Ha(s)表示

1
Ha(s)
N 1
(
s
sk )
k0 c c
(5.2.11)
令归一化复变量p=s/Ωc,pk=sk/Ωc,得到归一化巴特沃斯的传
输函数
Ha ( p) N1 1
2021/2/11
27
切比雪夫低通滤波器: •I型——通带等波纹,阻带单调递减 •II型——通带单调递减,阻带等波纹
2021/2/11
28
切比雪夫I型低通滤波器
幅度平方函数: A2Ha(j)2 12C1N 2( p)
Ωp给定,两个参数ε和N
(5.2.24)
0< ε <1,表示通带内幅度波动的程度,ε愈大,波动幅度愈
ap:通带最大衰减系数
as:阻带最小衰减系数
ap 10lg
Ha( j) 2
2
(5.2.1)
Ha( jp)
as
10lg
Ha( j) 2 Ha( js ) 2
(5.2.2)
将Ω=0处幅度已归一化到1,即|Ha(0)|=1,得到
2
ap10lgHa(jp) (5.2.3)
as 10lgHa(js)2 (5.2.4)

LC低通滤波器设计(巴特沃斯低通滤波器归一化)讲解

LC低通滤波器设计(巴特沃斯低通滤波器归一化)讲解

C1 1.84776F C2 0.76537F
1NEW

0.76537 K 0.76537 4 12.29μH 5 M 2.512 10
L2NEW
1.84776 K 1.84776 4 29.42μH 5 M 2.512 10
待设计LPF的电容参数为 :
(1 2 )Hz
特征阻抗变换K 4 4 1 四阶Butterworth低通滤波器的电感电容参 数
2018/10/24
只因准备不足,才导致失败
7
四阶Butterworth低通滤波器的归一化LPF基 准滤波器的参数,设 L1 0.76537H L2 1.84776H 得:L
1.84776 1.84776 C1NEW 1.84 μF 5 M K 4 2.512 10 0.76537 0.76537 C2NEW 0.76μF 5 M K 4 2.512 10
2018/10/24 只因准备不足,才导致失败 8
电感采用无损磁芯及细包漆线绕制而成,其 电感值可用数字电桥测量仪器测量得到。
2018/10/24
只因准备不足,才导致失败
1
对滤波器截止角频率的变换是通过先求出待 设计滤波器截止角频率与基准角频率的比值 M,再用这个M去除滤波器中的所有元件值 来计算所需参数,其计算公式如下:
待设计滤波器的截止频 率 M 基准滤波器的截止频率
C (base) Cm(new) M
2018/10/24
5. 低通滤波器设计
1)归一化LPF设计方法 归一化低通滤波器设计数据,指的是特征阻 1 抗为 1 且截止频率为 0.159Hz 的基准 低通滤波器的数据。 2 在设计巴特沃思型的归一化LPF的情况下, 以巴特沃思的归一化LPF设计数据为基准滤 波器,将它的截止频率和特征阻抗变换为待 设计滤波器的相应值。

二阶巴特沃斯低通滤波器 c语言

二阶巴特沃斯低通滤波器 c语言

二阶巴特沃斯低通滤波器 c语言二阶巴特沃斯低通滤波器是一种常用的电子滤波器,主要用于信号处理和电路设计中。

它可以有效地滤除高频信号,保留低频信号,使得输出信号更加平滑和稳定。

本文将介绍二阶巴特沃斯低通滤波器的原理和C语言实现方法。

一、二阶巴特沃斯低通滤波器原理巴特沃斯滤波器是一种无失真滤波器,其特点是在通带中具有最大平坦度,而在阻带中具有最小衰减。

二阶巴特沃斯低通滤波器是一种二阶滤波器,可以通过调整参数来实现不同的滤波效果。

二阶巴特沃斯低通滤波器的传输函数为:H(s) = 1 / (s^2 + s/Q + 1)其中,s为复变量,Q为质量因子,决定了滤波器的带宽和阻带衰减。

通过调整Q的值,可以实现不同的滤波器响应。

二、C语言实现二阶巴特沃斯低通滤波器下面是一个简单的C语言实现二阶巴特沃斯低通滤波器的代码示例:#include <stdio.h>#include <math.h>#define PI 3.1415926typedef struct{double a0, a1, a2; // 分子系数double b0, b1, b2; // 分母系数double x1, x2; // 输入延时double y1, y2; // 输出延时} BiquadFilter;void BiquadFilter_init(BiquadFilter* filter, double cutoff_freq, double sample_rate){double w0 = 2 * PI * cutoff_freq / sample_rate;double alpha = sin(w0) / 2;double a0 = 1 + alpha;double a1 = -2 * cos(w0);double a2 = 1 - alpha;double b0 = (1 - cos(w0)) / 2;double b1 = 1 - cos(w0);double b2 = (1 - cos(w0)) / 2;filter->a0 = b0 / a0;filter->a1 = b1 / a0;filter->a2 = b2 / a0;filter->b1 = -a1 / a0;filter->b2 = -a2 / a0;filter->x1 = 0;filter->x2 = 0;filter->y1 = 0;filter->y2 = 0;}double BiquadFilter_process(BiquadFilter* filter, double input) {double output = filter->a0 * input + filter->a1 * filter->x1 + filter->a2 * filter->x2 - filter->b1 * filter->y1 - filter->b2 * filter->y2;filter->x2 = filter->x1;filter->x1 = input;filter->y2 = filter->y1;filter->y1 = output;return output;}int main(){double cutoff_freq = 1000; // 截止频率double sample_rate = 44100; // 采样率BiquadFilter filter;BiquadFilter_init(&filter, cutoff_freq, sample_rate);double input = 0;double output = 0;// 生成输入信号for (int i = 0; i < 1000; i++){input = sin(2 * PI * 1000 * i / sample_rate);// 进行滤波处理output = BiquadFilter_process(&filter, input);// 输出滤波结果printf("%f\n", output);}return 0;}以上代码实现了一个简单的二阶巴特沃斯低通滤波器。

关于八阶巴特沃斯低通滤波器的设计

关于八阶巴特沃斯低通滤波器的设计

关于⼋阶巴特沃斯低通滤波器的设计⽬录1、课程设计⽬的 (1)2、课程设计内容和要求 (1)2.1、设计内容 (1)2.2、设计要求 (1)3、设计⽅案及实验情况 (1)3.1、设计思路 (1)3.2、电路及滤波原理 (1)3.3、芯⽚介绍 (3)3.4、⼯作原理及硬件设计 (4)3.5、硬件电路原理图 (9)4、课程设计总结 (11)5、参考⽂献 (11)1、课程设计⽬的(1)掌握电⼦电路的⼀般设计⽅法和设计流程;(2)学习简单电路系统设计,掌握Protel99或其它⼯具软件的使⽤⽅法;(3)学习掌握硬件电路设计的全过程。

2、课程设计内容和要求2.1、设计内容(1)查阅相关资料,完成系统总体⽅案设计;(2)利⽤Multisim软件仿真;(3)利⽤protel99软件画出电路原理图与PCB版图;(4)按照要求撰写设计说明书。

2.2、设计要求滤波技术是信号分析、处理技术的重要分⽀,⽆论是信号的提取、传输,还是信号的处理和交换都离不开滤波技术,它对信号安全可靠和有效灵活地传递是⾄关重要的。

在近代各种电⼦设备和控制系统中,滤波技术应⽤极为⼴泛。

在所有的电⼦系统中,使⽤最多,技术最复杂要算滤波器了。

滤波器的优劣直接决定着产品的优劣。

本课程设计设计⼀个有源滤波器,滤波范围:10Hz-2KHz,⾼通滤波电路采⽤⼆阶⾼通滤波电路,低通部分采⽤⼋阶巴特沃斯滤波电路。

3、设计⽅案及实验情况3.1、设计思路带通滤波器是由低通RC环节和⾼通RC环节组合⽽成的。

要将⾼通的下限截⽌频率设置为⼩于低通的上限截⽌频率。

电路是由有源低通滤波器,有源⾼通滤波器两部分组成的有源带通滤波器。

⾼通滤波电路采⽤截⽌频率为10HZ的压控电压源⼆阶⾼通滤波电路,低通部分采⽤截⽌频率为2K的⼋阶巴特沃斯滤波器。

其中,⼋阶巴特沃斯滤波器是由四个压控电压源⼆阶低通滤波器级联构成。

3.2、电路及滤波原理(1)压控⼆阶电路压控电压源⼆阶滤波电路的特点:运算放⼤器为同相接法,滤波器的输⼊阻抗很⾼,输出阻抗很低,滤波器相当于⼀个电压源。

巴特沃斯低通滤波器

0.1a p 0.1a s s sp
带最小衰减α =30dB,按照以上技术指标设计巴特沃斯低通滤波器。 0.1a s
1a p
1a s
2.4
0242 4.25, 2.4
2.4 10 1 2 f lg 0.0242 lg 0.0242 NN 2 4.25, 55 lgf 2.4 4.25, N N s sp lg 2.4 2.4 2 f p
H( a s)
N c
(s s
k 0
N 1
k
)
7 j 3
• 例如N=3, 通过下式可以计算出6个极点 5 2 4 j j j j s 3 c 3 s 2 c 3 s 0 c 3 s1 c
s 4 c
j2
s 5 c
要求
f i g u r e ; p l o t ( Q , H a s ) ; a x i s ( [ 0 5]);xlabel('f(kHz)'),ylabel('20lg(abs(H_{a}(j{\Omega})))(dB)');
3 0
- 7 0
• • • • •
L=length(Ha); Yt=Xt(1:L).*Ha; figure;plot(Q,abs(Yt));axis([0 60 0 150]); yt=ifft(Yt); figure;plot(Q,yt);
• 模拟低通滤波器的设计指标 • 构造一个逼近设计指标的传输函数Ha(s) • Butterworth(巴特沃斯)低通逼近
模拟低通滤波器的设计指标及逼近方法(续)
• 模拟低通滤波器的设计指标有αp, Ωp,αs和Ωs。 • Ωp;通带截止频率 • Ωs:阻带截止频率

巴特沃斯低通滤波器系数计算

subplot(2,1,1);axis([05000-353])
四、滤波器的实现
1 使用“filter”指令实现
H(z) 的分子分母系数向量 [b,a]之后,用“filter”指令可以实现对应的数字滤波器, 从而通过该滤波器对输入数字序列进行滤波。设滤波器输入
序列为X, n
H(z) 的分子系数为b,分母系数
ωp=1500/4000 ωs=2000/4000, Rp=3 Rs=50
高通滤波器 在采样频率为8000Hz的条件下设计一个高通滤波器,要求 通带截止频率为1500Hz,阻带起始频率为1000Hz,通带内 波动3dB,阻带内最小衰减65dB。
则有: ωp=1500/4000 ωs=1000/4000 Rp=3 Rs=65
(2)巴特沃斯高通滤波器系数计算 [b,a]=butter(n,Wn,′high′)
➢ n为高通滤波器阶数; ➢ Wn为高通滤波器截止频率; ➢ b为H(z)的分子多项式系数; ➢ a为H(z)的分母多项式系数。
(3)巴特沃斯带通滤波器系数计算 [b,a]=butter(n,[W1,W2])
➢ n为用buttord()设计出的带通滤波器阶数。 butter(n,[W1,W2])将返回2*n阶滤波器系数。
2 采样率为8000Hz,要求设计一个高通滤波器,
Hz,fs=700Hz,Rp=3dB,Rs=20dB。 程序如下:
fp=1000
f_N=8000;
%
f_p=1000;f_s=700;R_p=3;R_s=20;% Ws=f_s/(f_N/2);Wp=f_p/(f_N/2);%计算归一化角频率
[n,Wn]=buttord(Wp,Ws,R_p,R_s);% [b,a]=butter(n,Wn,'high');%计算H(z) freqz(b,a,1000,8000)%作出H(z)的幅频相频图,freqz(b,a,计算点数,采样率)

巴特沃斯(Butterworth)滤波器(1)

巴特沃斯(Butterworth)滤波器(1)
下面深入浅出讲一下Butterworth原理及其代码编写。

1. 首先考虑一个归一化的低通滤波器(截止频率是1),其幅度公式如下:
当n->∞时,得到一个理想的低通滤波反馈: ω<1时,增益为1;ω>1时,增益为1;ω=1时,增益为0.707。

如下图所示:
将s=jω带入上式得:
根据以下三个公式
a. ,这里取σ=0
b.
c. 拉普拉斯变换在虚轴s=jω上的性质:
可以得到:
因此极点(分母为0的解)为:
根据和得到:
因此可以求得极点在单位圆上:
如果k从0开始的话,上式括号里可以写作2k+n+1:
由于我们只对H(s)感兴趣,而不考虑H(-s)。

因此低通滤波器的极点全部在负实半平面单位圆上:
该滤波器的传递函数为
下面是n=1到4阶的极点位置:
例如四阶Butterworth低通滤波器的极点所在角度为:
5π/8, 7π/8, 9π/8, 11π/8
极点位置在:
因此传递函数为:
1到10阶的Butterworth多项式因子表格如下:
以上我们考虑的是幅度-3分贝时的截止频率为1时的情况:
其它截止频率可将传递函数中的s替换为:
例如二阶截止频率为100的传递函数为:。

巴特沃斯滤波器原理

巴特沃斯滤波器原理
巴特沃斯滤波器是一种常见的滤波器类型,用于对信号进行频率选择和过滤。

它是由英国工程师巴特沃斯于20世纪30年代提出的。

巴特沃斯滤波器的原理是在信号的频域中实现一个特定的频率响应,以达到对不同频率信号的选择性滤波。

该滤波器通过将输入信号与一个特定的频率响应函数进行卷积运算,达到滤除希望去除的频率成分的目的。

巴特沃斯滤波器的频率响应函数是一个理想的低通、高通或带通滤波器响应函数的近似。

通过选择不同的滤波器阶数和截止频率,可以实现不同类型的滤波器。

滤波器阶数是指滤波器去除信号频率的能力,阶数越高,滤波效果越好。

而截止频率是指滤波器对信号频率削弱的程度,截止频率越高,滤波器允许的信号频率范围越宽。

巴特沃斯滤波器的设计基于一定的数学公式和算法,可以通过计算来确定滤波器的参数。

常见的设计方法包括基于极点零点、频率转换等。

值得注意的是,巴特沃斯滤波器在设计时需要权衡滤波器的阶数和截止频率以及信号的要求,以平衡滤波效果和计算复杂度之间的关系。

在实际应用中,巴特沃斯滤波器常用于音频处理、图像处理、
通信系统中的信号处理等领域。

它在去除杂波、增强信号质量方面具有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巴特沃斯低通滤波器公式巴特沃斯低通滤波器设计原理
巴特沃斯低通滤波器可用如下振幅的平方对频率的公式表示:其中, = 滤波器的阶数= 截止频率= 振幅下降为-3分贝时的频率=通频带边缘频率在通频带边缘的数值。

关于“巴特沃斯低通滤波器公式巴特沃斯低通滤波器设计原理”的详细说明。

1.巴特沃斯低通滤波器公式
巴特沃斯低通滤波器可用如下振幅的平方对频率的公式表示:
其中, = 滤波器的阶数= 截止频率= 振幅下降为-3分贝时的频率=通频带边缘频率在通频带边缘的数值。

2.巴特沃斯低通滤波器设计原理
巴特沃斯型低通滤波器在现代设计方法设计的滤波器中,是最为有名的滤波器,由于它设计简单,性能方面又没有明显的缺点,又因它对构成滤波器的元件Q值较低,因而易于制作且达到设计性能,因而得到了广泛应用。

其中,巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。

滤波器的截止频率的变换是通过先求出待设计滤波器的截止频率与基准滤波器的截止频率的比值M,再用这个M去除滤波器中的所有元件值来实现的,其计算公式如下:M=待设计滤波器的截止频率/基准滤波器的截止频率。

滤波器的特征阻抗的变换是通过先求出待设计滤波器的特征阻抗与基准滤波器的特征阻抗的比值K,再用这个K去乘基准滤波器中的所有电感元件值和用这个K去除基准滤波器中的
所有电容元件值来实现的。

相关文档
最新文档